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Fourier Analysis

SUMMARY OF CHAPTER
Fourier Analysis.

Fourier series concern periodic functions f(x) of period p = 2L, that is, by
definition f(x + p) = f(x) for all x and some fixed p > 0; thus, f(x + np) = f(x)
for any integer n. These series are of the form

b oSl

=

(1) o =ap+ S (an cos %x + by sin %x) (Sec. 11.2)

n=1

with coefficients, called the Fourier coefficients of f(x), given by the Euler formulas

(Sec. 11.2)
1 k 1 k nTXx
ap = EYa JLf(x) dx, ay = I J Jlx) cosde
) -+
1 b nirx
by = — [ f(x)sin ——dx
L] . L
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Fourier Analysis.

Fourier series concern periodic functions f(x) of period p = 2L, that is, by
definition f(x + p) = f(x) for all x and some fixed p > 0; thus, f(x + np) = f(x)
for any integer n. These series are of the form

() fo=ap+ 3 (an cos %x + by sin %x) (Sec. 11.2)
n=1

with coefficients, called the Fourier coefficients of /(x), given by the Euler formulas
(Sec. 11.2)

L
f(x) cos H—T dx
L

L
_ _1
33 J J(x) dx, ay, = I3 J

2 " . -
J _Lf(x) sin % dx

by, =
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For period 277 we simply have (Sec. 11.1)

(1%) fx)y=ap + i (cy, cos nx + by, sin nx)

n=1

with the Fourier coefficients of f(x) (Sec. 11.1)

T T T
do = = [ f)dr, ay = — f f0) cos medx, by = [ £ sin nx dx.
2m ) I W

=T

Fourier series are fundamental in connection with periodic phenomena, particularly
in models involving differential equations (Sec. 11.3, Chap, 12). If f(x) is even
[f(—=x) = f(x)] or odd [ f(—x) = —f(x)]. they reduce to Fourier cosine or Fourier
sine series, respectively (Sec. 11.2). If f(x) is given for O = x = L only, it has two
half-range expansions of period 2L, namely, a cosine and a sine series (Sec. 11.2).
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Ideas and techniques of Fourier series extend to nonperiodic functions f(x) defined
on the entire real line; this leads to the Fourier integral
(3) flx)y = [ [A(w) cos wx + B(w) sin wx] dw (Sec. 11.7)

‘0
where
N N
(4) Aw) = - [ f(v) coswo du, B(w) = - [ f(w) sin wv dv
or, in complex form (Sec. 11.9),
(5) fly = —_[ J w)e* dw (i=V=1)
V2Tl
where
(6) fow) = L [rfﬁ)e'_m‘rdr
' Veml) T -
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Partial Differential Equations (PDES)
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A partial differential equation (PDE) is an equation involving one or more
partial derivatives of an (unknown) function, call it u. Usually one of these deals with

time ¢ and the remaining with space (spatial variable(s)).

The most important PDEs are:

- The wave equations that can model the vibrating string and the vibrating
membrane,

-The heat equation for temperature in a bar or wire, and

-The Laplace equation for electrostatic potentials.

_
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Partial Differential Equations (PDES)
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The order of the highest derivative is called the order of the PDE. Just as was the

case for ODEs, second-order PDEs will be the most important ones in

applications.

Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is of the first
degree in the unknown function u and its partial derivatives. Otherwise we call it nonlinear.
We call a linear PDE homogeneous if each of its terms contains either u or one of its partial

derivatives. Otherwise we call the equation non-homogeneous.

; Lecturer; Dr Farhad Bayat, University of Zanjan. y
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EXAMPLE 1 Important Second-Order PDEs
7u 2 72u
(1) (L and H) - Oune-dimensional wave equation
at ax
-2
it u
(2) (L and H) o CZ;—Z One-dimensional heat equation
x
.2
Fu atu
(3) (L and H) - Two-dimensional Laplace equation
ax?  ay
.2
u d%u
4) (L and NH) =5 = flx,v) Two-dimensional Poisson equation
a® ay?
.2 .2 -2
a7 ] a7
(5) (L and H) — = 62( + —) Two-dimensional wave equation
ar ax?  ay?
P a2 #2u
(6) (L and H) +— + =0 Three-dimensional Laplace equation
a?  ay? a?
.2 .2 2 2
(NL and H) 7%, 7 +(" ;’): 0

dx ad )‘2 az

2 .
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A solution of a PDE in some region R of the space of the independent variables is a function
that has all the partial derivatives appearing in the PDE in some domain D containing R, and satisfies

the PDE everywhere in R.

Often one merely requires that the function is continuous on the boundary of R, has

those derivatives in the interior of R, and satisfies the PDE in the interior of R.

For example, the functions:

(7y u= x2 —-yz, u = excosyg u = sin x cosh v, U= hl(x2 +-y2)

which are entirely different from each other, are solutions of (3), as you may verify.

Partial Differential Equations (PDES)

o SIS b oSl

THEOREM 1

Fundamental Theorem on Superposition

If uy and us are solutions of a homogeneous linear PDE in some region R, then
U = cqiy + cslig

with any constants ¢y and cs is alse a solution of that PDE in the region R.

; Lecturer; Dr Farhad Bayat, University of Zanjan. y
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EXAMPLE 2 Solving u,, — u = 0 Like an ODE

Find solutions « of the PDE 1y, — u = 0 depending on x and y.

u(x, v)

Solution.

‘ Since no y-derivatives occur, we can solve this PDE like #” — u = 0.‘

u=Ae + Be "

Here A and B may be functions of v, so that the answer is

u(x,y) = A(y)e" + B(y)e™"

Check the result by differentiation.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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EXAMPLE 3 Solvingu,, = —u, Like an ODE

Find solutions # = wu(x, y) of this PDE.

Solution.

Setting u, = p, mmp Py = —P-mmp py/p = —1,

4

p=cxe? &am nhp=—y+ &x),

integration with respect to x,

c(x) dx,

u(x, v) = f(xe ¥ + g(v) where flx) =

J(x) and g(y) are arbitrary.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Modeling: Vibrating String, Wave Equation

In this section we model a vibrating string, which will lead to our first important
PDE, that is, equation (3) which will then be solved in the next section.

The student should pay very close attention to this delicate modeling process and detailed
derivation starting from scratch, as the skills learned can be applied to modeling other

phenomena in general and in particular to modeling a vibrating membrane.

#u a%u . . .
(3) + =0 Two-dimensional Laplace equation

; Lecturer; Dr Farhad Bayat, University of Zanjan. y
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Problem definition:

We want to derive the PDE modeling small transverse vibrations of an elastic string, such
asa violin string.

We place the string along the x-axis, stretch it to length L, and fasten it at the ends X=0 and
X=L.

We then distort the string, and at some instant, call it t=0 we release it and allow it to
vibrate. The problem is to determine the vibrations of the string, that is, to find its

deflection u(x,t) at any point x and at any time t>=0.

see Fig. 286.

Fig. 286. Deflected string

0 x x+ Ax L 5 5 /
; LA L Tt s Al e man way avy wulVETSItY szan]an-
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Physical Assumptions

1. The mass of the string per unit length is constant (“homogeneous string”). The string
is perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large
that the action of the gravitational force on the string (trying to pull the string down
a little) can be neglected.

3. The string performs small transverse motions in a vertical plane; that is, every

particle of the string moves strictly vertically and so that the deflection and the slope
at every point of the string always remain small in absolute value.

; Lecturer; Dr Farhad Bayat, University of Zanjan.
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sk 3 olSils
Derivation of the PDE of the Model
(“Wave Equation”) from Forces
To obtain the PDE, we consider the forces acting on a small portion of the string (Fig.286)
T
P Q Q-:—:—::‘:gz
G o P
I I Py
T, | | /
: I
l : 7,
|
X x+ Ax L
Fig. 286. Deflected string at fixed time t.
Since the string offers no resistance to bending, the tension is tangential to the curve of the string at
each point.

; Lecturer; Dr Farhad Bayat, University of Zanjan.
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Fig. 286. Deflected string at fixed time t.

There is no motion in the horizontal direction. ‘

(1) T cosa = T, cos B = T = const.

In the vertical direction By Newton’s second law mmmp

a%u
Irsin 3 — T sin = pAx -
ot

F Lecturer: Dr Farhad Bayat, University of Zanjan. —/

Partial Differential Equations (PDES)

o BLE1S b oSl

Using (1), we can divide this by 75 cos 3 = T3 cos @ = T, obtaining

15 sin 1 sin « Ax o%u
2 ‘8— 1 :tanB—tana:p—_g‘
Iycos B Tcosa T ot

u u
tan o = ((—) and tan B = ((—)
ax x dx
1 Kr’i&t) (au) ] B
Ax [\ax /], 4 ax ax /|,

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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We know:

T+ Ax

we thus have

Eﬂzu
are’
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Partial Differential Equations (PDESs)
v (ﬂ_) _ (J_) _P &u
Ax [\ox /], 4 an ox /|, T at®”
It we let Ax approach zero, we obtain the linear PDE
.2 .2
du 9 ou 2 T
3) — =", ==
> x> P

This is called the one-dimensional wave equation. We see that it is homogeneous and of the

second order.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Solution by Separating Variables.
Use of Fourier Series

S
M au

— 2 &u 2
ar? ax2

Since the string is fastened at the ends x = 0 and x = L

boundary conditions

(2) (a) u(0,0n =0, (b)y u(L,f) =0, forall t = 0.

initial conditions
3) (a) u(x,0) = f(x). (b) u(x,0) = g(x) O=x=1)

N erhad Bayat, UniBI ¥ llien.




1433/03/28

11

Partial Differential Equations (PDES)

l We shall do this in three steps, as follows:

b oSl

Step 1. By the “method of separating variables” or product method, setting
u(x, )y = F(x)G(f), we obtain from (1) two ODEs, one for F(x) and the other one
for G(1).

Step 2. We determine solutions of these ODEs that satisty the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions found in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Step 1. Two ODEs from the Wave Equation (1)

In the method of separating variables, or product method, we determine solutions of the wave
equation (1) of the form:

4 ux, ) = Fx)G(1)

Difterentiating (4), we obtain

.9 "2

d i . du

— = FG and — = F'G
at dx

By inserting this into the wave equation (1) we have:

. 9 G _F"
FG=cF"c.| My |==—.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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'C‘: F”
G F

the left side depending only on ¢ and the right side only on x.

Hence both sides must be constant.

6 FH'
——=—=k
G F
(5) F' —kF=0
and
(6) G — %G = 0.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/

Partial Differential Equations (PDES)
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Step 2. Satisfying the Boundary Conditions (2)

We now determine solutions F and G of (5) and (6) so that u=FG satisfies the boundary
conditions (2), that is,

(7) u(0, 1) = FO)G(r) = 0, u(l,t) = F(L)G() =0 for all t.

‘If G =0, then ©« = FG = 0, which is of no interest. Hence G # 0

by (7).

(8) (a) F(O) =0, (b)y F(L)=0.
For k = 0 the general solution of (5) is I' = ax + b,
and from (8) we obtaina = b = 0,sothat ' = Oandu = F'G = 0, which is of no interest.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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For positive k = ;,1,2 a general solution of (5) is

F = Ae™* 4+ Be™H%

‘from (8) we obtain F' = 0 as before (verify!).|

Hence we are left with H

Then (5) becomes:

F" + p?F =0

A

F(x) = Acos px + Bsinpx.| general solution

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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F(x) = A cos px + B sin px.

From this and (8) we have

F(O)y=A=20 and then F(L) = BsinpL = 0.

We must take B # 0 since otherwise F' = 0.

~

(9) pL = nir, so that p= % (n integer)}
\

Setting B = 1, we thus obtain infinitely many solutions F(x) = Fy(x), where

(10) Fpx) = sin%x n=1,2,-).

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/

13
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Partial Differential Equations (PDES)

We now solve (6) with k = —pz = —(z»’:“:T/L)2 resulting from (9), that is,

- CNIT
(11%) G+ AM2G =0  where A,=cp= .
A general solution is
Gp(t) = By, cos Apt + Bt sin Ayt.
Hence solutions of (1) satisfying (2) are
. . nm

(1D U (X, 1) = (By cos Ayl + Bj§ sin Apt) sme m=1,2,---)

These functions are called the eigenfunctions, or characteristic functions

Ay = enmr/L are called the eigenvalues. or characteristic values, ol the vibraling siring.
\ The set {/\i, Ao, -} 1s called the spectrum. /

LEeClurers I rarnad Dayalt, WNnIVersity O Zalljail.

Partial Differential Equations (PDEs)
Discussion:
Each u, represents a harmonic motion having the frequency ‘/\n/ 29T = cn / 2”

This motion is called the nth normal mode of the string. |

The first normal mode is known as the fundamental mode (n=1), and the others are known as

0 L 0 N_“L o S L o \J VL
n=1 n=2 n=3 n=4

Fig. 287. Normal modes of the vibrating string

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Partial Differential Equations (PDES)

Tuning:
Tuning is done by changing the tension T.

Ay/2m = cn/2L c=VT/p

N SN VA NYA A NIVAY

0 L 0 N__ L o0 L 0 \J VL
n=1 n=2 n=3 n=4

Fig. 287. Normal modes of the vibrating string

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2) (string

fixed at the ends). A single will generally not satisfy the initial conditions (3).

From Fundamental Theorem 1:

- - . . N
(12) u(x, n = Eun(x, N = 2 (B, €os At + Bt sin Ayl) sin Tx‘

n=1 n=1

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Partial Differential Equations (PDES)
(12) ux, rn = iun(x, 1= i (B, cos Ayt + Bjt sin Ayl) sin %x.
n=1 n=1

Satisfying Initial Condition (3a) (Given Initial Displacement).

(13) u(x.0) = > B, sm?;f = f(x). O=x=1L).
n=1
|u (x, 0) becomes the Fourier sine series off(x).| ‘
> L
(14) Bn=zf f(x)sin”—”;dx, n=1,2,--.
0

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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Satisfying Initial Condition (3b) (Given Initial Velocity).

du

Jf

= {E (—BpAy sin Ayt + BA, cos Ayf) sin mgx ]
t=0

t=0 n=1

= EB;EAn sin% = g(x).

B |

B Ay, :% [ 2(x) sin

0

nirx

dx.

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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For the sake of simplicity we consider only the case when the initial velocity g(x) is identically zero.

Then B, * = 0, thus we get:

=<
_ . nmXx
uix, n=> By, cos Ayt sin . Ap =

n=1

(16)

We know:

g 1
cos o ”fo = E{S‘iﬂ {%(A’ - c'r)} + sin {%(r + L'.')} }

t sin

wix, r = 1 ZB” sin {%(x‘ - c'r)} + %EB,I sin {%(}( + ('r)}.

“n=1

n=1

U

; Lecturer; Dr Farhad Bayat, University of Zanjan.
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We can write as:

(17) u(x. 1) = 3[f*(x — ct) + f¥(x + cn)]

where f* is the odd periodic extension of f with the period 2L (Fig. 289).

\\_/O L\/ x

Fig. 289. Odd periodic extension of f(x)

; Lecturer; Dr Farhad Bayat, University of Zanjan. y
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Differential Equations (PDES) [{;E

a7

u(x, ) = %[f*(x —ct) + f*(x + ch)]

Physical Interpretation of the Solution (17).

f¥(x) fHax—-ct)

-

=—ct

-

— x

Fig. 290. Interpretation of (17)

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/
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6

ond 2SS,

Discussion? Suggestions
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EXAMPLE 1 vVibrating String if the Initial Deflection Is Triangular
Find the solution of the wave equation (1) satisfying (2) and corresponding to the triangular initial deflection

2k . L
—x if 0<x<—
L 2

) =
2k . L
—(L —x) if —<x<L
L 2

and initial velocity zero. (Figure 291 shows f(x) = u(x, O) at the top.)
Solution.

Since g(x) = 0, we have Bjf = 0in (12), and we sce that the B, are as:

8k [1 . 7 e 1 . 3 371C
u(x,ﬂ=—2 —g 8in —xcos —1f — 5 sin—xcos — F+ — -
1 L L 3 L

F Lecturer; Dr Farhad Bayat, University of Zanjan. —/

wuix, 0) = f(x) ulx, 0) —_—
. A‘ o
o Ll — I&I .

0 L 0 L elir

1 ey L —— — L
S +2) )

1w L
== 7 t=Li5¢

1 2L 1 2L
§f*(x+T) -~ Ef’*(x—?)

[ N VR

1 L Lewy L
2,!‘ (x+2) 2f (x 2)

— 1 t=TL/2¢

1 3L ~ Lpne 3L
Ef*(x+?) Zf’“(.x 5)

/ \ \
! \ \
\ \ \
\ \ \
\ \
A \
\ \
A \
\ \ \
\
\
\

—~ -

1. t =Llc
s —L)

_1

=lrnean

Fig. 291.  Solution u(x, t) in Example 1 for various values of t (right part

\ of the figure) obtained as the superposition of a wave traveling to the /
right (dashed) and a wave traveling to the left (left part of the figure)

Loy 4 AL
2f(x+5) _

1wy AL
,2f(x 5)

!
I
/
1
\
\
A
\
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