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Partial Differential Equations (PDEs)
Solution by Separating Variables.
Use of Fourier Series
o%u a’u T
(1) E = C2E C2 = E
‘Since the string is fastened at the ends x = 0 and x = L
boundary conditions
(2) (a) u(0,1) =0, (b) u(L.r)=0, forallr = 0.
initial conditions
(3 (@ ux0)=fx, b ux0)=g¢gx) O=x=1I)
initial deflection

initial velocity
; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)

Step 1. Two ODEs from the Wave Equation (1)

In the method of separating variables, or product method, we determine
solutions of the wave equation (1) of the form:

4

u(x,f) = F(X)G(f)

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Differentiating (4), we obtain

.2 -2
1 u . " u
S,=FGC  ad T =F'G
at ax
By inserting this into the wave equation (1) we have:
— n
. _ .2 " - G _ F
FG = °F"G. 2=

v 8l

Partial Differential Equations (PDEs)

—6 =
G

FH
F .

the left side depending only on t and the right side only on x.
Hence both sides must be constant.

&

c.‘zG B

F
F

k.

) 4

(5)
and

(6)

F' —kF=0
G — %G = 0.

v 8l
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Partial Differential Equations (PDEs)
Step 2. Satisfying the Boundary Conditions (2)

We now determine solutions F and G of (5) and (6) so that u=FG satisfies
the boundary conditions (2), that is,

(7) u(0,6 = F(O)G(r) = 0, u(l,n =F(L)GH =20 for all 7.

‘If G =0, then u = FG = 0, which is of no interest. Hence G # 0

by (7).

(8) (a) F(O) =0, (b)y F(L)=0.

and from (8) we obtaina = b = 0, sothat F = Oandu = FG = 0, which is of no interes

[For k = 0 the general solution of (5) is ' = ax + b, ]
t.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)

For positive k = ;,1,2 a general solution of (5) is

v 8l

F = Ae™* 4+ Be™H°

‘from (8) we obtain F = 0 as before (verify!).|

Hence we are left withH

Then (5) becomes:

F" + p’F =0

3

F(x) = Acos px + Bsinpx.| general solution

N L

ecturer: Dr Farhad Bayat, University of Zanjan. y

v 8l
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Partial Differential Equations (PDEs)

v 8l

F(x) = A cos px + B sin px.

From this and (8) we have

F(O)y=A=0 and then F(L) = BsinpL = 0.

We must take B # 0 since otherwise F' = 0.

-
9)

.

pL = n1r, so that p= ? (n integer)J

Setting B = 1, we thus obtain infinitely many solutions F(x) = £}, (x), where

(10)

Fp(x) = sin %x n=1,2,).

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)
We now solve (6) with k = —pg = —(z»’:“:T/L)2 resulting from (9), that is,
(11%) G+A2G=0  where Ap=cp= ”fr.

A general solution is

[Gn(r) = By, cos Ayt + Bj sin Anr}

Hence solutions of (1) satisfying (2) are

(11) Un (X, 1) = (By, €OS At + B sin Apf) sin —x n=1,2-")

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)
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Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary

conditions (2) (string fixed at the ends). A single will generally not satisfy the

initial conditions (3).

From Fundamental Theorem 1:

(12) u@.) = un(e0) = 3 (Bucos Anf + Bif sin Au) sin .

n=1 n=1

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)
(12) U@ = S 1) = S (Bycos Ant + B sin Ayf) sin %x.
n=1 n=1
Satisfying Initial Condition (3a) (Given Initial Displacement).
(13) u(x.0) = > B, sm?x = f(x). O=x=L).
n=1
|u (x, 0) becomes the Fourier sine series of_f'(x).| ‘
2 L nx
(14) Bn=LLf(x)sdex, n=12---.
; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)
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Satisfying Initial Condition (3b) (Given Initial Velocity).

au = _ . onaTx
o = { 2 (=BpAy sin Apt + Bii Ay, cos Ayt) sin T}
‘ t=0 n=1 t=0
= . narx
= E B Ay, smlT = g(x).
n=1

_

BiA, = % I g(x) sin f
0

.

- = . . A
(12) ux, )y = E Uy (x, 1) = 2 (By, cos Ayt + BjE sin A,f) sin Tx.

n=1 n=1

\ _ -

Partial Differential Equations (PDEs)

oo i)
For the sake of simplicity we consider only the case when the initial velocity g(x) is

identically zero. Then B,* = 0, thus we get:

nimx cnir

(16) u(x, 1) = DB, cos Ayt sin

n=1

We know:

cos ('l!;_rfsin %x = %{sin {%{x - c'f)} + sin {%(r + ('r)} }

4

| < . nm 1 < . fnm
ux, 1 = 5 EB.n sin {T‘(I - <-r)} + 3 2372 sin {T(_x + (.'f)}.
n=1 n=1
L J L J
1 1
From (13) &  [f*(x — cn) Frx+

I ct)
; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)
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We can write as:

(17) u(x, 1) = F[f*x — ct) + f*x + ct)]

where f* is the odd periodic extension of f with the period 2L (Fig. 289).

Fig. 289. Odd periodic extension of f(x)

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)

v 8l

(17) u(x, £) = F[f*x — ef) + fHx + cn]

Physical Interpretation of the Solution (17).

o) f*x—ct)

. S

-

Fig. 290. Interpretation of (17)

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)

" ok el
EXAMPLE 1 Vibrating String if the Initial Deflection Is Triangular

Find the solution of the wave equation (1) satisfying (2) and corresponding to the triangular initial deflection

2k i L

—x if 0<x<—

L 2
fl) =

2k . L

—(L —x) if —<x<1L

L 2

and initial velocity zero. (Figure 291 shows f(x) = u(x, 0) at the top.)

Solution.

Since g(x) = 0, we have Bjf = 0in (12), and we know that the B, are as:

B, = L sin =
L 5 a
sk [1 . e 1 . 37 3me
ux,f) = —5 |—gsin—xcos—1 — gsin—xcos—— 1+ — - |
m L1 L L : L L

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

w(x, 0) = f(x) ulx, 0) —_—
@-‘%ﬂw A o
-_ oo i)

x R,
Sh 0 L 0 L

- —

Lpep 4 L 1pnge L
t = Li5¢

1 2L
2f(zc 5)

a"’ -
\’Ai v Nii_ase
Lewy L
e 2f (x 2)
" — 1 #=L/2¢
1 3L 1 3L
1ri+Zh) PP T
 —
. -
Lpe(x +8L) o Lpwp AL,
2f 5 llvl‘ = 2f [ \w t = 4L/5¢
“'\ - -

1 t=Lic
Eﬂ(:{ —L)

=1
=1fHa+ L)

\
\
I\
\
\
7

1 e 2L,
2f(x+ 5)

L ew L
2f (x+2)

Fig. 291.  Solution u(x, t) in Example 1 for various values of t (right part

\ of the figure) obtained as the superposition of a wave traveling to the /
right (dashed) and a wave traveling to the left (left part of the figure)
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Partial Differential Equations (PDEs)
D’Alembert’s Solution of the Wave Equation:
a%u a%u : T
() 2 ? 2 ==

by introducing the new independent variables:

(2) v =x + ct, w=x — cI.

¥

vy, = land w, = 1

Then

Up = UpUyp T UyW = Uy, T Uy,

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)

We assume that all the partial derivatives involved are continuous,
so that:

v 8l

Uwo = Upw

we obtain

Upe = (U, + Up)e = WUy + ) U + WUy + U)W = Upp T 28y + Ui

by the same procedure, we find

— 2
U = (U — Uy T Uys)-

By inserting these two results in (1) we get

-2
3) o du

Upw = =

aw dv

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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.3 Partial Differential Equations (PDEs)
92u
3 w = ¢ S
3) o ow Ju 0

The point of the present method is that (3) can be readily solved by two

successive integrations, first with respect to w and then with respect to v.

Jdut
ov

= h(v) and u= J'h (v)dv + P (w).

Here /1(v) and ¢ (w) are arbitrary functions of v and w, respectively.

the solution is of the form u = ¢ (v) + Y (w).]

by (2), we thus have d’Alembert’s solution

(4) ux,n = ¢+ cr + P(x — co).
N wecwrerur ramau Bayay, UNIVersity of Zanjam,

Partial Differential Equations (PDEs)

v 8l

D’Alembert’s Solution Satisfying the Initial Conditions

(5) (@) ux,0)=7fx), (b)) wulx,0)=g).
By differentiating (4) we have

(6) us(x. 1) = cd'(x + ct) — cf'(x — ¢t

where primes denote derivatives with respect to the entire arguments v=x+ct and
w=x-ct, respectively.

From (4)—(6) we have

(7) u(x,0) = o) + g(x) = fx),
(8) us(x, 0) = Cqb’(x) + ap'(x) = gx).

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs) [ﬁ
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Dividing (8) by ¢ and integrating with respect to x, we obtain

x

9) B (x) — P(x) = k(xo) + %[ g(s) ds, k(xo) = ¢(xo) — (xo).

g

If we add this to (7), then ¢ drops out and division by 2 gives

| 1 [" |
(10) @5()&)—5]6(1) +2€J g(s) d5+5k(10)-

Yo

Similarly, subtraction of (9) from (7) and division by 2 gives

xr

1 . I
(11) iJr(x) —Ef(-r) _QCLS(S) ds _Ek(x(’)'

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs) [ﬁ
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Finally we get:

r+ct

(12) ux, 1) = %[f(x + ct) + f(x — cn)] + %J' g(s)ds.

xr—ct

If the initial velocity is zero, we see that this reduces to

(13) ux, 1) =3[ fix + ¢ + fx — b,

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)

Heat Flow from a Body in Space (Heat Equation)

Physical Assumptions

1. The specific heat o and the density p of the material of the body are constant. No
heat is produced or disappears in the body.

2. Experiments show that, in a body, heat flows in the direction of decreasing
temperature, and the rate of flow is proportional to the gradient (cf. Sec. 9.7) of the
temperature; that is, the velocity v of the heat flow in the body is of the form

(1) v=—Kgradu

where i (x, v, Z. 1) is the temperature at a point (x, v, z) and time f.

3. The thermal conductivity K is constant, as is the case for homogeneous material and
nonextreme temperatures.

Under these assumptions we can model heat flow as follows.

Heat Equation

(3) 2y, & =K/po
dt
54 A LA B AT I A A= ) 2T
Partial Differential Equations (PDEs)
3) % = 22, & = K/po
(v

2 .2 42
Jd7u d u d i . ~
Viu=—+ -+ Laplacian of u

ax? @ _\.'2 az

The heat equation is also called the diffusion equation because it also models
chemical diffusion processes of one substance or gas into another.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)

Heat Equation:
Solution by Fourier Series.

As an important application of the heat equation, let us first consider the
temperature in a long thin metal bar or wire of constant cross section and

homogeneous material, which is oriented along the x-axis (Fig. 294) and is

perfectly insulated laterally, so that heat flows in the x-direction only.

0] x=L

Fig. 294. Bar under consideration

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)
Then the heat equation becomes the one-dimensional heat equation
g 7
: wu_ 20U
O o C

We begin with the case in which the ends x = 0 and x = L of the bar are kept at

temperature zero, so that we have the boundary conditions:
(2) u(0, 1) = 0, u(lL,t) =10 forall r = 0.

Furthermore, the initial temperature in the bar at time f = 0 is given, say, f(x), so that we
have the initial condition

3) u(x,0) = f(x) L) given.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs) [ﬁ
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Here we must have f(0) = 0 and f(L) = 0 because of (2).

Step 1. Two ODEs from the heat equation (1).

u(x,r)=F(A‘)G(f)~ G F—” (4)

3G F

The left side depends only on t and the right side only on x, so that both sides must
equal a constant k.

showthatfork=00rk>0~ u=»_0

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs) [ﬁ
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For negative k = —p2 we have from (4)
G _F" >
PG F T
>
(5) F" + p*F =0
and
(6) G + (72;)2(? = 0.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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Partial Differential Equations (PDEs)
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Step 2. Satisfying the boundary conditions (2).

We first solve (5). A general solution is

(7) F(x) = A cos px + B sin px.

From the boundary conditions (2) it follows that

w0, = FO)G(H =0  and (L, f) = FL)G(t) = 0.

we require F(0) = 0. F(1) = 0| Wy IFTE(I)J)) zg :n(;)L =0

‘ sinpL = 0, hence p=%, n=12"--|
; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Partial Differential Equations (PDEs)
Setting B = [, we thus obtain the following solutions of (5) satisfying (2):
Fn(.vc)=sin”Tm, n=12--.

We now solve (6). For p = mT/L, as just obtained, (6) becomes

CRIT

G +A2G =0 where Ao ==

It has the general solution
—A%t
G,(t) = Bpe ™, n=172--

where B,, is a constant. Hence the functions

HITX 2 i R
e ! =12
L

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

(8) Uy, (x. 1 = Fo(x)G,(n = By, sin
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Partial Differential Equations (PDEs)
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Step 3. Solution of the entire problem. Fourier series.

To obtain a solution that also satisfies the initial condition (3), we consider a series
of these eigenfunctions:

. = = . NTX 2 T
(" iy, ) = z.un(_.r, ) = Eb‘ﬂ, smT et ()ln = —‘)
=1 =1

From this and (3) we have

u(x, 0) = EBn sin% = f(x).

n=1

the B,,’s must be the coefficients of the Fourier sine series,

(10) B, = ; -Lf(.r) . ”:x dr =12
w
Partial Differential Equations (PDEs)
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EXAMPLE 1 Sinusoidal Initial Temperature

Find the temperalure wix, 7} in o laerally insulated copper bar 80 cm long il the inilial lemperalre is
100 sin {7x/80] °C and the ends are kept at 0°C. How long will it take for the maximum temperaturs in the bar
to drop to S0°CT First guess, then caleulate. Physical data for copper: density 892 g;’cms. specific heat
0,092 eal/(g “C). thermel eonduetivity 0.95 cal/(em see “C)

Solution.

The initial condition gives

< . onmx . TX
u(x,0) = E B smﬁ = f(x) = 100 sin %

n=1

we get By = 100, By, = B3 = --- =0

® = K/(gp) = 0.95/(0.092 - 8.92) = 1.158 [cm?/sec]]

A3 = P/L7| ey (A2 = 1.158 - 9.870/80% = 0.001785
P —

[sec™ 1 ].
Lecturer: Dr Farhad Bayat, University of Zanjan. y




1432/11/26

17

Partial Differential Equations (PDEs) [{5_

The solution (9) is

v 8l

.
u(x, 1) = 100 sin K ¢~ 0001785t
80

100¢ —0.001785¢t _ 50 ‘

t = (In0.5)/(—=0.001785) = 388 [sec] = 6.5 [min].

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

; Lect

Questions? Discussion? Suggestions ?

ESEILEE
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