V[V OJYFYY

In the name of God

ol slkiily

(Lecture # 14)

Instructor:
Dr. Farhad Bayat

Zanjan University

Email: bayat.farhad@gmail.com

_'Q:] Complex Analysis

o BN ey

Complex
Analysis

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/



mailto:bayat.farhad@gmail.com

V[V OJYFYY

Complex Analysis

(z)=2
f (z)=Re(z)

Analytic?
Amnswer: NOY
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Question

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4

Complex Analysis
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Analytic Functions
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DEFINITION
Analyticity

A function f(z) is said to be analytic in a domain D if f(2) is defined and differentiable
at all points of D. The function f(z) is said to be analytic at a point 7 = 7o in D if
f(2) is analytic in a neighborhood of zg.

Also, by an analytic function we mean a function that is analytic in some domain.

A more modern term for analytic in D is holomorphic in D.

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4
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Polynomials, Rational Functions

polynomials, | f(2) = co + c12 + 222 + -+ + "

g(2)

h(z)

rational function. |f(z) =

Notes:

polynomials are analytic in the entire complex plane.

Rational functions are analytic in the entire complex plane, except where h(z)=0.

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4

™ Complex Analysis
Cauchy—Riemann Equations.

The Cauchy-Riemann equations are the most important equations in this chapter

They provide a criterion (a test) for the analyticity of a complex
function

w = f(2) = u(x, y) + iv(x, y).

THEOREM 1

Roughly. fis analytic in a domain D if and only if the first partial derivatives of « and v
satisfy the two Cauchy—Riemann equations*

(1) Uy = Uy, Uy = —Uy

everywhere in D; here u, = du/dx and uy, = du/dy (and similarly for v) are the usual
notations for partial derivatives.

Lecturer: Dr Farhad Bayat, University of Zanjan. 4
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Complex Analysis

THEOREM 2

Cauchy—Riemann Equations

If two real-valued continuous functions u(x, yv) and v(x,y) of two real variables x
and y have continuous first partial derivatives that satisfy the Cauchy—Riemann
equations in sonme domain D, then the complex function f(z) = u(x,y) + v(x,y) is
analvtic in D.

EXAMPLE

Is f(z) = u(x, y) + iv(x,y) = e"(cos y + i siny) analytic?

X xr -
We have u = ¢ cosy,v = ¢ siny f(z) is analytic for all z.
xr xr
Uy = € COSV, Uy =€ COosYy
uy = —e"siny, vy = eV siny.

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/

™ Complex Analysis
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EXAMPLE An Analytic Function of Constant Absolute Value Is Constant
show that if f(z) is analytic in a domain D and |f(z)| = k = const in D,
then f(z) = const in D

Solution.

By assumption, || £2 = |, + jv|2 = u? + 02 = k2

By differentiation, mmmp

uu, + vv, = 0,

Uy + vvy = 0.

Now use v, = —uy in the first equation and vy, = u, in the second, to get
(@) uuy — vuy =0,
(6)
(b) wuuy + vu, = 0.
\_________ Lecturer: sity of Zanjan. —/




V[V OJYFYY

Complex Analysis

o) Bt oo alkail )

(6)

(@) wuuy — vy = 0,

(b)  wuuy + vu, = 0.

multiply (6a) by « and (6b) by v and add. (u? + Uz)"x =0,
|

multiply (6a) by —v and(6b) by u and add. ? + v?)uy = 0.

k2= + 2= 0, then u = v = (; hence = (. If k% = u? + v® # 0, then uy = uy = 0. Hence, by the
Cauchy-Riemann equations, also v, =-v, =0 Together this implies « = const and v = const; hence

f= const. ]

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4
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We mention that, if we use the polar form z = r(cos 6 + i sin 8) and set f(z) = u(r. 0) +
iv(r, 8). then the Cauchy-Riemann equations are

Uy = — Vg, (f' > O)
7

Proof It?

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4
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\_____ Lecturer:Dr Farhad Bayat, University of Zanjan.
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THEOREM

Laplace’s Equation

If f(2) = u(x, y) + iv(x,y) is analyvtic in a domain D, then both u and v satisfy
Laplace’s equation

(8) V2 = Uge + Uyy =0
(V2 read “nabla squared™) and
9) Vi = Upy + Uyy = 0,

in D and have continuous second partial derivatives in D.

Q Complex Analysis

o o1 o LS

THEOREM

Laplace’s Equation

If f(2) = u(x, y) + iv(x,y) is analyvtic in a domain D, then both u and v satisfy
Laplace’s equation

(8) V2 = Uge + Uyy =0

(V2 read “nabla squared™) and

©) V20 = vy + vy = 0,

in D and have continuous second partial derivatives in D.

Solutions of Laplace’s equation having continuous second-order partial derivatives are called
harmonic functions and their theory is called potential theory

| the real and imaginary parts of an analytic function are harmonic functions. |

Lecturer: Dr Farhad Bayat, University of Zanjan.
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If two harmonic functions # and v satisfy the Cauchy-Riemann equations in a domain
D, they are the real and imaginary parts of an analytic function fin D. Then v is said to

be a harmonic conjugate function of « in D. (Of course, this has absolutely nothing to
do with the use of “conjugate” for 7.)

EXAMPLE How to Find a Harmonic Conjugate Function by the Cauchy—Riemann Equations

Verify that u = x2 - )'2 — v is harmonic in the whole complex plane and find a harmonic conjugate function

v of u.

Selution. by direct calculation ‘ Vzu =)

Uy = Uy = 2x, H‘ v =2xy + h(.\'),‘

Uy = 2x

—>
—

u'y = _2_\' - l

h(x) = x + € B _ |

_'Q:] Complex Analysis

‘ v=2xy+x+c

¥

The corresponding analytic function is

o sl

£
£

f(2)=u+iv= x2 — _\'2 —y+i(2xy+x+c)= 2+ iz + ic.

~

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/
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Question:
Determine a so that the given function is harmonic and find a harmonic
conjugate.

u =e"* cos(ay)

U, = +p e cos(ay )

IF a=+ 2, —
uyy:-azepxcos(ay)%» a==p ‘ Vou=20

v, =u, =pe” cospy)mp v =e” Snpy)+h(x)mp v, =pep*s'n<py>+%
B — o e sitpy) + ) =per snipy) 4y, =-u,

Y-

h(x) =c f (x,y)=€" cospy)+i (€™ snfpy)+c
»Lecturer: Dr Farhad Bayat, unlvcl('su._y ol Zanjan. Q
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Exponential Function

(1) ¢“ = e"(cosy + isiny).

This definition is motivated by the fact the ¢* extends the real exponential function e of
calculus in a natural fashion. Namely:

¢® = ¢" for real 7 = x because cos y = 1 and siny = 0 when y = 0.
(A) €* i 1 b | and 0 wh 0
(B) ¢° is analytic for all z.

(C) The derivative of ¢” is €%, that is,

2) (' = ¢

\________ Lecturer:Dr Farhad Bayat, University of Zanjan. 4
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Further Properties.

(3) €Z|+2’2 — ()21622

4 e = ¢%e",

Euler formula

(5) e =cosy +isiny.
polar form
(6) T —re .

\_____ Lecturer:Dr Farhad Bayat, University of Zanjan. —/
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important formulas (verify!)

as well as

(8) e = ™ = —1, g = T =1,

(9) |€iy| = |cos v + isin .\'| = Vcos? v+ sin? y=1

(10) |®| = &~ Hence arge* =yx2nm (n=0,1,2,--),

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/
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Periodicity of ¢° with period 2i,

12y gl ;% for all z

fundamental region of ¢*

(13)

[IA
3

Fig. 336. Fundamental region of the

exponential function e” in the z-plane
e _ Lecu

o
Wrers Ur rarnau Dayat, Wiuversity ol Zanjan.

™ Complex Analysis
‘Trigonometric and Hyperbolic Functions.

iz

. i . l _;
(1) cos 7 = 3 (e + %), sinz = ?(e — %),
i

Euler’s formula is valid in complex:

(5) ez’z

cosz + isinz

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/
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EXAMPLE

Solve (a) cos z = 5 (which has no real solution!),

Solution. From (1):

1

. p ' 1.
cos 7 = 5 (€% + 7%, sinz = ;(e’z —e
[

—1‘,2)‘

N

coS(z)=%(e‘Z +e’?)=5 mp % — 10e* + 1 =0

¥

¥ = VT = 5+/25 —1=9899 and 0.101.

et 1,

[e™¥ = 9.899 0r 0.101) W[y = +2.292,
s

——)

P —

Lecturer: Dr Farhad Bayat, University of Zanjan. —/

&)

Questions? Discussion? Suggestions ?

6

o 81

\______ Lecturer:Dr Farhad Bayat, University of Zanjan. —/
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Complex Analysis

Line Integral in the Complex Plane

f(2) dz.
[
Here the integrand f(z) is integrated over a given curve C or a portion of it

This curve C in the complex plane is called the path of integration.

_'Q:] Complex Analysis

First Evaluation Method:
Indefinite Integration and Substitution of Limits

A domain D is called simply connected if every simple closed curve (closed curve
without self-intersections) encloses only points of D.

THEOREM 1
Indefinite Integration of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite
integral of f(z) in the domain D, that is, an analvtic function F(z) such that
F'(z) = f(2) in D, and for all paths in D joining two points 2o and 7, in D we have

21
) J f(@) dz = F(z1) — F(zo) [Fl2) = f@)].

<0

(Note that we can write zo and 7y instead of C, since we get the same value for all
those C from zq to 71.)
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Second Evaluation Method:
Use of a Representation of a Path

RESTEETE

This method is not restricted to analytic functions but applies to any continuous complex
function.

THEOREM 2
Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(f), where a =t = b. Let
f(2) be a continuous function on C. Then

b

1z
(10) f f(z)dz = Jf[z(r)li(r) dt ( = ‘d—f)
C a

o /

™ Complex Analysis
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EXAMPLE 7 Integral of a Nonanalytic Function. Dependence on Path
Integrate f(z) = Re z = x from 0 to | + 2i (a) along C* in Fig. 343, (b) along C consisting of Cy and Cs,.

¥

Solution. 2
(a)

C* can be represented by z(f) =t + 2it (0 =t = 1).

2 =1+2i

Fig. 343. Paths in Example 7

flz] = x(r) =t

-1

i 1
l Re zdz = ] t(l +2)dt=—(1 + 2i) =
.‘Ci‘ .0 2
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(b) We now have
Ci:200 =1 =1, fz@) =x()=t O=r=1)

0
2 =i, flz(n) = x(1) = 1 0D=r=2).

Re zdz = J Rezdz+ | Rezdz = [ tdr + l 1
e C, “Cq ‘0 “0

Co:z(t) = 1 + i1,

cidt = — + 20

SR

| Néfe that thlS result differrsr hom the 1‘eSL7171triﬁr(a).

Dependence on path. Now comes a very important fact. If we integrate a given function
f(z) from a point z¢ to a point 77 along different paths, the integrals will in general have
different values. In other words, @ complex line integral depends not only on the endpoints
of the path but in general also on the path itself. The next example gives a first impression

o /

Complex Analysis

EESTIEIEY

Bounds for Integrals. ML-Inequality

o sl

There will be a frequent need for estimating the absolute value of complex line integrals.
The basic formula is

(13) J fe)dz| = ML (ML-inequality):

c

L is the length of € and M a constant such that \f(;)\ = M everywhere on C.

PROOF

n n
|Sy| = e E |f(§m)| Az = ME ]A:m|~

m=1 m=1

n
E f(&m) Az

m=1

|Az),| is the length of the chord whose endpoints are Z,,—; and 2, (see Fig. 340).

¢
Zm-1 6’_ Zm

s e
S I

z, oz

i
g

\ Fig. 340. Complex line integral
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EXAMPLE 8 Estimation of an Integral
Find an upper bound for the absolute value of the integral 2t dy,

1 °C

C the straight-line segment from 0 to 1 + i, Fig. 344.

c
I Solution.
Fig. 344. Path in
Example 8 L=\2
2dz| =2V2 = 2.8284
lf@|l =12/ =2onC ‘e

The absolute value of the integral is

-2 +2i| =2 V2 =0.9428

We cannot see from (13) how close to the bound ML the actual absolute value of the

~/

integral is

™ Complex Analysis

Cauchy’s Integral Theorem

We have just seen that a line integral of a function f(z) generally depends not merely on the

endpoints of the path, but also on the choice of the path itself. However, if f(z) is
analytic in a domain D and D is simply connected, then the integral will not depend on the
choice of a path between given points.

Hence:
conditions under which this path independence

occurs are of considerable importance.
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1. A simple closed path

Let us continue our discussion of simple connectedness

RESTEETE

is a closed path that does not intersect or touch itself as shown in Fig. 345.

For example, a circle is simple, but a curve shaped like an 8 is not simple.

s

Simple Simple Mot simple Not simple
Fig. 345. Closed paths

2. A simply connected domain D in the complex plane

is a domain such that every simple closed path in D encloses only points of D.

= =5 ——— —
pr i LA _an - 9 B B
L4 = ) ’ s R # Y & Y
’ . 1 4 o \] I \ ' _amie \
) I [ R ‘ - ) i r )
[} N w [ 1 ‘I [ ad \ ] g 4 3
! Sy [ [ a1 [ ] 1 ) . = |
! ! ’ \ [} § 4 I . o S
1 1 [T = [N . 4 [ - [
2 3 ] 2 . Mt ’ [\ ' 'y
N d < A o b v .
\hw—'— “———— ""-\-_——’ "‘-\-—ﬂ—’
Simply Simply Doubly Triply
connected connected connected connected )
Fig. 346. Simply and multiply connected domains

i BN,
SN

Complex Analysis

THEOREM 1

EESEERTE

Cauchy’s Integral Theorem

Cin D,

(1)

%f(z) dz = 0.
(5

Iff(2) is analytic in a simply connected domain D, then for every simple closed path

See Fig. 347.

Fig. 347. Cauchy’s integral theorem
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Complex Analysis

EXAMPLE 1 Entire Functions

+e:(iz=0‘ +c05:d:=0. #):"d:=0 (n=0,1,:+)
c c c

for any closed path, since these functions are entire (analytic for all 2).
EXAMPLE 2 Points Outside the Contour Where f(x) is Not Analytic

i C o dz
+sec:d:=0. 4’ =0
Jc .C;2+4

where C is the unit circle, sec z = 1/cos z is not analytic at z = *7r/2, £37/2,---, but all these points lie
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at
z = *+2i outside C. I

o /

Complex Analysis

A B, EESEERTE

EXAMPLE 3 Nonanalytic Function
+ Zdz =
JC J

where C: z(f) = ' is the unit circle. This does not contradict Cauchy’s theorem because f(z) = 7 is not
analytic. 5]

2
e Yie™ dt = 2qri

EXAMPLE 4 Analyticity Sufficient, Not Necessary

" dz

Je 2

where C is the unit circle. This result does not follow from Cauchy’s theorem, because f(z) = l/:z is not analytic
atz = 0. Hence the condition that f be analvtic in D is sufficient rather than necessary for (1) to be true. W

o /
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EXAMPLE 5

o sl

Simple Connectedness Essential

Cdz
<’[1 — = 2mi
Jg %

for counterclockwise integration around the unit circle

C lies in the annulus% <lz] < % where 1/z is analytic, but this domain is not simply connected,

3/2

S

&)

A,
SN

Complex Analysis

5 B,

o sl

THEOREM 2

Independence of Path

If f(2) is analytic in a simply connected domain D, then the integral of f(z) is
independent of path in D.

Existence of Indefinite Integral
THEOREM 3

Existence of Indefinite Integral

If f(z) is analytic in a simply connected domain D, then there exists an indefinite
integral F(z) of f(z) in D—thus, F '(:) = f(z)—which is analytic in D, and for all
paths in D joining any two points 7o and 7y in D, the integral of f(z) from zg to 73
can be evaluated by formula (9)

9 J f@ dz = F(z1) — F(zo) [Fl2) = f@)]

Z0
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Complex Analysis
?w;-uu

Cauchy’s Integral Theorem
for Multiply Connected Domains

RESTEETE

doubly connected domain D with outer boundary curve Cy and inner Cy (Fig. 353).

()

If

a function f(z) is analytic in any domain D* that contains D
and its boundary curves,

Cl
we claim that: Fig. 353. Paths in (5)
(6) jg f(Qdz = ‘%f{:) dz
C_| HC2

\ )
™ Complex Analysis
o B, o; kst

PROOF

By two cuts C, and Cs (Fig. 354) we cut D into two simply connected domains Dy and
D3 in which and on whose boundaries f(z) is analytic.

By Cauchy’s integral theorem|

Fig. 354. Doubly connected domain

g, fdz + gy fdz =0 mp gy fdz - ¢ fdz =0

integrals over the cuts C; and Cy cancel because we integrate over them in both

directions /
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For domains of higher connectivity the idea remains the same.
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[

e

1
Fig. 355. Triply connected domain

&)

Complex Analysis
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auchy’s Integral Formula

THEOREM 1

Cauchy’s Integral Formula

Fig. 356. Cauchy's integral formula

Let f(z) be analytic in a simply connected domain D. Then for any point zo in D
and any simple closed path C in D that encloses zq (Fig. 356),

J(@)
(1 jg Z— 120 dz = 2mif(zg) (Cauchy’s integral formula)
5 °

the integration being taken counterclockwise. Alternatively (for representing f(zo)
by a contour integral, divide (1) by 277i).

(1%) fzo) =

1 + f(@) dz

Z—= 2o

2 (Cauchy’s integral formula).
297i o &
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Cauchy’s Integral Formula
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EXAMPLE 1
2 = 46.4268i

= 21rie

e . &
dz = 2mie
z=2

c}) z —2
for any contour enclosing zo = 2 (since ¢” is entire), and zero for any contour for which zo = 2 lies outside

Cauchy’s Integral Formula

EXAMPLE 2
‘-:3_6 %:3_3
#) -dz = + 142
s 2z - c 3 gi
= 2mi[32° = 3]l:=i2
= % — G (zo = %i inside C).
™ Complex Analysis
o U1 oo alkail )
EXAMPLE 3 Integration Around Different Contours
Integrate
2+ 1 2+ 1
T I T v -
Fig. 358. Example 3

counterclockwise around each of the four circles in Fig. 358.

Solution.

g(z) is not analytic at —1 and 1. These are the points we have to watch for.
(a) The circle |z — I| = I encloses the point z5 = | where g(z) is not analytic. Hence

(_)_:2+l_:2+l
g 2Z-1 z+1 z=1
-2
%”2 d:,zsz(l)zzm[
Jel —
\_

AR
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(b) gives the same as (a) by the principle of deformation of path.
y
(d)
(c) {a)
(¢) The function g(z) is as before, but f(z) changes -
) A =] 1 :
because we must take zg = —1 (instead of 1). b
Fig. 358. Example 3

Complex Analysis

2+ 2+ 1
4» s——dz = 2mif(~1) = 2m‘[ } = 2,
ez —1 z2—1 Ly
9
_'Q:l Complex Analysis
o 851

N B,
]

Multiply connected domains can be handled as in Sec. 14.2. For instance, if f(z) is
analytic on C; and Cg and in the ring-shaped domain bounded by C; and Cs (Fig. 359)
and zp is any point in that domain. then

3) Fzo) = = % J@ 44 L % L@ g,
: 27nczf:o 27ri 2:*20
(e]
()
Cl
Fig. 359. Formula (3)

where the outer integral (over Cy) is taken counterclockwise and the inner clockwise, as

indicated in Fig. 359.
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Derivatives of Analytic Functions
THEOREM 1
Derivatives of an Analytic Function
If f(2) is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point Zg
in D are given by the formulas
_ 1 [ fD o T T N
1" (¢ :—+ =S et S :
: Fe0=2n Yoz — ) i ./ D o
1 o
\\ :
& 5 N eaoe———=< " ’J
2! (@) O
(l") f"(Zo) == 4) _3_‘1: \\\ ,,z
2mi Jo (2 — zo) e
Fig. 360. Theorem 1 and its proof

and in general

! ()
(1) ,f(m(ﬁo)=L§ 'f;n_,_ldz (n=1,2,-)
C

2ari Z = 70)

here C is any simple closed path in D that encloses zo and whose full interior belongs

to D; and we integrate counterclockwise around C (Fig. 360).

Complex Analysis
i SN EESEERTE
Applications of Theorem 1
EXAMPLE 1 Evaluation of Line Integrals
From (1"), for any contour enclosing the point 7/ (counterclockwise)
+ B2 _ dz = 2mi(cos :)” = —2isin 7i = 27 sinh 7.
Jo @ —T0) =i
EXAMPLE 2 From(1"), for any contour enclosing the point —i we obtain by counterclockwise integration
r o4 2
g =3¢+ . " g ;
+ %n’: = iz* — 322+ 6) = 1'1'|[12:,2 — 6],=_; = —187ri.
Je @+ z=—i
EXAMPLE 3 By (1), for any contour for which 1 lies inside and %2/ lie outside (counterclockwise),
f e (%)
—— 5 ——dz = 2mi |
Jo @ — D%+ 4) 2+4) .0
2(n2 z
ez +4)— €2z 6
i — ’ = 2T ~ 2.050i.
= +4) =1 25
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Complex Analysis
“Cauchy's Inequality.
M
(2) |F™ o) = "—n
-
for C a circle of radius r and center 7
with |f(z)] = M on C
Proof:
(1) n! fi; f(2) n!
20)| = dzil=—M 271
|f (zo)| 7|z -z )n+1 P !
\ /
_'Q:] Complex Analysis

THEOREM 2
Liouville’s Theorem

If an entire function is bounded in absolute value in the whole complex plane, then
this function_must be a_constant.

THEOREM 3

Morera’s’ Theorem (Converse of Cauchy’s Integral Theorem)

If f(2) is continuous in a simply connected domain D and if

(3) § f2)dz=0
¢

for every closed path in D, then f(2) is analytic in D.

o /




V[V OJYFYY

Yo

A

e

Complex Analysis

o sl

SUMMARY OF CHAPTER

Complex Analysis

o sl

Yo

A; B

The complex line integral of a function f(2) taken over a path C is denoted by

(1) Jf(z) dz or, if C is closed, also by SF f(2)
C G

If f(z) is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

(2) J f@ dz = F(z1) — F(zo) [F'(2) = f(2)]
{85

A general method of integration, not restricted to analytic functions, uses the
equation z = z(f) of C, where a =t = b,

b
. . dz
(3) [f(z) dz = J f)z(o) dt (z = (—).
2 ’ dt
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Cauchy’s integral theorem is the most important theorem in this chapter. It states
that if f(z) is analytic in a simply connected domain D, then for every closed path

Cin D (Sec. 14.2),

4) jg f@dz=0.
C

Under the same assumptions and for any zg in D and closed path C in D containing
Zp in its interior we also have Cauchy’s integral formula

(5) fzo) =5 i gy,

< <0

Furthermore, under these assumptions f(z) has derivatives of all orders in D that are
themselves analytic functions in D and (Sec. 14.4)

(6) f™(z0) = L jﬁ f(i:)dz m=172--)
Gilgs =g

21ri \’O)n+1

o /

Questions? Discussion? Suggestions ?
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