

THEOREM 2

Cauchy-Riemann Equations

If two real-valued continuous functions u(x, y) and v(x, y) of two real variables x and y have continuous first partial derivatives that satisfy the Cauchy-Riemann equations in some domain D, then the complex function f(z) = u(x, y) + iv(x, y) is analytic in D.

EXAMPLE

Is
$$f(z) = u(x, y) + iv(x, y) = e^{x}(\cos y + i \sin y)$$
 analytic?

We have
$$u = e^x \cos y$$
, $v = e^x \sin y$

f(z) is analytic for all z.

$$u_x = e^x \cos y, \qquad v_y = e^x \cos y$$

$$v_y = e^x \cos y$$

$$u_y = -e^x \sin y, \qquad v_x = e^x \sin y.$$

Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

EXAMPLE An Analytic Function of Constant Absolute Value Is Constant show that if f(z) is analytic in a domain D and |f(z)| = k = const in D, then f(z) = const in D

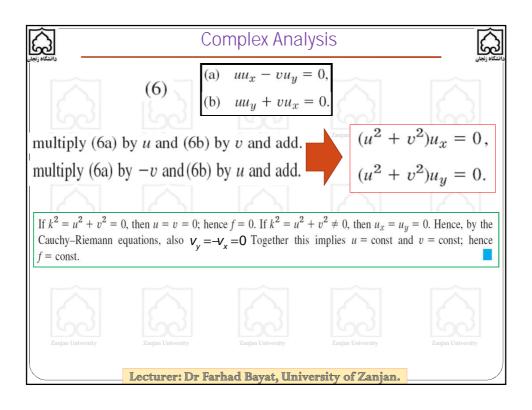
Solution.

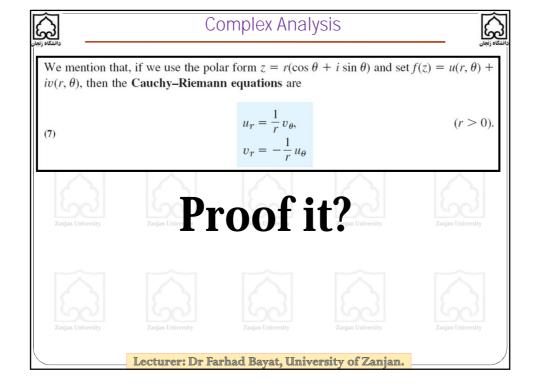
By assumption,
$$|f|^2 = |u + iv|^2 = u^2 + v^2 = k^2$$
.

By assumption, $|f|^2 = |u + iv|^2 = u^2 + v^2 = k^2$. By differentiation, $uu_x + vv_x = 0,$ $uu_y + vv_y = 0.$

Now use $v_x = -u_y$ in the first equation and $v_y = u_x$ in the second, to get

 $(b) \quad uu_y + vu_x = 0.$





THEOREM

Laplace's Equation

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then both u and v satisfy **Laplace's equation**

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

 $(\nabla^2$ read "nabla squared") and

$$\nabla^2 v = v_{xx} + v_{yy} = 0,$$

in D and have continuous second partial derivatives in D.

Zanjan Universit

Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

THEOREM

Laplace's Equation

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then both u and v satisfy **Laplace's equation**

$$\nabla^2 u = u_{xx} + u_{yy} = 0$$

 $(\nabla^2 \text{ read "nabla squared"})$ and

$$\nabla^2 v = v_{xx} + v_{yy} = 0,$$

in D and have continuous second partial derivatives in D.

Solutions of Laplace's equation having *continuous* second-order partial derivatives are called **harmonic functions** and their theory is called **potential theory**

Zanjan Universit

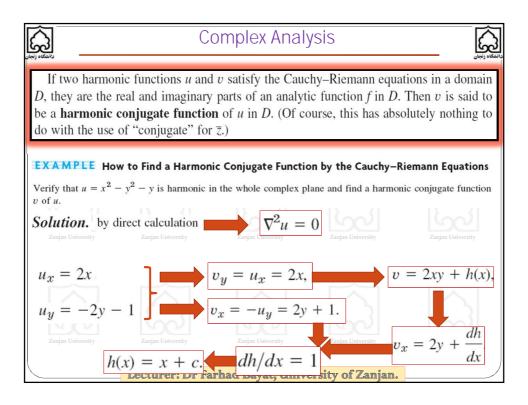
Zanjan University

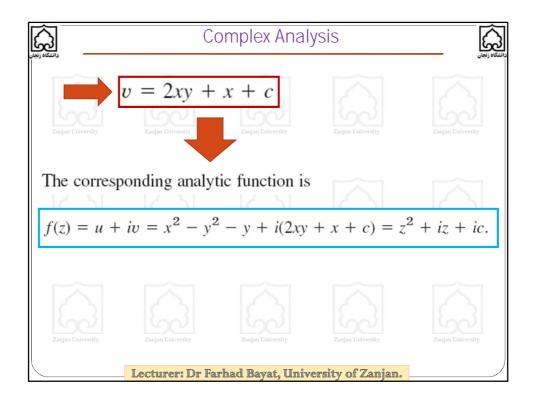
University

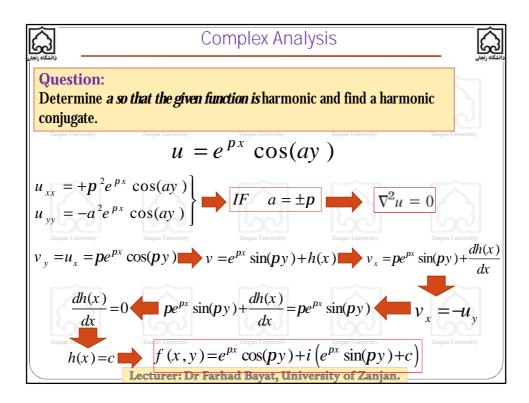
Zanjan U

the real and imaginary parts of an analytic function are harmonic functions.

Lecturer: Dr Farhad Bayat, University of Zanjan.







(C)

Complex Analysis

Exponential Function

$$e^z = e^x(\cos y + i\sin y).$$

This definition is motivated by the fact the e^z extends the real exponential function e^x of calculus in a natural fashion. Namely:

- (A) $e^z = e^x$ for real z = x because $\cos y = 1$ and $\sin y = 0$ when y = 0.
- **(B)** e^z is analytic for all z.
- (C) The derivative of e^z is e^z , that is,

anjan University

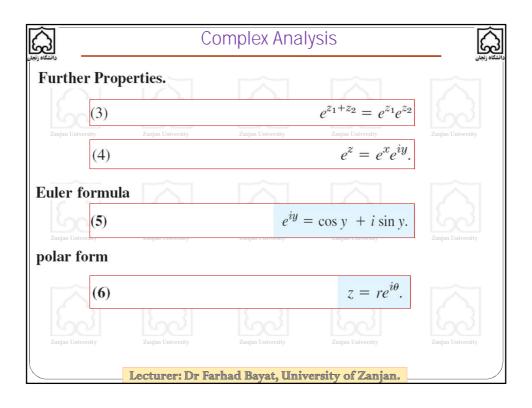
nian University

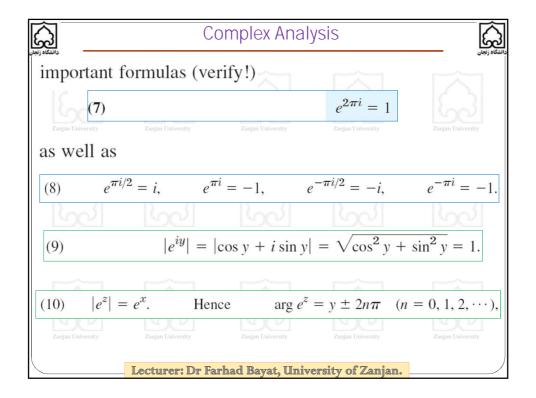
anian University

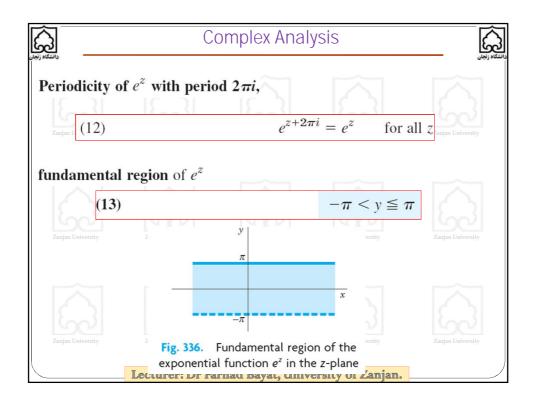
Zanian University

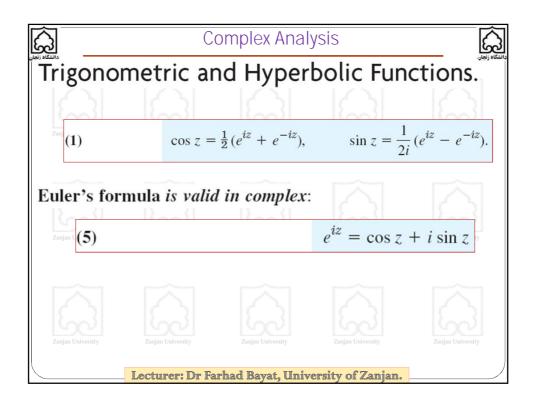
Zanjan Universi

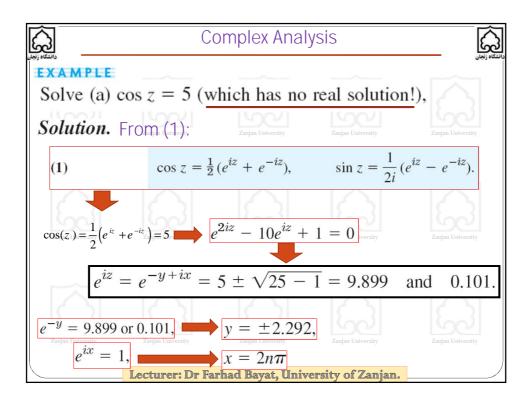
Lecturer: Dr Farhad Bayat, University of Zanjan.

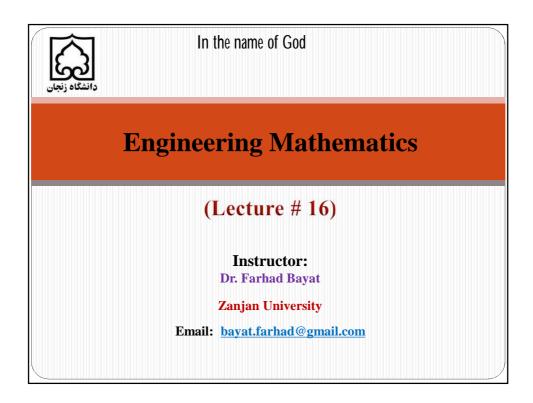


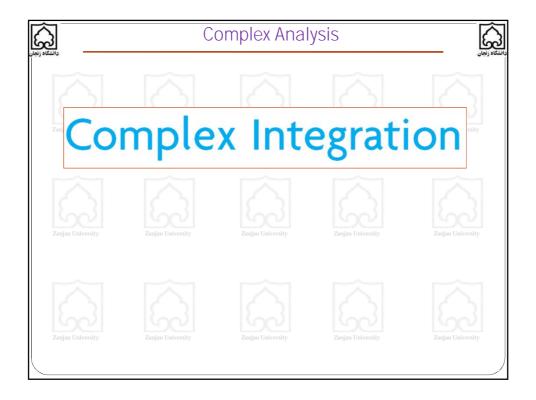


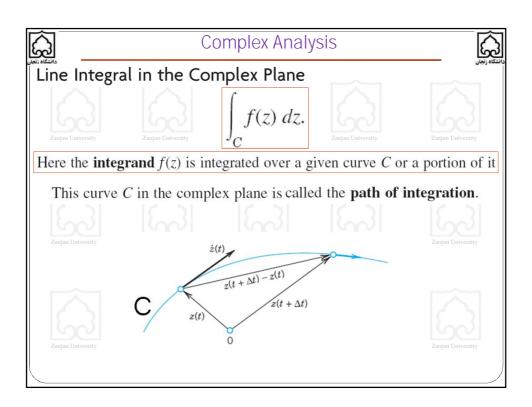












First Evaluation Method: Indefinite Integration and Substitution of Limits

A domain D is called **simply connected** if every **simple closed curve** (closed curve without self-intersections) encloses only points of D.

THEOREM 1

Indefinite Integration of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then there exists an indefinite integral of f(z) in the domain D, that is, an analytic function F(z) such that F'(z) = f(z) in D, and for all paths in D joining two points z_0 and z_1 in D we have

(9)
$$\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0) \qquad [F'(z) = f(z)].$$

(Note that we can write z_0 and z_1 instead of C, since we get the same value for all those C from z_0 to z_1 .)

Second Evaluation Method: Use of a Representation of a Path

This method is not restricted to analytic functions but applies to any continuous complex function.

THEOREM 2

Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(t), where $a \le t \le b$. Let f(z) be a continuous function on C. Then

(10)

$$\int_C f(z) dz = \int_a^b f[z(t)]\dot{z}(t) dt$$

$$\left(\dot{z} = \frac{dz}{dt}\right).$$

anjan University

Zanjan University

Zanian University

Zanjan University

Complex Analysis

EXAMPLE 7 Integral of a Nonanalytic Function. Dependence on Path

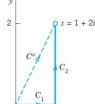
Integrate $f(z) = \text{Re } z = x \text{ from } 0 \text{ to } 1 + 2i \text{ (a) along } C^* \text{ in Fig. 343, (b) along } C \text{ consisting of } C_1 \text{ and } C_2.$

Solution.

Zanian Universi

Zanian Universit

Zanjan Univers



Somme

(a)

C* can be represented by $z(t) = t + 2it (0 \le t \le 1)$.

 $\dot{z}(t) = 1 + 2i$

anjan University

7 1 11 1

Zanjan Univer

Fig. 343. Paths in Example 7

$$f[z(t)] = x(t) = t$$

$$\int_{C^*} \operatorname{Re} z \, dz = \int_0^1 t(1+2i) \, dt = \frac{1}{2}(1+2i) = \frac{1}{2}+i.$$

anjan Universit

(b) We now have

$$C_1: z(t) = t,$$
 $\dot{z}(t) = 1,$ $f(z(t)) = x(t) = t$ $(0 \le t \le 1)$

$$C_2$$
: $z(t) = 1 + it$, $\dot{z}(t) = i$, $f(z(t)) = x(t) = 1$ $(0 \le t \le 2)$.

$$\int_{C} \operatorname{Re} z \, dz = \int_{C_{1}} \operatorname{Re} z \, dz + \int_{C_{2}} \operatorname{Re} z \, dz = \int_{0}^{1} t \, dt + \int_{0}^{2} 1 \cdot i \, dt = \frac{1}{2} + 2i.$$

Note that this result differs from the result in (a).

Dependence on path. Now comes a very important fact. If we integrate a given function f(z) from a point z_0 to a point z_1 along different paths, the integrals will in general have different values. In other words, a complex line integral depends not only on the endpoints of the path but in general also on the path itself. The next example gives a first impression

Complex Analysis

Bounds for Integrals. ML-Inequality

There will be a frequent need for estimating the absolute value of complex line integrals. The basic formula is

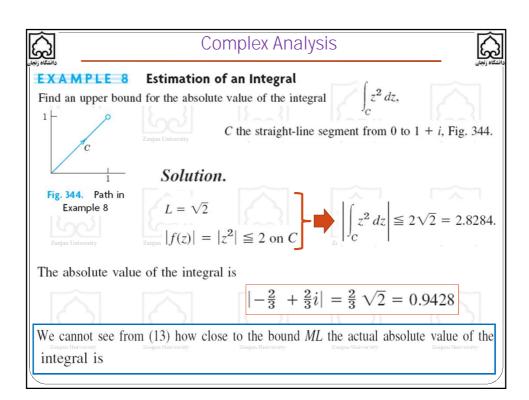
(13)
$$\left| \int_{C} f(z) dz \right| \le ML \qquad (ML-inequality);$$

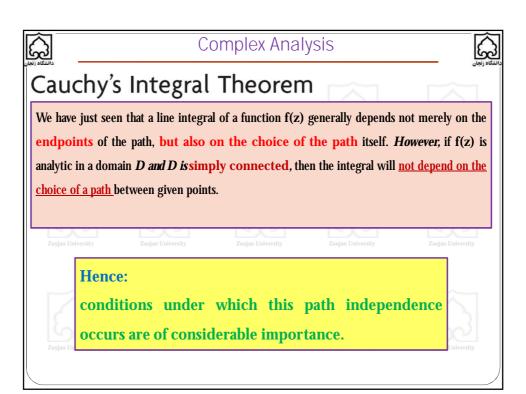
L is the length of C and M a constant such that $|f(z)| \leq M$ everywhere on C.

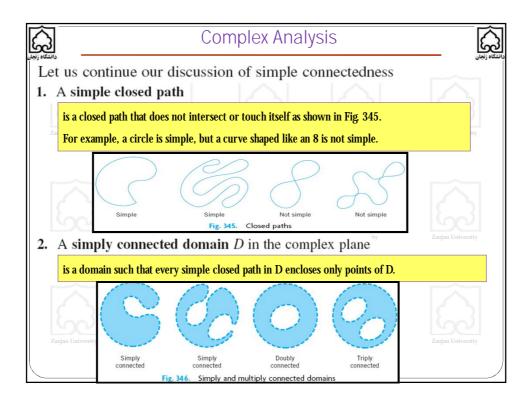
$$|S_n| = \left| \sum_{m=1}^n f(\zeta_m) \ \Delta z_m \right| \leq \sum_{m=1}^n |f(\zeta_m)| \ |\Delta z_m| \leq M \sum_{m=1}^n |\Delta z_m|.$$

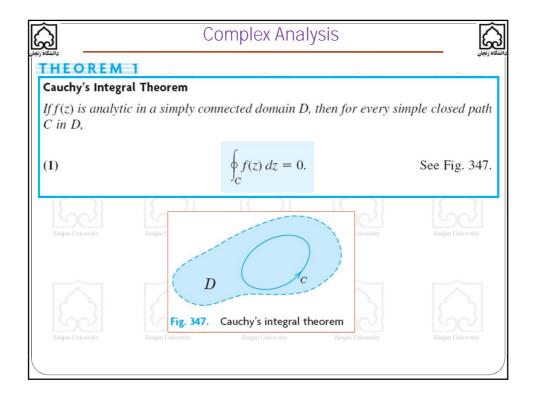
 $|\Delta z_m|$ is the length of the chord whose endpoints are z_{m-1} and z_m (see Fig. 340)

Fig. 340. Complex line integral









EXAMPLE 1 Entire Functions

$$\oint_C e^z dz = 0, \qquad \oint_C \cos z dz = 0, \qquad \oint_C z^n dz = 0 \qquad (n = 0, 1, \dots)$$

for any closed path, since these functions are entire (analytic for all z).

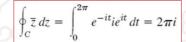
Points Outside the Contour Where f(x) is Not Analytic

$$\oint_C \sec z \, dz = 0, \qquad \oint_C \frac{dz}{z^2 + 4} = 0$$

where C is the unit circle, sec $z=1/\cos z$ is not analytic at $z=\pm\pi/2,\pm3\pi/2,\cdots$, but all these points lie outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at $z = \pm 2i$ outside C.

Complex Analysis

Nonanalytic Function

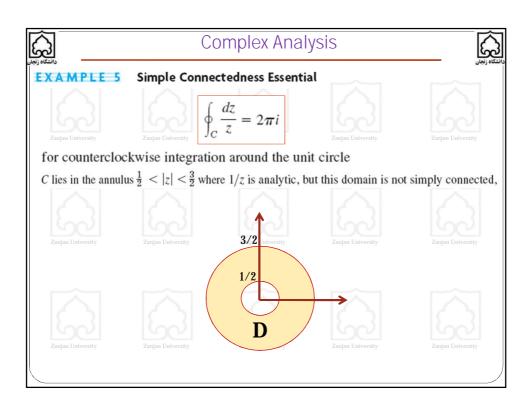


where C: $z(t) = e^{it}$ is the unit circle. This does not contradict Cauchy's theorem because $f(z) = \overline{z}$ is not analytic.

EXAMPLE 4 Analyticity Sufficient, Not Necessary

$$\oint_C \frac{dz}{z^2} = 0$$

where C is the unit circle. This result does *not* follow from Cauchy's theorem, because $f(z) = 1/z^2$ is not analytic at z = 0. Hence the condition that f be analytic in D is sufficient rather than necessary for (1) to be true.



THEOREM 2

Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent of path in D.

Existence of Indefinite Integral

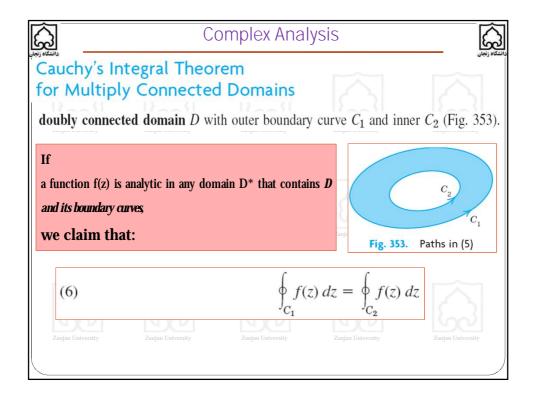
THEOREM 3

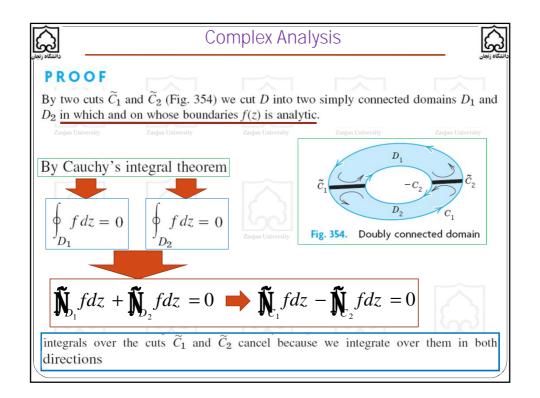
Existence of Indefinite Integral

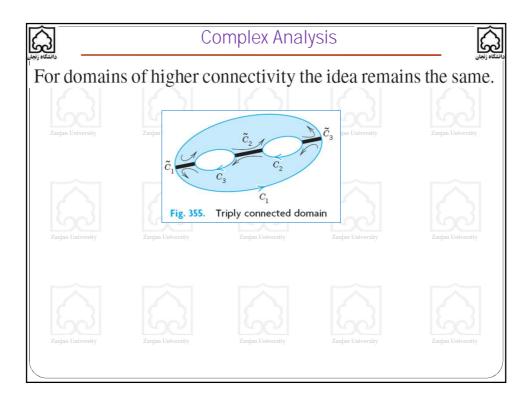
If f(z) is analytic in a simply connected domain D, then there exists an indefinite integral F(z) of f(z) in D—thus, F'(z) = f(z)—which is analytic in D, and for all paths in D joining any two points z_0 and z_1 in D, the integral of f(z) from z_0 to z_1 can be evaluated by formula (9)

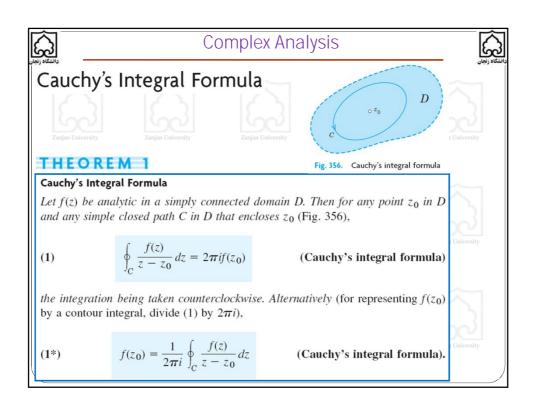
$$\int_{z_0}^{z_1} f(z) \, dz = F(z_1) - F(z_0)$$

$$[F'(z) = f(z)]^{-1}$$

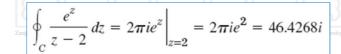






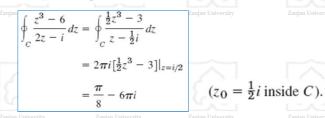


EXAMPLE 1 Cauchy's Integral Formula



for any contour enclosing $z_0 = 2$ (since e^z is entire), and zero for any contour for which $z_0 = 2$ lies outside

Cauchy's Integral Formula

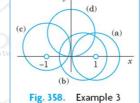


Complex Analysis

EXAMPLE 3 Integration Around Different Contours

Integrate

$$g(z) = \frac{z^2 + 1}{z^2 - 1} = \frac{z^2 + 1}{(z+1)(z-1)}$$



counterclockwise around each of the four circles in Fig. 358.

Solution.

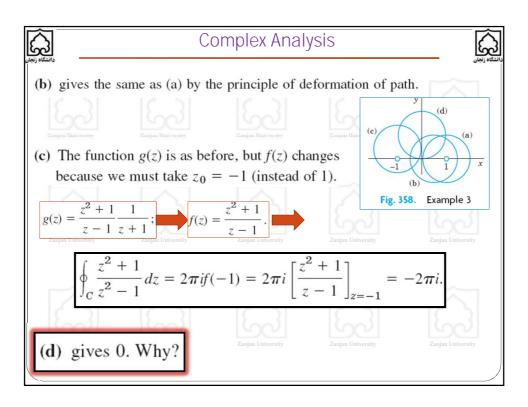
g(z) is not analytic at -1 and 1. These are the points we have to watch for.

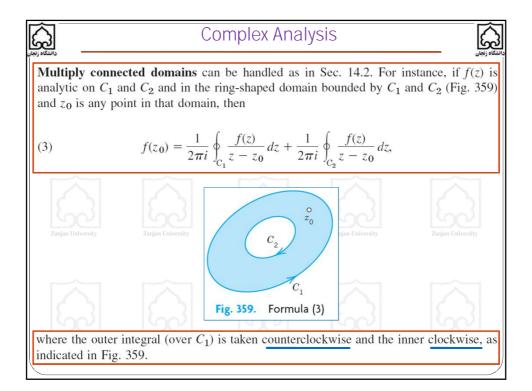
(a) The circle |z-1|=1 encloses the point $z_0=1$ where g(z) is not analytic. Hence

$$g(z) = \frac{z^2 + 1}{z^2 - 1} = \frac{z^2 + 1}{z + 1} \frac{1}{z - 1};$$

$$f(z) = \frac{z^2 + 1}{z + 1}$$

 $\oint_C \frac{z^2 + 1}{z^2 - 1} dz = 2\pi i f(1) = 2\pi i \left[\frac{z^2 + 1}{z + 1} \right]_{z=1} = 2\pi i.$





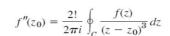
Derivatives of Analytic Functions

THEOREM 1

Derivatives of an Analytic Function

If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of these derivatives at a point z_0 in D are given by the formulas

(1')
$$f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$



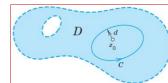


Fig. 360. Theorem 1 and its proof

and in general

(1)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

$$(n=1,2,\cdots);$$

here C is any simple closed path in D that encloses z_0 and whose full interior belongs to D; and we integrate counterclockwise around C (Fig. 360).

Complex Analysis

Applications of Theorem 1

EXAMPLE 1 Evaluation of Line Integrals

From (1'), for any contour enclosing the point πi (counterclockwise)

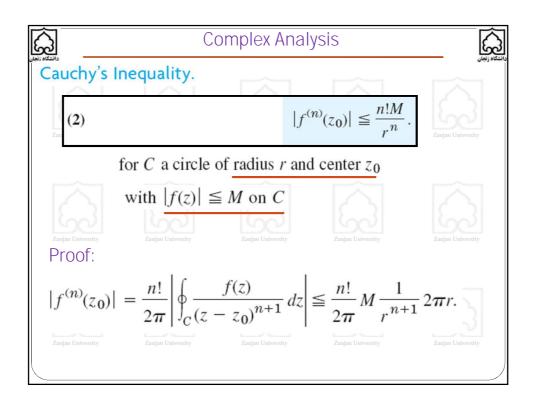
$$\oint_C \frac{\cos z}{(z-\pi i)^2} dz = 2\pi i (\cos z)' \bigg|_{z=\pi i} = -2\pi i \sin \pi i = 2\pi \sinh \pi.$$

EXAMPLE 2 From (1''), for any contour enclosing the point -i we obtain by counterclockwise integration

$$\oint_C \frac{z^4 - 3z^2 + 6}{(z+i)^3} dz = \pi i (z^4 - 3z^2 + 6)'' \bigg|_{z=-i} = \pi i [12z^2 - 6]_{z=-i} = -18\pi i.$$

EXAMPLE 3 By (1'), for any contour for which 1 lies inside and $\pm 2i$ lie outside (counterclockwise),

$$\begin{split} \oint_C \frac{e^z}{(z-1)^2 (z^2+4)} \, dz &= 2\pi i \left(\frac{e^z}{z^2+4} \right)' \bigg|_{z=1} \\ &= 2\pi i \frac{e^z (z^2+4) - e^z 2z}{(z^2+4)^2} \bigg|_{z=1} = \frac{6e\pi}{25} \, i \approx 2.050i. \end{split}$$



THEOREM 2

Liouville's Theorem

If an entire function is bounded in absolute value in the whole complex plane, then this function <u>must be a constant.</u>

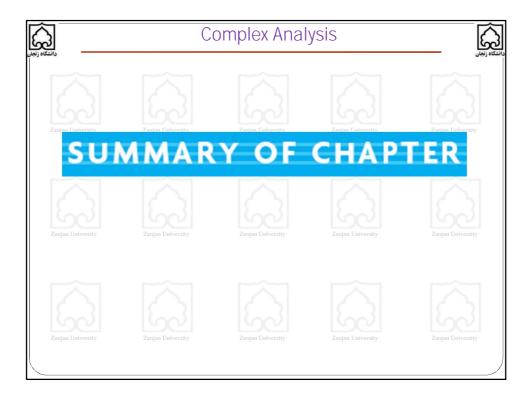
THEOREM 3

Morera's² Theorem (Converse of Cauchy's Integral Theorem)

If f(z) is continuous in a simply connected domain D and if

$$\oint_C f(z) \, dz = 0$$

for every closed path in D, then f(z) is analytic in D.



The **complex line integral** of a function f(z) taken over a path C is denoted by

(1)
$$\int_C f(z) dz \quad \text{or, if } C \text{ is closed, also by } \oint_C f(z)$$

If f(z) is analytic in a simply connected domain D, then we can evaluate (1) as in calculus by indefinite integration and substitution of limits, that is,

(2)
$$\int_{C} f(z) dz = F(z_{1}) - F(z_{0}) \qquad [F'(z) = f(z)]$$

A general method of integration, not restricted to analytic functions, uses the equation z = z(t) of C, where $a \le t \le b$,

(3)
$$\int_C f(z) dz = \int_a^b f(z(t))\dot{z}(t) dt \qquad \left(\dot{z} = \frac{dz}{dt}\right).$$

Cauchy's integral theorem is the most important theorem in this chapter. It states that if f(z) is analytic in a simply connected domain D, then for every closed path C in D (Sec. 14.2),

$$\oint_C f(z) dz = 0.$$

Under the same assumptions and for any z_0 in D and closed path C in D containing z_0 in its interior we also have **Cauchy's integral formula**

(5)
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$$

Furthermore, under these assumptions f(z) has derivatives of all orders in D that are themselves analytic functions in D and (Sec. 14.4)

(6)
$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz \qquad (n = 1, 2, \dots).$$

