

Complex Analysis
COMMENT. Obviously, instead of (1), (2) we may write (denoting
$$b_n$$
 by a_{-n})
(1')
 $f(z) = \sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$
where all the coefficients are now given by a single integral formula, namely,
(2')
 $a_n = \frac{1}{2\pi i} \oint_C \frac{f(z^*)}{(z^* - z_0)^{n+1}} dz^*$ $(n = 0, \pm 1, \pm 2, \cdots)$.
Uniqueness.
The Laurent series of a given analytic function $f(z)$ in its annulus of
convergence is unique. However, $f(z)$ may have different Laurent
series in two annuli with the same center;

Lecturer: Dr Farhad Bayat, University of Zanjan.

Â	Complex Analysis	Â
Zeros of	Analytic Functions	
A zero of an ar A zero has order but $f^{(n)}(z_0) \neq 0$ $f(z_0) = f'(z_0) =$	halytic function $f(z)$ in a domain D is a $z = z_0$ in D such that r n if not only f but also the derivatives $f', f'', \dots, f^{(n-1)}$ are all 0. A first-order zero is also called a simple zero . For a second- = 0 but $f''(z_0) \neq 0$. And so on.	$f(z_0) = 0.$ 0 at $z = z_0$ order zero,
THEOREM Zeros	3	
The zeros of an analytic function $f(z) \ (\neq 0)$ are isolated; that is, each of them has a neighborhood that contains no further zeros of $f(z)$.		
THEOREM	4	
Poles and Zeros		
Let $f(z)$ be and has a pole of r at $z = z_0$ and	lytic at $z = z_0$ and have a zero of nth order at $z = z_0$. T the order at $z = z_0$; and so does $h(z)/f(z)$, provided $h(z)$ $h(z_0) \neq 0$.	hen 1/f(z) is analytic
	Lecturer: Dr Farhad Bayat, University of Zanjan.	

