

if f(z) has a singularity at a point $z = z_0$ inside C but is otherwise analytic on C and inside C as before. Then f(z) has a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \frac{b_1}{z-z_0} + \frac{b_2}{(z-z_0)^2} + \cdots$$
Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

Poles of Any Order at z_0. The residue of f(z) at an mth-order pole at z_0 is

(5)
$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z) \right] \right\}.$$

In particular, for a second-order pole (m = 2),

(5*)
$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \{ [(z-z_0)^2 f(z)]' \}.$$

ian Intversity Zanian I

Zanjan Universit

Zanian University

Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

EXAMPLE 4 Residue at a Pole of Higher Order

$$f(z) = 50z/(z^3 + 2z^2 - 7z + 4)$$

the denominator equals $(z + 4)(z - 1)^2$

second order at z = 1

$$\operatorname{Res}_{z=1} f(z) = \lim_{z \to 1} \frac{d}{dz} [(z-1)^2 f(z)] = \lim_{z \to 1} \frac{d}{dz} \left(\frac{50z}{z+4} \right) = \frac{200}{5^2} = 8.$$

Zanjan University

63

63

Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

Several Singularities Inside the Contour.

THEOREM 1

Residue Theorem

Let f(z) be analytic inside a simple closed path C and on C, except for finitely many singular points z_1, z_2, \dots, z_k inside C. Then the integral of f(z) taken <u>counterclockwise</u> around C equals $2\pi i$ times the sum of the residues of f(z) at z_1, \dots, z_k :

$$\oint_C f(z) dz = 2\pi i \sum_{j=1}^k \underset{z=z_j}{\text{Res}} f(z).$$

Lecturer: Dr Farhad Bayat, University of Zanjan.

Complex Analysis

PROOF

We enclose each of the singular points z_j in a circle C_j with radius small enough

Then f(z) is analytic in the multiply connected domain D bounded by C and C_1, \dots, C_k

From Cauchy's integral theorem

(7)
$$\oint_C f(z) dz + \oint_{-C_1} f(z) dz + \oint_{-C_2} f(z) dz + \cdots + \oint_{-C_k} f(z) dz = 0,$$

Fig. 373. Residue theorem

