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Residue Integration of Real Integrals
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lResidue Integration of Real Integralsl

Integrals of Rational Functions of cos # and sin ¢

first consider integrals of the type

2ar
(N J= J Flcos 8, sin &) 48
0

where F(cos @, sin #) 1s a real rational function of cos & and sin #

and is finite on the interval of mtegration.

Setting ¢ = z, we obtain

dz

(3) J =90 (20—
C 2
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As another large class, let us consider real mtegrals of the form

oo

4)  Improper integral, J Jx) dx.

—00

© R
J fxydx = fim, J_R fordx| (5)

-

5

We assume that the f(x) in (4) is a real rational function whose
denominator is different from zero for all real x and is of degree at least

two units higher than the degree of the numerator.

@ J Fx) dx = 20> Res f(2)

the poles of f(z) in the upper hall-plune.
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Fourier Integrals
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(8) J f(x)cos sx dx and J filx) sin sx dx

—0n —c0

the contour C in Fig. 374. !

R | R x

Fig. 374. Path C of the contour integral in (8)

Similar to (7):

=]

(9) J F0)e™ dx = 21i Y Res [ f(2)e™]

—0

sum the residues of f(z)ei‘sz at its poles in the upper half-plane.
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Therefore we get:

e}

J f(x) cos sx dx = fZWEIm Res [ f(2)¢*],

(10)

J J(x) sin sx dx = ZwERe Res [f(z)eisz].

—_—

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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EXAMPLE 3 An Application of (10)

Show that Jm o8 ¥ dx:ze—ks’ Jm €in sx dr =0
o K7+ 5 k .
(s > 0,k = 0).
Solution.
only one pole in the upper half-plane, namely, a simple pole at z = ik,
eé'sz eész e—k.s
Res 50— = =—.
e k7 A+ 2 2 |,y 2k

w ez’sx Fe—ks T
o 9 dx = 2771 = e .
Lkt x 2ik k
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Another Kind of Improper Integral

B

(11) J ) dx

A

whose integrand becomes infinite at a point @ in the interval of integration,

lim |fG)| = .

By definition, this integral (11) means

B
J0) dx
+n

B t—¢

(12) J F0) dx = Tim J F(x) dx + Tim J
e—l) 7—0

A A a

where both € and n approach zero independently and through positive values.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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It may happen that neither of two limits exists if € and N gotoO

independently, but the following limit exists:

t—e¢ B
(13) lim H F00) dx + J £ dx}

A 1)

This is called the Cauchy principal value of the integral.

B

pr. v. J Jx) dx.
A

pr. v Jldx_ lim{J_eder Jldx} = ()
’ ’ 1x3 e—=} 1 x3 €x3 >

‘the principal value exists, although the mtegral itself has no meaning.‘
N LECUIrer: DI Farlad Bayav, UIIVErsITy O Zamjan, ——————
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In the case of simple poles on the real axis we shall obtain a

formula for the principal value of an integral from -0 to +00.

THEOREM 1
Simple Poles on the Real Axis

If f(z) has a simple pole at 7 = a on the real axis, then (Fig. 376)

lim J f@ydz = mi lzlzeas f@.

Ca
//\(’2
a—F a a+r X

Fig. 376. Theorem 1

; Lecturer: ur rarnaa payatr, universicy of Zanjan. y
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Then the desired formula is
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(14)

pr. v. J f(x) dx = 27i % Res f(z) + mi % Res f(2)

over all poles in the upper half-plane{wcr all poles on the real axis

R

a —F

@

Fig. 377. Application of Theorem 1

S

C2

a+r R

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Complex Analysis
EXAMPLE 4 Poles on the Real Axis
Find the principal value -
dx
pr. v. 3 2 .
e X7 =3+ Dx + 1)
Solution.
=3 +2=@x- Dix—2),
simple poles at
z=1, Res f(3) = {7} __1
w1 @2+ Dl 27
z=2, Res f(z) = {7} _1
2= - DE+1) L ~ 57
1 o
=1 Re_sf(z)z{ _ 1 ':3 i
i (2 Bz + Dz + i) by 642 20
—i in the lower half-plane, which is of no interest here. )
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From (14) we get the answer

” dx 3= _ 1 1 T
pr. v. 3 3 = 27ri +mil——+_ )=
L@ = 3x )"+ 1) 20 2 5 10

F Lecturer: Dr Farhad Bayat, University of Zanjan. —/

Complex Analysis

SUMMARY OF CHAPTER N

A Laurent series is a series of the form

(1) D= Sai -zt S
#n=0

ooy 2 — 20"

or, more briefly written

S n 1 f@*)
1% = (7 — ; = g%
(1%) f@ = X @@= = 3[;0 @~z

==

‘The coefficient by of 1/(z — z) in this series is called the residue‘

Lecturer: Dr Farhad Bayat, University of Zanjan.
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SUMMARY OF CHAPTER

1
(2) Dy = Res f(2) = Gy jgf(z*) dz*.

Zﬁ
“ c

Thus { f(z*)dz* = 2iRes f(2).
C o

r—1
3) Res f(2) = im (jzm_l [z - z@“’”f(z)]) ,

1
2=zq (m— 1=

provided f(z) has at zo a pole of order m;

) plzo)
Res /() = lim (2 — 20)f(@;| |Res = = £
G mn @) g zo)
F Lecturer: Dr Farhad Bayat, University of Zanjan.
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Conformal Mapping
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Conformal Mapping

Motivation:

ol oSl

Conformal mappings are invaluable to the engineer and
physicist as an aid in solving problems in potential theory.
They are a standard method for solving boundary value

problems in two-dimensional potential theory and yield rich

applications in electrostatics, heat flow, and fluid flow.

The main feature of conformal mappings is that they are angle—preserving.

if f(z) is an analytic function, then the mapping given by
w=f(z) is a conformal mapping, that is, it preserves angles,

except at points where the derivative f'(z) is zero.

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Conformal Mapping
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Geometry of Analytic Functions:
Conformal Mapping

A complex [unclivn

(1) w =2} = wix.y) — wix, ¥) f2=x—1)

z-plane w-plane

N VA

y

L\ Ao

u

; Lecturer: Dr Farhad Bayat, University of Zanjan. y
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EXAMPLE 1 Mappingw = f(x) =

z = ré’ and w = Re™?, Hw = 22 r2e”®.
S

=

I

-
W™

3 |[&
|
(-]
I

{z-plane) - -5 2 0
(w-plans)
Lecturer: Dr Farhad tsayat, umve'rs{'\ta)'r1 ot Zanjan. —/
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w = f(2) = ulx,y) + wx,y)

In Cartesian coordinales we have z = x + iy and

u=Re(> =x>— y2, v=Im>) = 2xy.

vertical lines x = ¢ = const ‘{u
v = 2ey.

we can eliminate y. - T 4c2((;2 — i)

Similarly, horizontal lines y = k = const‘ L2 = 4k2(k2 + u)

F Lecturer: Dr Farhad Bayat, University of Zanjan. —/
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Conformal Mapping
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|
02 = 4%k> + w)

V2 = 46‘2(62 —uw)

Fig. 379. Images of x = const, y = const under w = z’

; Lecturer: Dr Farhad Bayat, University of Zanjan. y

Conformal Mapping
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A mapping w — f(2) is called conformal if it preserves angles hetween oriented curves in
magnitude as well as in sense. Figure 380 shows what this means. The angle e (0 = « = )
between two intersecting curves (' and (s is defined to he the angle hetween their oriented
tangants at the intersaction point 7. And conformatify means that the images €] and €%
of 'y and Cp make the same angle as the curves themselves in both magnitude and direction.

Fig. 380. Curves C; and C, and their respective images
% and T% under a conformal mapping w  f{2)

fz-plan= fro-plane)

THEOREM 1

Conformality of Mapping by Analytic Functions

The mapping w = f(2) by an analytic function [ is conformal, except at critical

points, that is, points at which the derivative ' is zero.

ITCTTUL T 6 17T Tl @ DA YAl WIIIVTISITY UL ZAIL[Ils
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Conformal Mapping
EXAMPLE 2 Conformality of w = 2"
The mapping w = 7%, 1 = 2, 3,--+, is conformal, except at z = 0, where w =z 1= 0.

¥

e

Fig. 382 Mapping by w = 2"

x i

EXAMPLE 3 Mapping w=z + 1/z. Joukowski Airfoil

1
w=1u+ i =r(cosd + isinf) +?(cosﬁ — igin @)

=

it = a cosf, v =>06sinf

1
where a=r+—, b=r——.
r r

Lecwurer: ur rarnaa sayat, university of Zanjan.
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Conformal Mapping
. 1 1
u:acosQ’ U:bSIHB WhCI'e a:r—i-?, b:r—F.
2 2
circles |z| = r = const # 1 ‘ u—+ v _ 1
2 2
a b
circle || z|=1=¢" segment —2 = u = 2

Fig. 383. Example 3

D). @S
=/

F Lecturer: Dr Farhad Bayat, University of Zanjan.
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Conformal Mapping

Now the derivative of w is

ol oSl

1 G+DheE- 1)
L
Z Z

which1s 0 atz = *=1.

The larger circle is mapped onto a Joukowski airfoil. The dashed circle passes

through both and 1 and -1 is mapped onto a curved segment.

Fig. 384. Joukowski airfoil
; LTCUIUHITI s I Il TIUU uﬂ-]ﬂ-la’ TAIITVET Bll-] Av2'y mjﬂ-ll.

Conformal Mapping
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EXAMPLE 4 Conformality of w = ¢°

ol oSl

we have |&f| = &F and Arg w = ¥

line x = xo = const mmmp circle lw| = &%

line y = y, = const HEEp arg w = yo.

¥
lD C
0.5A B
0 |
0 1 x

Mapping by w = e*

Fig. 385.
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The fundamental region —7 < Argz = 7 of &°

. 2

entire w-plane without the ongin w = 0

(becanse ¢ = 0 for no z).

o
¥
T
0 x -1 ] 1 u

(z-plane) (w-plane)

Fig. 386. Mapping by w = ¢°

F Lecturer: Dr Farhad Bayat, University of Zanjan. —/
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Questions? Discussion? Suggestions ?

F Lecturer: Dr Farhad Bayat, University of Zanjan. —/
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