

Complex Analysis

Residue Integration of Real Integrals

Integrals of Rational Functions of $\cos \theta$ and $\sin \theta$

first consider integrals of the type

where $F(\cos \theta, \sin \theta)$ is a real rational function of $\cos \theta$ and $\sin \theta$ and is finite on the interval of integration.

Setting $e^{i \theta}=z$, we obtain

$$
\text { (3) } \quad J=\oint_{C} f(z) \frac{d z}{i z}
$$

Lecturer: Dr lrarliad Bayat, university oif Zamjan.

Complex Analysis

As another large class, let us consider real integrals of the form

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x \tag{5}
\end{equation*}
$$

We assume that the $f(x)$ in (4) is a real rational function whose denominator is different from zero for all real x and is of degree at least two units higher than the degree of the numerator.
(7)

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum \operatorname{Res} f(z)
$$

the poles of $f(z)$ in the upper hall-plane.

Complex Analysis

Fourier Integrals
(8) $\quad \int_{-\infty}^{\infty} f(x) \cos s x d x \quad$ and $\quad \int_{-\infty}^{\infty} f(x) \sin s x d x$
the contour C in Fig. 374.

Fig. 374. Path C of the contour integral in (8)
Similar to (7):

$$
\int_{-\infty}^{\infty} f(x) e^{i s x} d x=2 \pi i \sum \operatorname{Res}\left[f(z) e^{i s z}\right]
$$

sum the residues of $f(z) e^{i s z}$ at its poles in the upper half-plane.

Complex Analysis

EXAMPLE 3 An Application of (10)

Show that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\cos s x}{k^{2}+x^{2}} d x=\frac{\pi}{k} e^{-k s}, \quad \int_{-\infty}^{\infty} \frac{\sin s x}{k^{2}+x^{2}} d x=0 \\
(s>0, k>0) .
\end{aligned}
$$

Solution.

only one pole in the upper half-plane, namely, a simple pole at $z=i k$,

$$
\operatorname{Res}_{z=i k} \frac{e^{i s z}}{k^{2}+z^{2}}=\left[\frac{e^{i s z}}{2 z}\right]_{z=i k}=\frac{e^{-k s}}{2 i k}
$$

$$
\int_{-\infty}^{\infty} \frac{e^{i s x}}{k^{2}+x^{2}} d x=2 \pi i \frac{e^{-k s}}{2 i k}=\frac{\pi}{k} e^{-k s}
$$

whose integrand becomes infinite at a point a in the interval of integration,

$$
\lim _{x \rightarrow a}|f(x)|=\infty
$$

By definition, this integral (11) means

$$
\begin{equation*}
\int_{A}^{B} f(x) d x=\lim _{\epsilon \rightarrow 0} \int_{A}^{a-\epsilon} f(x) d x+\lim _{\eta \rightarrow 0} \int_{a+\eta}^{B} f(x) d x \tag{12}
\end{equation*}
$$

where both ϵ and η approach zero independently and through positive values.

Complex Analysis

It may happen that neither of two limits exists if ϵ and η go to 0 independently, but the following limit exists:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left[\int_{A}^{a-\epsilon} f(x) d x+\int_{a+\epsilon}^{B} f(x) d x\right] \tag{13}
\end{equation*}
$$

This is called the Cauchy principal value of the integral.

$$
\text { pr. v. } \int_{\mathrm{A}}^{B} f(x) d x \text {. }
$$

For example,

$$
\text { pr.v. } \int_{-1}^{1} \frac{d x}{x^{3}}=\lim _{\epsilon \rightarrow 0}\left[\int_{-1}^{-\epsilon} \frac{d x}{x^{3}}+\int_{\epsilon}^{1} \frac{d x}{x^{3}}\right]=0
$$

the principal value exists, although the integral itself has no meaning

Complex Analysis

In the case of simple poles on the real axis we shall obtain a formula for the principal value of an integral from $-\infty$ to $+\infty$.

THEOREM-1
Simple Poles on the Real Axis
If $f(z)$ has a simple pole at $z=a$ on the real axis, then (Fig. 376)

$$
\lim _{r \rightarrow 0} \int_{C_{2}} f(z) d z=\pi i \operatorname{Res}_{z=a} f(z)
$$

Fig. 376. Theorem 1

Complex Analysis

Then the desired formula is

Fig. 377. Application of Theorem 1

Complex Analysis

EXAMPLE 4 Poles on the Real Axis

Find the principal value

$$
\text { pr. v. } \int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}-3 x+2\right)\left(x^{2}+1\right)} .
$$

Solution.

$$
x^{2}-3 x+2=(x-1)(x-2)
$$

simple poles at

$$
\begin{array}{ll}
z=1, & \operatorname{Res}_{z=1} f(z)=\left[\frac{1}{(z-2)\left(z^{2}+1\right)}\right]_{z=1}=-\frac{1}{2}, \\
z=2, & \operatorname{Res}_{z=2} f(z)=\left[\frac{1}{(z-1)\left(z^{2}+1\right)}\right]_{z=2}=\frac{1}{5}, \\
z=i, & \operatorname{Res}_{z=i} f(z)=\left[\frac{1}{\left(z^{2}-3 z+2\right)(z+i)}\right]_{z=i}=\frac{1}{6+2 i}=\frac{3-i}{20},
\end{array}
$$

$z=-i$ in the lower half-plane, which is of no interest here.

Complex Analysis

From (14) we get the answer
pr. v. $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}-3 x+2\right)\left(x^{2}+1\right)}=2 \pi i\left(\frac{3-i}{20}\right)+\pi i\left(-\frac{1}{2}+\frac{1}{5}\right)=\frac{\pi}{10}$.

Complex Analysis

SUMMARY OF CHAPTER

A Laurent series is a series of the form
(1)

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

or, more briefly written
(1*) $\quad f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{*}\right)}{\left(z^{*}-z_{0}\right)^{n+1}} d z^{*}$

The negative powers in this Laurent series is called the principal part of $f(z)$ at z_{0}.

The coefficient b_{1} of $1 /\left(z-z_{0}\right)$ in this series is called the residue
Lecturer: Dr Farhad Bayat, Uniiversiity of Zanjam.

Conformal Mapping

Motivation:

Conformal mappings are invaluable to the engineer and physicist as an aid in solving problems in potential theory. They are a standard method for solving boundary value problems in two-dimensional potential theory and yield rich applications in electrostatics, heat flow, and fluid flow.

The main feature of conformal mappings is that they are angle-preserving.
if $f(z)$ is an analytic function, then the mapping given by $w=f(z)$ is a conformal mapping, that is, it preserves angles, except at points where the derivative $f^{\prime}(z)$ is zero.

Conformal Mapping

Conformal Mapping

A mapping $w-f^{\prime}(z)$ is called conformal if it preserves angles between oriented curves in magnitude as well as in sense. Figure 380 shows what this means. The angle $\alpha(0 \underset{=}{\varepsilon} \alpha \pi)$ between two intersecting curves C_{1} and C_{2} is defined to be the angle between their oriented tangents at the intersection point z_{0}. And conformality means that the images C_{1}^{*} and C_{2}^{*} of C_{1} and C_{2} make the same angle as the curves themselves in both magnitude and direction.

Fig. 380. Gurves C_{1} and C_{2} and their respective images

$$
C_{1}^{*} \text { and } \overbrace{2}^{*} \text { under a conformal mapping } w \quad f(z)
$$

THEOREM-1

Conformality of Mapping by Analytic Functions
The mapping $w=f(z)$ by an analytic function f is conformal, except at critical points, that is, points at which the derivative f^{\prime} is zero.

Conformal Mapping

Now the derivative of w is

$$
w^{\prime}=1-\frac{1}{z^{2}}=\frac{(z+1)(z-1)}{z^{2}}
$$

which is 0 at $z= \pm 1$.
The larger circle is mapped onto a Joukowski airfoil. The dashed circle passes through both and 1 and -1 is mapped onto a curved segment.

Fig. 384. Joukowski airfoil

