



## **Conformal Mapping**



### **Motivation:**

Conformal mappings are invaluable to the **engineer** and **physicist** as an **aid in solving problems** in potential theory. They are a standard method for **solving** *boundary value problems* in two-dimensional potential theory and yield rich applications in **electrostatics**, **heat flow**, and **fluid flow**.

The main feature of conformal mappings is that they are **angle-preserving**.

if f(z) is an **analytic** function, then the mapping given by w=f(z) is a **conformal mapping**, that is, it **preserves angles**, except at points where the derivative f'(z) is zero.

Lecturer: Dr Farhad Bayat, University of Zanjan.

























# **Conformal Mapping**



### fractional transformations Linear **Möbius** (or transformations) are mappings

**(1)** 

$$w = \frac{az + b}{cz + d} \qquad (ad - bc \neq 0)$$

$$(ad - bc \neq 0)$$

where a, b, c, d are complex or real numbers. Differentiation gives

$$w' = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2}.$$

requirement  $ad - bc \neq 0$ .

Lecturer: Dr Farhad Bayat, University of Zanjan.



(3)

## **Conformal Mapping**



Special cases of (1) are

$$w = z + b$$

(Translations)

$$w = az$$
 with  $|a| = 1$ 

(Rotations)

$$w = az + b$$

(Linear transformations)

$$w = 1/z$$

(Inversion in the unit circle).

 $w = \frac{az + b}{cz + d}$ 



Lecturer: Dr Farhad Bayat, University of Zanjan.









## **Conformal Mapping**



### THEOREM 1

### Three Points and Their Images Given

Three given distinct points  $z_1$ ,  $z_2$ ,  $z_3$  can always be mapped onto three prescribed distinct points  $w_1, w_2, w_3$  by one, and only one, linear fractional transformation w = f(z). This mapping is given implicitly by the equation

(2) 
$$\frac{w - w_1}{w - w_3} \cdot \frac{w_2 - w_3}{w_2 - w_1} = \frac{z - z_1}{z - z_3} \cdot \frac{z_2 - z_3}{z_2 - z_1}.$$

(If one of these points is the point  $\infty$ , the quotient of the two differences containing this point must be replaced by 1.)











Lecturer: Dr Farhad Bayat, University of Zanjan.





















