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Mechanical Energy Change in Inertial 
Reference Frames
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The mechanical energy change of a system in an iner-
tial frame of reference equals work done by the total 
nonconservative force in the same frame. This rela-

tion is covariant under the Galilean transformations from 
inertial frame S to S, where S moves with constant velocity 
relative to S. In the presence of nonconservative forces, such 
as normal and tension forces, the mechanical energy of a 
system can be conserved in S and not be conserved in S. In 
this paper we find useful relations between the mechanical 
energy changes in two inertial frames of reference.  

Introduction
The fact that the work done by an arbitrary force could 

have different values in different inertial frames of reference 
is not usually covered in the introductory physics textbooks 
and is neither well discussed nor explained in the physics 
classrooms. Furthermore, many high school and undergrad-
uate students assume that, in the absence of the nonconser-
vative force of friction, the mechanical energy of the system 
is conserved in all inertial frames of reference. Reading this 
paper could prevent some mistakes in common problems 
involving mechanical energy. The context for this study is 
the introductory physics course. The primary audience is 
prospective and practicing physics teachers. The contents of 
this paper, including the examples and exercises provided for 
the readers, could be used by physics teachers to teach the 
mechanical energy topic, to improve students’ conceptual 
understanding of the subject, and to examine their students’ 
learning. 

The laws of Newtonian mechanics such as Newton’s laws 
of motion are covariant under the Galilean transformations.1 

Also, the work-kinetic energy theorem, which is derived 
from Newton’s second law, is covariant under these trans-
formations.2,3 It has been shown that, as long as the work of 
fictitious forces is properly included in the formalism, the 
work-kinetic energy theorem can be applied to an isolated 
system of particles in a rotating reference frame.4 In an iner-
tial frame of reference, when the work done by nonconserva-
tive forces is zero, we can use the principle of conservation of 
mechanical energy E, which is defined as the sum of kinetic 
energy K and potential energy U.5,6 Moreover, after inves-
tigating some examples, it has been argued that for isolated 
systems, the conservation of mechanical energy should not 
be dependent on any choice of any particular inertial frame 
of reference.7 Contrary to those conclusions, we show that 
in the presence of nonconservative forces, conservation of 
mechanical energy can be violated under the Galilean trans-
formations. In Newtonian mechanics, force is invariant, but 
the work done by a force depends on the inertial frame of 

reference. In an inertial frame of reference, in the presence of 
nonconservative forces such as frictional, normal, and tension 
forces, if the work done by nonconservative forces on a system 
is zero, the mechanical energy is conserved. The work done 
by the same nonconservative forces in another inertial refer-
ence frame may be nonzero. Therefore, in the second frame 
of reference mechanical energy is not conserved. Considering 
three examples, we discuss the results. In this work, problems 
involving rotational kinetic and potential energy changes are 
not studied. 

Covariance of DE = Wnc 
 According to the work-kinetic energy theorem,5 which is 

derived from Newton’s second law, the kinetic energy change 
DK in S frame equals work W done by total force F,

DK = W,               (1)

where W = Wc + Wnc. The work Wc done by conservative 
force  Fc and the work Wnc done by nonconservative force  Fnc 
are given by Wc =  Fc . dr and Wnc =  Fnc . dr , respectively. 
Therefore, considering Eq. (1) as well as definitions for the 
potential energy change  DU = –Wc and mechanical energy  
E = K+U, we obtain5 

DE = Wnc.                (2)

Starting from Newton’s second law in the inertial frame of 
reference S, we find that DK = W and  DE = Wnc , which 
implies the covariance of Eqs. (1)2,3 and (2) under the Gali-
lean transformations. Thus, according to Eq. (2), in all inertial 
frames of reference, change of mechanical energy equals work 
done by nonconservative forces. This statement, which is as 
important as the work-kinetic energy theorem, can be used to 
directly calculate the mechanical energy change in any inertial 
frame of reference and may be called the “nonconservative 
work-mechanical energy theorem.” According to this theo-
rem, in a certain inertial frame of reference, mechanical ener-
gy is conserved if and only if Wnc = 0. Taking into account that 
Wnc  may have different values in different inertial frames, we 
come up with the result that the mechanical energy of a sys-
tem can be conserved in an inertial frame of reference and not 
be conserved in another inertial reference frame. 

Relations between DE and DE
As shown in Fig. 1, according to the Galilean transforma-

tions between the inertial frames of reference S and S, we 
have r = r – R0 – v0 t, where r and r are the position vectors 
of a particle of mass m, relative to S  and S, respectively, and 



THE PHYSICS TEACHER ◆ Vol. 54, September 2016                                     361

tion over a time interval Dt, we obtain 

0             (6)

Example (a): A book in an elevator
 Consider a book on a table in an elevator moving upward 

at a constant velocity v0. After a time interval Dt the book 
travels a distance h = v0 Dt, according to an observer A at rest 
on the ground. Show that Eq. (6) gives the correct answer.  
Solution:  According to observer A, DK = 0,  DU = mgh, 
and therefore DE = mgh. Observer B at rest with respect 
to the elevator finds that DK = 0, DU = 0, and so DE= 0. 
These values are in agreement with Eq. (6), because Fcu =  
–mg, Dvu = 0, and according to Eq. (6) we have 

  
0

0        
   (7)

Special Cases for DE = Wnc = 0
According to Eq. (2) if Wnc = 0, we obtain DE = 0. There-

fore, conservation of mechanical energy can be applied in 
frame S and according to Eq. (6) we have 

                              
(8)

Another useful expression relating DE  and DE is derived 
using Newton’s second law Fcu + Fncu = mdvu/dt, where Fcu  
and Fncu are the u components of Fc and Fnc. Thus, we have 
(Fcu + Fncu)dt = mdvu, which gives 

         
  (9)

If we substitute the expression for   from Eq. 
(9) into Eq. (5), we find 

                                             
 (10)

If mechanical energy is conserved in S frame, we obtain 

                                                                     
(11)

Case 1:  Dvu = 0
If either both initial and final velocities of the object are 

zero or their u  components are equal, Eq. (8) reduces to 

c                                                                 (12)
  

Example (b):  Free fall
A Ping-Pong ball of mass m is released from rest from a 

height h above the ground, hits the floor, bounces up, and 
reaches its initial height, so the initial speed and final speed 
in the S frame are both 0. Find DE with respect to observer 
B moving upward at constant velocity v0 with respect to the 
ground. 
Solution: According to observer B, DK = 0 and DU = 
–mgd, where d = v0 Dt is the distance traveled by observer 
B during the time interval Dt. So, DE = DU = –mgv0 Dt, 

v0 is the velocity of S relative to S. Also, R0 is the initial posi-
tion vector of the origin of S with respect to S. So, we obtain 
dr = dr – v0  dt, which dividing by dt leads to v = v –v0. Us-
ing a unit vector û, we write  v0 =  ûv0  and obtain v2 =  v2 + 

v 2
0 – 2vuv0, where vu is the component of v along the unit 

vector û, which is in the direction of the velocity of S with 
respect to S. We can write  

where i and f stand for “initial” and “final,” respectively, and 
obtain 

DK = DK – mv0 Dvu,              (3)

where Dvu is the u component of the velocity change of the 
object in S frame. We also have DU = –Wc, which gives 

            

                  

(4)

where Fcu  is the u component of the total conservative force 
Fc. Considering the mechanical energy change DE = DK  + 
DU in S frame and using Eqs. (3) and (4), we write 

 
                             (5)

Equation (5) clearly shows that, in general, DE is not equal 
to DE.

For constant conservative forces, such as the gravitational 
force near the surface of Earth, after carrying out the integra-
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Fig. 1. Galilean coordinates and velocity transformations are 
shown in this figure. Position vector r of a particle with respect to 
the inertial frame of reference S is related to the position vector 
of the particle relative to the inertial frame of reference S moving 
at a constant velocity v0 with respect to the S frame. Here, the 
z-axis has been omitted for simplicity.
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If the u component of the total conservative force in Eq. 
(8) is zero, we have 

                                               (16)

Example (d): Curved frictionless inclined plane
A block of mass m is released from the top of a curved fric-

tionless inclined plane and reaches a final velocity. The body 
continues sliding without friction on a horizontal plane at the 
constant velocity. In the laboratory inertial reference frame, 
where the curved inclined plane is at rest, the mechanical 
energy of the object is constant. However, in another inertial 
frame moving at the same velocity as the final velocity of the 
block on the horizontal surface, it is not constant. Show that 
this is in agreement with Eq. (16).
Solution:  According to Fig. 1, the block released from rest 
at the top of the curved inclined plane slides down the plane 
and on a horizontal plane. Ignoring the frictional forces, the 
final velocity of the body vf = îvf  remains constant as the 
block keeps moving horizontally. The only forces acting on 
the body are the normal force N exerted by the curved in-
clined plane, which acts perpendicular to the track, and the 
conservative force of gravity, which acts vertically downward. 
In the laboratory inertial frame of reference S, mechanical 
energy E is conserved. If we consider the zero level of the 
gravitational potential energy at y = 0, according to Fig. 1, we 
have U = mgy.

Now, applying the conservation of mechanical energy to 
the system gives the final speed . In the inertial 
frame S, the initial mechanical energy is  

while when the block is at rest in S, we obtain the final me-
chanical energy E f  = 0. Therefore, mechanical energy change 
in the inertial frame S is 

2
f

.                              (17)

Using the nonconservative work-mechanical energy theorem 
in the reference frame S, we write 

         
(18)

The inner product of the normal force and velocity of the 
block on any fixed arbitrary surface in S is zero. So conserva-
tion of mechanical energy is concluded. Applying the same 
theorem in S gives 

 
                                          

   (19)

where v = v – îvf is the velocity of the block in the inertial 
frame of reference S. Thus, N . v  = –Nxvf and we obtain 

f

f

                            
(20)

The gravitational force has no component along the x-axis. 
Therefore, the horizontal acceleration is caused by the   x-
component of the normal force. So, Nx = mdvx/dt and we have  

when computed directly from the definitions. The same re-
sult is obtained from Eq. (12), 

                               (13)
 

Case 2:  Fncu dt = 0

Equation (11) shows that if either the total nonconserva-
tive force is perpendicular to the velocity of S with respect to 
S, or Fncu dt = 0, we obtain 

 
 DE =  0.           (14)
  

Example (c): A crate of mass m sliding down a fric-
tionless ramp

A crate of mass  m is sliding down a ramp. The length of 
the ramp is d and it is inclined at an angle of q. Frame of refer-
ence S is the rest frame of the ramp. S frame is moving at the 
final velocity of the crate relative to S. Is  DE in agreement 
with Eq. (14)? 
Solution:  Note that the normal force is perpendicular to the 
velocity of S frame relative to S, so Fncu =0. When the crate 
starts sliding, vi = 0  and vi  = –vf. Also, the final velocities 
with respect to S and S frames are vf  and vf  = 0, respectively. 
Kinetic and potential energy changes are

 

DU = –mgd sin q, and DU = mgd sin q. 

The work done by the nonconservative normal force in frame 
S is zero, so DE = 0. Therefore,  

 

which leads to DE = 0. This result is in agreement with Eq. 
(14). It is also in agreement with Eq. (6) if the terms in the pa-
rentheses cancel each other. With DE = 0, Fcu = mg sin q,  
Dt  = vf /(g sin q), and Dvu  = vf, Eq. (6) results in 

   
  (15)

Case 3:  Fcu = 0
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Fig. 2. A block of mass m is released from the top of a curved 
plane and slides down the track and on a horizontal plane without 
frictional force. Vertical displacement and final velocity are h and 
vf = îvf, respectively. In the inertial frame S, the initial and final 
velocities of the body are vi = –îvf and vf = 0, respectively.
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Nxdt = mdvx. Making this substitution for Nxdt in Eq. (20) 
results in 

f
f

         (21)

which is in agreement with Eq. (17). 
Three more examples are provided for interested readers 

in an online-only appendix.8

Conclusions
The nonconservative work-mechanical energy theorem 

defined by DE = Wnc is covariant under the Galilean transfor-
mations. The mechanical energy of a system can be conserved 
in a given inertial frame of reference, and not be conserved 
in another inertial reference frame. In the absence of the 
nonconservative forces, the mechanical energy is conserved 
in all inertial reference frames. We obtained simple relations 
between the change in mechanical energies DE and   DE  
and clarified the expressions with some examples. Our results 
can be applied to either particles or extended objects with the 
same initial and final rotational kinetic and potential ener-
gies. Study of mechanical systems with rotational kinetic and 
potential energy changes under Galilean transformations is 
suggested for subsequent research. Investigation of the rela-
tions between DE and DE  for variable conservative forces in 
inertial reference frames and also constant conservative forces 
in noninertial frames of reference is also suggested. Consider-
ing Lorentz transformations is another choice for research.
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