CARLEMAN'S INEQUALITY OVER PRIME NUMBERS

MEHDI HASSANI UNIVERSITY OF ZANJAN

mehdi.hassani@znu.ac.ir

Carleman's inequality: For positive real numbers a_1, \ldots, a_n , Carleman's inequality ¹ asserts that

$$\sum_{k=1}^n \left(a_1 \dots a_k\right)^{\frac{1}{k}} \leqslant e \sum_{k=1}^n a_k.$$

The constant e is the best possible. Carleman's inequality can be read as follows

$$\frac{\sum_{k=1}^{n} (a_1 \dots a_k)^{\frac{1}{k}}}{\sum_{k=1}^{n} a_k} \leqslant e.$$

¹T. Carleman, *Sur les fonctions quasi-analytiques*, Conférences faites au cinquième congres des mathématiciens Scandinaves, Helsinki (1923), pp. 181–196.

Question: What is the asymptotic growth of the ratio

$$\frac{\sum_{k=1}^n \left(a_1 \dots a_k\right)^{\frac{1}{k}}}{\sum_{k=1}^n a_k}$$

for several number theoretic sequences a_k ?

Carleman's inequality over prime numbers: As usual we denote by p_k the k-th prime, and we define the sequence $(C_n)_{n\geq 1}$ by

$$C_n = \frac{\sum_{k=1}^n (p_1 \dots p_k)^{\frac{1}{k}}}{\sum_{k=1}^n p_k}.$$

Asymptotic behaviour of C_n : We denote by A_n and G_n , the arithmetic and geometric means of the prime numbers p_1, \ldots, p_n , respectively. It is known² that

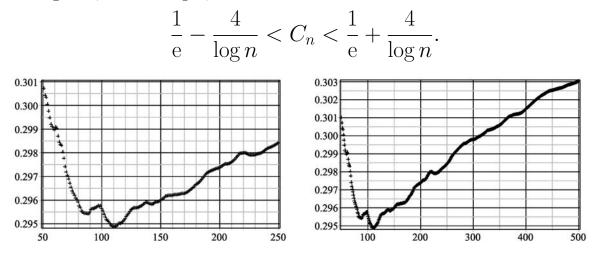
$$A_n = \frac{p_n}{2} + O(n)$$
, and $G_n = \frac{p_n}{e} + O(n)$.

These approximations and the Prime Number Theorem in the form $p_n \sim n \log n$ imply that

$$C_n = \frac{1}{e} + O\left(\frac{1}{\log n}\right).$$

²M. Hassani, On the ratio of the arithmetic and geometric means of the prime numbers and the number e, International Journal of Number Theory, 9 (2013), pp. 1593–1603.

Explicit bounds for C_n : By using some explicit bounds concerning A_n , G_n and p_n , for $n \ge 2$ we obtain



Graph of the points (n, C_n) for $50 \le n \le 250$ and $50 \le n \le 500$

Monotonicity of C_n : Computations running over the values of C_n with $1 \leq n \leq 10^5$ lead us to formulate the following conjecture.

Conjecture. For each $n \ge 299$ the sequence C_n is strictly increasing.

If the above conjecture is true, then we obtain

 $\max_{n \ge 1} C_n = C_1 = 1, \quad \text{and} \quad \min_{n \ge 1} C_n = C_{111} \cong 0.2949.$ Also, for $n \ge 14$ we have $C_n < \frac{1}{e}$. Carleman's inequality over reciprocal of the prime numbers: We define the sequence $(C'_n)_{n \ge 1}$ by

$$C'_{n} = \frac{\sum_{k=1}^{n} \left(\frac{1}{p_{1}} \dots \frac{1}{p_{k}}\right)^{\frac{1}{k}}}{\sum_{k=1}^{n} \frac{1}{p_{k}}}$$

Considering the approximations $B_n := \sum_{k=1}^n \frac{1}{p_k} = \log \log n + O(1)$ and $\frac{1}{G_k} = \frac{e}{p_k} + O(\frac{1}{k \log^2 k})$, we get $C'_n = \frac{\sum_{k=1}^n \frac{1}{G_k}}{B_n} = \frac{eB_n + O(1)}{B_n} = e + O\left(\frac{1}{\log \log n}\right).$ Carleman's inequality over the values of arithmetical functions: We have studied Carleman's inequality over the values of arithmetical functions, more precisely, over the values of Euler function φ , sum of divisors function σ , and their reciprocals³. For each positive arithmetical function f let

$$C_f(n) = \frac{\sum_{k=1}^n (f(1) \dots f(k))^{\frac{1}{k}}}{\sum_{k=1}^n f(k)}$$

We prove the following asymptotic results, providing non-trivial limit values $\lim_{n\to\infty} C_f(n)$ for the above mentioned functions.

³M. Hassani, Carleman's inequality over the values of Euler function and sum of divisors function, submitted.

As
$$n \to \infty$$
 we have
 $C_{\varphi}(n) = \eta_{\varphi} + \eta_{\varphi} \frac{\log n}{n} + O\left(\frac{(\log n)^{\frac{2}{3}}(\log \log n)^{\frac{4}{3}}}{n}\right),$
where
 $\pi^{2} = (n-1)^{\frac{1}{p}}$

$$\eta_{\varphi} = \frac{\pi^2}{6 \,\mathrm{e}} \prod_p \left(1 - \frac{1}{p}\right)^p \approx 0.3388.$$

As
$$n \to \infty$$
 we have
$$C_{\frac{1}{\varphi}}(n) = \eta_{\frac{1}{\varphi}} + O\left(\frac{1}{\log n}\right),$$

where

$$\eta_{\frac{1}{\varphi}} = \frac{2e \pi^4}{315\zeta(3)} \prod_p \left(1 - \frac{1}{p}\right)^{-\frac{1}{p}} \approx 2.2096.$$

As
$$n \to \infty$$
 we have
 $C_{\sigma}(n) = \eta_{\sigma} + O\left(\frac{1}{\log n}\right),$

where

$$\eta_{\sigma} = \frac{6}{e \, \pi^2} \prod_{p} \left(1 + \frac{1}{p} \right)^{\frac{1}{p}} \prod_{\substack{p^{\alpha} \\ \alpha \geqslant 2}} \left(\frac{p^{\alpha+1} - 1}{p^{\alpha+1} - p} \right)^{\frac{1}{p^{\alpha}}} \approx 0.3493.$$

$$n \to \infty$$
 we have
 $C_{\frac{1}{\sigma}}(n) = \eta_{\frac{1}{\sigma}} + O\left(\frac{\log \log n}{\log n}\right),$

where

As

$$\eta_{\frac{1}{\sigma}} = \frac{e \prod_{p} \left(1 + \frac{1}{p}\right)^{-\frac{1}{p}} \prod_{\substack{p^{\alpha} \\ \alpha \geqslant 2}} \left(\frac{p^{\alpha+1}-1}{p^{\alpha+1}-p}\right)^{-\frac{1}{p^{\alpha}}}}{\prod_{p} \left(1 - \frac{(p-1)^{2}}{p} \sum_{\alpha=1}^{\infty} \frac{1}{(p^{\alpha}-1)(p^{\alpha+1}-1)}\right)} \approx 2.2721.$$