

Programming and Graphics
Introduction to C++

1 3

C. Pozrikidis

Programming and Graphics
Introduction to C++

Constantine Pozrikidis
Department of Mechanical and Aerospace Engineering (MAE)
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0411
dehesa@freeshell.org

Cover illustration: The illustration on the front cover shows a twisted nanoring consisting of a
warped hexagonal lattice of carbon atoms.

Library of Congress Control Number: 2007921582

ISBN-10: 0-387-68992-3 e-ISBN-10: 0-387-68993-1
ISBN-13: 978-0-387-68992-0 e-ISBN-13: 978-0-387-68993-7

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of
trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to
be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

springer.com

9 8 7 6 5 4 3 2 1

Preface

The C++ programming language was introduced by Bjarne Stroustrup of the
AT&T laboratories in 1985 as an extension of C, with additional features bor-
rowed from the esoteric language Simula. Since then, C++ has grown rapidly
in response to the practical need for a programming language that is able to
efficiently handle composite and diverse data types. The language implementa-
tion is pivoted on the ingenious concept of object oriented programming (OOP).
Today, C++ dominates the commercial market and is favored among system
programmers and application developers.

Object oriented programming

To illustrate the advantages of an object oriented programming language
compared to a structured language such as Matlab, Fortran 77, or C, we
assume that an international sports competition has been entered by runners
from many countries around the globe. The record of each runner consists of
several fields including name, country of origin, city of birth, date of birth, and
best performance time.

In a structured language, each one of these fields is normally registered
in a separate data vector. In an OOP language, each runner becomes an object
defined as a member of the class of runners, and each member is described by
the collection of these fields. This formalism allows us to record, recall, and
manipulate in any desired way the personal data of each runner using simple
symbolic operators. Sub-classes consisting, for example, of runners of a particu-
lar nationality can be readily defined to facilitate more detailed manipulations.

An OOP language allows us to introduce a data type of our choice viewed
as an object in a defined class, and then use the class as a building block for
further development. This flexibility essentially allows us to build a language
without building a compiler. In this sense, an OOP language is an ultimate
language.

C and C++

C++ is a generalization of C, but accomplishes much more than C, to the
extent that it should be regarded, studied, and taught as a separate language.
It is neither necessary nor recommended to study C as a prerequisite of C++,
though knowledge of C can be helpful.

vi Preface

This book

This book is a brief and basic introduction to C++ for everyone and
especially for scientists and engineers. The text offers a venue for effectively
teaching and rapidly learning the language at the level of an undergraduate
course in any discipline of the physical sciences and computer science and en-
gineering. The discussion illustrates step-by-step the grammar, syntax, and
main features of the language, and explains the basic premise of OOP with an
emphasis on scientific computing.

Chapter 1 reviews basic concepts of computer hardware software and
programming.

Chapters 2 and 3 outline the general features of C++ and the basic
implementation of the language.

Chapter 4 discusses user-defined functions with an emphasis on scientific
computing.

In Chapter 5 introduces pointers to memory addresses and demonstrates
their applications.

Chapter 6 explains the basic principles of object oriented programming
(OOP) and the implementation of classes.

Chapters 7 and 8 discuss graphics and graphical user interface (GUI)
programming based on the fabulous Vogle library for the X11 server, and on
the GLUT, GLUI, and GTK+ utility toolboxes.

Chapter 9 demonstrates the use of Matlab functions from C++ code
for numerics and graphics.

Transition to C++

Many students, scientists, engineers, and other professionals are familiar
with the general concepts of computer programming, are proficient in an easy
programming language, such as Matlab or Fortran 77, and would like to
learn C++. This book is ideally suited for this audience. Translation tables
demonstrating the conversion of Matlab or Fortran 77 code into C++ code
are given in an appendix. A side-by-side comparison illustrates the syntactic
and functional differences between the three languages.

Keeping it simple

The C++ language is pluralistic in two ways. First, it allows different
commands (tasks) to be stated (implemented) in alternative ways. Second,

Preface vii

it supports several dialects dependent on the chosen compiler. All compilers
support the ANSI/ISO standard C++ functions discussed in this text.

In our discussion, structure and forms that make for a transparent and
efficient, but not necessarily compact, programming style are adopted. Code
obfuscation is avoided at all cost.

Learning from the Internet

This text was written with a new learning model in mind: study a basic
text or take a short course to get acquainted with a subject, and then use the
Internet to master the subject. A wealth of up-to-date resources and tutorials
are available on the Internet on every imaginable subject.

Study this text to get acquainted with C++, and then use the Internet
to master the language.

Book Internet site

This book is accompanied by a library of programs that can be freely
downloaded from the Internet site:

http://dehesa.freeshell.org/ICPPPG

Further information on C++ and links of interest are also provided.

Unix

A C++ programmer without Unix experience is handicapped in many
ways. A number of Unix operating systems are freely available and can be
readily installed either by themselves or in a dual boot mode along with Win-
dows on desktops and laptops Examples include Fedora Core, CentOs, and
BSD. Appendix A summarizes the basic Unix commands.

cygwin for Windows users

The software package cygwin allows Windows users to work in a Unix
environment and utilize Unix libraries and applications on top of the windows
operating system. Effectively, cygwin creates a computer running Unix inside
another computer running Windows. To distinguish between the two, we refer
to the former as an “environment.” Matlab users are familiar with the concept
of a computing environment. cygwin derives its name from three components:

1. gnu: standing for “GNU’s Not Unix”. This is a free, open-source oper-
ating system consisting of a kernel, libraries, system utilities, compilers,

viii Preface

and end-user applications. Its development was announced by Richard
Stallman in 1983.

2. Cygnus: a genus of beautiful birds.

3. Windows: an operating system produced by the Microsoft corporation.

The cygwin package can be freely downloaded and easily installed from the
Internet site http://www.cygwin.com. The package contains a wealth of ap-
plications and tools, including the X11 graphics library and a C++ compiler.

Windows users are strongly advised to download and install the package as a
prelude to studying this book.

Acknowledgment

I am grateful to Todd Porteous, Conrad Palmer, and Micheal Waltz for
providing hardware, software, and moral support.

I am grateful to anonymous reviewers and to my editor Valerie Schofield
who immediately recognized the significance of this book and provided useful
comments.

C. Pozrikidis

San Diego, March 2007

Contents

1 Computers and Computing 1
1.1 Hardware and software . 1
1.2 The binary system . 3
1.3 Binary system arithmetic . 10
1.4 Computer memory and addresses 13
1.5 Computer programming . 15
1.6 Floating-point representation . 19
1.7 The hexadecimal system . 22

2 General Features of C++ 24
2.1 The main function . 24
2.2 Grammar and syntax . 25
2.3 Data types . 28
2.4 Vectors, arrays, and composite data types 34
2.5 System header files . 38
2.6 Standard namespace . 40
2.7 Compiling in Unix . 41
2.8 Simple codes . 44

3 Programming in C++ 47
3.1 Operators . 47
3.2 Vector and matrix initialization 51
3.3 Control structures . 53
3.4 Receiving from the keyboard and displaying

on the monitor . 59
3.5 Mathematical library . 68
3.6 Read from a file and write to a file 70
3.7 Formatted input and output . 74
3.8 Sample algorithms . 80
3.9 Bitwise operators . 85
3.10 Preprocessor define and undefine 88

x Contents

4 User-Defined Functions 91
4.1 Functions in the main file . 91
4.2 Static variables . 93
4.3 Function return . 95
4.4 Functions in individual files and header files 100
4.5 Functions with scalar arguments 102
4.6 Functions with array arguments 109
4.7 External variables . 117
4.8 Function overloading . 119
4.9 Recursive calling . 120
4.10 Function templates . 121

5 Pointers 127
5.1 Pointers to scalars and characters 127
5.2 Pointers to arrays and strings . 134
5.3 Sorting with the STL . 137
5.4 Command line arguments . 140
5.5 Pointers to functions . 142
5.6 Pointers to free memory . 145

6 Classes and Objects 149
6.1 Class objects and functions . 151
6.2 Class interfaces . 152
6.3 Class definition . 153
6.4 Private fields, public fields, and global variables 159
6.5 The fruit class . 161
6.6 Friends . 163
6.7 Circles and squares . 164
6.8 Algebra on real numbers . 167
6.9 Operator overloading . 170
6.10 Pointers to class members . 173
6.11 The class of points in a plane . 175
6.12 The class of runners . 178
6.13 Header files and projects . 183
6.14 Inheritance . 185
6.15 Pointers and virtual functions . 189
6.16 Class templates . 193

7 Graphics Programming with VOGLE 197
7.1 Compilation . 198
7.2 Getting started with Vogle . 200
7.3 Animation . 207
7.4 Plotting a line . 215
7.5 A graph with axes . 221
7.6 Graph animation . 231

Contents xi

7.7 Three-dimensional interactive graph 236
7.8 Three-dimensional interactive object drawing 248

8 Graphics Programming with GLUT, GLUI, and GTK+ 252
8.1 GLUT . 252
8.2 Graphics events . 268
8.3 Drop-down menus . 279
8.4 GUI programming with GLUI . 281
8.5 GUI programming with GTK+ 283

9 Using Matlab 287
9.1 Invoking Matlab . 288
9.2 The Matlab engine library . 289
9.3 The Matlab engine functions 290
9.4 Transferring data to the Matlab domain 294
9.5 Transferring data from Matlab to the C++ domain 306

A Unix Primer 314

B Summary of VOGLE Functions 318

C C++/Matlab/Fortran 77 Dictionary 325

D ASCII Code 337

E C++ Keywords 341

F Matlab Primer 343
F.1 Grammar and syntax . 343
F.2 Precision . 346
F.3 Matlab commands . 347
F.4 Elementary examples . 348
F.5 Matlab functions . 352
F.6 User-defined functions . 352
F.7 Numerical methods . 355
F.8 Matlab graphics . 355

G The Standard Template Library 364

Index 367

Computers and Computing 1
Computers are intelligent devices that mimic human behavior with respect
to remembering data and events, processing information, and making logical
decisions. Information is stored, recalled, manipulated, and combined in their
circuitry to achieve a desired effect.

To properly understand the design and master the implementation of
the C++ programming language, it is necessary to have a general familiarity
with the basic computer components and their function, and recognize how
instructions are translated into machine language code.

1.1 Hardware and software

Physical components including wires, electronics, circuits, cards, boards, and
various peripheral devices are classified as hardware. Permanent information is
stored in permanent recordable media such as hard disk drives (HDD), com-
monly called hard drives (HD), compact disks with read-only memory (CD-
ROM), and digital versatile discs (DVD). Old-timers fondly recall the era of
tapes and floppy disks.

CPU

The centerpiece of computer hardware is the central processor housed in
the motherboard. The main component of the processor is a microchip fabri-
cated as a compact integrated circuit, called the central processing unit (CPU)
or the microprocessor. A modern CPU contains over fifty million transistors.
Its function is to perform numerical computations and make logical decisions,
collectively called operations. The control unit (CU) of the CPU interprets and
prioritizes instructions, and the arithmetic logic unit (ALU) executes instruc-
tions.

A microprocessor can be rated in terms of its clock frequency or clock rate,
which is the frequency of an internal vibrating crystal expressed in number of
cycles per second (Hertz, abbreviated as Hz). Today’s microprocessors vibrate
at a few GHz, that is, a few trillion cycles per second. The clock rate is the

2 Introduction to C++ Programming and Graphics

pulse time of the computer circuitry, representing the highest attainable ideal
rate at which the computer can process information or execute an instruction.
The clock rate can be compared with the blood pulse of a living organism.
However, the clock rate is a meaningful measure of a processor’s efficiency only
when processors of a certain brand-name are compared side-by-side on the same
platform.

The CPU is able to receive data from an external memory bank, mani-
pulate the data as instructed, and send the result back to the data bank.
Transient information is stored in high-efficiency local memory units called reg-
isters. The CPU communicates with other devices through information routes
implemented on buses.

Software

Instructions, parameters, settings, and other data are classified as soft-
ware. The instructions allow a computer to recognize the hardware, carry out
tasks, learn by experience, and exhibit artificial intelligence. Utility and ap-
plication software provides further functionality on a multitude of levels for
scientific, commercial, and entertainment applications.

The operating system

The most important piece of software is the operating system (OS). An
operating system is a program written in a mid-level language such as C or
C++, prescribing procedures and parameters that tell the computer how to
organize its physical components into logical units, manage the memory, and
communicate with the environment.

Examples of operating systems include the Unix system and its many
variations, the Windows OS, and the Mac OS. When a computer boots up, it
loads the operating system into memory from the recordable medium where it
resides, such as a hard drive or a CD-ROM.

The heart of an OS is its kernel. The Unix kernel is a very small portion
of the Unix operating system that allows it to run on many types of computers
– from personal computers running Linux, to supercomputers running Unicos.
If something goes wrong, the kernel enters a panic mode.

BIOS

The basic input/output system (BIOS) is a small set of instructions
executed when the computer is first switched on. The BIOS is unrelated to the
installed operating system (OS), and is specific to the electronic hardware. Its
purpose is to activate the keyboard and monitor, and then run a small program

1.2 The binary system 3

called the boot loader which, in turn, launches the operating system. The boot
loader resides in the first partition of a permanent recordable medium, called
the boot sector or master boot record (MBR). If multiple media are present, the
BIOS searches through a pre-determined yet programmable list, and launches
the first available boot loader.

Dual-boot computers allow the alternative loading of multiple operating
systems with the help of an advanced boot loader such as the GRand Uni-
fied Bootloader (GRUB). GRUB Stage 1, residing in the master boot record,
launches GRUB Stage 2, residing anywhere in the disk. A menu of options is
then presented and the OS of choice is loaded.

Problem

1.1.1. Conduct an Internet search to compile a list of six operating systems
currently in use.

1.1.2. Conduct an Internet search to learn whether the BIOS also initializes
the mouse.

1.2 The binary system

Let us pretend that computers have not yet been invented and consider possible
ways by which information can be recorded and communicated by means of an
encoded protocol.

In the simplest method, a flag with a black and a white side is introduced,
and the black or white side is waved as many times as necessary to convey the
information unambiguously in lieu of a Morse code. A record of sequential
signals represents a string of binary digits 0 and 1, where 0 stands for white
and 1 stands for black.

The binary system thus provides us with a framework for describing num-
bers with binary strings. Once we know how to manipulate numbers, we can
proceed to handle letters of the alphabet by assigning to each one of them a nu-
merical code. Strings of letters form words, and strings of words form sentences,
instructions, and conclusions that can be true or false. A comprehensive system
may thus be built on the quintessential concept of the binary representation.

Bits

Computers work with the binary or base-two system of numbers that
uses the two digits 0 and 1 instead of the ten digits 0 – 9 of the more familiar
decimal or base-ten system. The number two is the radix of the binary system,

4 Introduction to C++ Programming and Graphics

and the number ten is the radix of the decimal system. Computers are two-
fingered devices; humans are ten-fingered creatures. The ancient Mayans used
a base-twenty system counting fingers and toes.

In the binary system, a number is denoted as

(bk bk−1 · · · b0.b−1 · · · b−l)2 (1)

where k and l are two integer indices, the binary digits or bits, bi, take the value
of 0 or 1, and the period (.) is the binary point. The implied value is equal to

bk × 2k + bk−1 × 2k−1 + · · · + b0 × 20

+b−1 × 2−1 + · · · + b−l × 2−l. (2)

In the decimal system, the same number is expressed as

(dm dm−1 · · · d0.d−1 · · · d−n)10, (3)

where m and n are two integers, the decimal digits di take values in the range
0 – 9, and . is the decimal point. The subscript 10 is omitted by convention in
everyday exchange. The implied value is equal to

dm × 10m + dm−1 × 10m−1 + · · · + d0 × 100

+b−1 × 10−1 + · · · + d−n × 10−n, (4)

which is identical to that computed from the base-two expansion.

As an example, the binary representation of the number 6.28125 is

(6.28125)10 = (110.01001)2
= 1 × 22 + 1 × 21 + 0 × 20 + 0 × 2−1 + 1 × 2−2 + 0 × 2−3

+0 × 2−4 + 1 × 2−5. (5)

In this case, k = 2 and l = 5. The conversion from decimal to binary will be
discussed later in this section.

Since bits can be represented by the on-off positions of electrical switches
that are built in the computer’s electrical circuitry, and since bits can be trans-
mitted by positive or negative voltage as a Morse code, the binary system is
ideal for developing a computer architecture. However, this convenience comes
at the expense of economy, as a binary string is generally much longer than a
decimal string.

Largest integer encoded by p bits

The largest integer that can be represented with p bits is

(111 · · · 111)2 (6)

1.2 The binary system 5

where the ones are repeated p times. The decimal-number equivalent is

1 × 2p−1 + 1 × 2p−2 + 1 × 2p−3 + · · ·
+1 × 22 + 1 × 21 + 1 × 20 = 2p − 1. (7)

To demonstrate this equivalence, we recall from our high school years the iden-
tity

ap − bp = (a − b)(ap−1 + ap−2 b + . . . a bp−2 + bp−1), (8)

where a and b are two variables, and set a = 2 and b = 1.

When one bit is available, we can describe only the integers 0 and 1, and
the largest integer is 1. With two bits the maximum is 3, with three bits the
maximum is 7, with eight bits the maximum is 255, and with thirty-one bits
the maximum is 214,748,3647. We see that a very rich person requires a lot of
bits to record her fortune. How many bits do you need to record your savings
in US dollars?

Signed integers

To encode a signed integer, we allocate the first bit to the sign. If the
leading bit is 0, the integer is positive; if the leading bit is 1, the integer is
negative. The largest signed integer that can be represented with p bits is then
2p−1 − 1. According to this convention, the integer −5 = −(101)2 is stored as
the binary string 1101. To derive this binary string, we may use the method of
two’s complement : we flip the bits of 5 to obtain (010)2, and then add (1)2 to
obtain the desired code 1101.

Bytes and nibbles

A set of eight bits is one byte. The largest integer that can be represented
with one byte is

(11111111)2 (9)

whose decimal-number equivalent is

1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
= 28 − 1 = 255. (10)

Large units of bytes are shown in Table 1.2.1. As a point of reference,
the deficit of the United States in 2005 was approximately $400 Billion, that is,
$400,000,000,000, which is on the order of one third of a Gbyte.

6 Introduction to C++ Programming and Graphics

Bytes

Byte 8 bits 20 = 1
Kilobyte (Kbyte) 210 = 1024 Bytes 210 = 1024
Megabyte (Mbyte) 210 = 1024 Kbytes 220 = 1, 048, 576
Gigabyte (Gbyte) 210 = 1024 Mbytes 230 = 1, 073, 741, 824
Terabyte (Gbyte) 210 = 1024 Gbytes 240 = 1, 099, 511, 627, 776
Petabyte (Pbyte) 210 = 1024 Tbytes 250 = 1, 125, 899, 906, 842, 624
Exabyte (Ebyte) 210 = 1024 Pbytes 260 � 1, 152, 921, 504, 606, 847, 000

Table 1.2.1 Large units of bytes. Each byte consists of eight bits.

One byte is sometimes divided into two groups of four bits called nibbles.
Thus, a nibble is half a byte.

Decimal to binary conversion

To express the decimal number 6.28125 in the binary system, we first
consider the integral part, 6, and compute the ratios:

6
2

= 3 +
0
2
,

3
2

= 1 +
1
2
,

1
2

= 0 +
1
2
. (11)

We stop when the integral part has become equal to zero. Collecting the nu-
merators on the right-hand sides expressing the remainder in reverse order, we
find

(6)10 = (110)2 = 1 × 22 + 1 × 21 + 0 × 20. (12)

Next, we consider the decimal part and compute the products:

0.28125 × 2 = 0.5625,

0.56250 × 2 = 1.1250,

0.56250 × 2 = 1.1250,

0.12500 × 2 = 0.2500, (13)
0.25000 × 2 = 0.5000,

0.50000 × 2 = 1.0000.

We stop when the decimal part has become equal to zero. Taking the integer
bold-faced figures in forward order, we find

(0.28125)10 = (.01001)2. (14)

Now combining the integral and decimal representations, we find

(6.28125)10 = (110.01001)2. (15)

1.2 The binary system 7

Decimal Binary Hexadecimal

0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11

Table 1.2.2 Binary and hexadecimal representation of zero and first seventeen
integers.

Eight binary units (bits), and one binary point are necessary to represent the
number 6.28125.

Table 1.2.2 shows the binary representation of zero and first seventeen
integers. Note that the binaries of integers that are powers of two, such as
2, 4, 8, and 16, have only one 1, whereas the binaries of their preceding odd
integers have only ones and no zeros. The third column shows the hexadecimal
representation discussed in Section 1.7.

Binary to decimal conversion

To compute the decimal number corresponding to a certain binary num-
ber, we simply use expression (2). The evaluation of the powers of two requires
k + l multiplications; their subsequent multiplication with the binary digits
requires an equal number of multiplications; and the final evaluation of the
decimal number requires k + l additions: A total of 2(k + l) multiplications and
k + l additions.

The computational cost can be substantially reduced by expressing the
sum in the equivalent form:

8 Introduction to C++ Programming and Graphics

[
...[(bk 2 + bk−1) 2 + bk−3) 2 + . . . + b1

]
2 + b0 (16)

+
[
...[(b−l 0.5 + b−l+1) 0.5 + b−l+2) 0.5 + ... + b−1

]
0.5,

and then carrying out the computations according to Horner’s algorithm: First,
we set

ak = bk, (17)

and compute the sequence

ak−1 = 2 ak + bk−1,

. . . ,

ai = 2 ai+1 + bi,

. . . , (18)
a0 = 2 a1 + b0.

Second, we set

c−l = b−l, (19)

and compute the sequence

c−l+1 = 0.5 c−l + b−l+1,

. . . ,

ci = 0.5 ci−1 + bi,

. . . ,

c−1 = 0.5 c−2 + b−1, (20)
c0 = 0.5 c−1.

The required number is equal to a0 + c0. Computing the decimal number in
this manner requires a reduced number of k + l multiplications, and an equal
number of additions. When the cost of addition is much less than the cost
of multiplications, Horner’s algorithm reduces the execution time nearly by a
factor of two.

Character representation

Characters include the lower- and upper-case letters of the English
alphabet, a–z and A–Z, numbers, special symbols such as % and <, and control
characters used to convey messages to printers and storage devices. Comput-
ers represent and store characters as encoded binary strings corresponding to
integers.

1.2 The binary system 9

According to the American Standard Code for Information Interchange
convention (ASCII), 128 characters are represented by numerical values in the
range 0–127, as shown in Appendix D. Thus, seven bits are required to describe
the standard set of ASCII characters.

As an example, we consider the familiar equation

1 + 1 = 2. (21)

Referring to Appendix D, we find the ASCII representation:

49 43 49 61 50 (22)

which can be readily converted into a binary string and stored in a file or
transmitted to a device.

The extended ASCII character set (ECS) includes 128 additional charac-
ters encoded by integers in the range 128–254. The extended set includes Greek
and other European letters, various mathematical symbols, musical notes and
sounds. Eight bits (one byte) are required to describe each member of the
standard and extended ASCII character set.

An ASCII file contains bits corresponding to integers encoding ASCII
characters. An ASCII file should be contrasted with a binary file which does
not necessarily encode ASCII characters. An ASCII file can be viewed on the
screen, whereas a binary file can be interpreted by only an intended device.

Problems

1.2.1. Consider a binary string, such as 11010...0011, and its complement aris-
ing by flipping the bits, 00101...1100, encoding two integers. What is the
sum of these integers?

1.2.2. Compute the decimal equivalent of the binary number 101.101.

1.2.3. Compute the decimal equivalent of the binary number 0.11111..., where
the ones continue to infinity.

1.2.4. What is the binary number of Mother Teresa’s birth-year?

1.2.5. Compute the binary number of the decimal number 10.1.

1.2.6. The size of an ASCII file containing a document is 328 Kbytes. If each
ASCII character is an encoded as an one-byte word, how may characters
does the document hold? If the file holds a chapter of a book, how many
pages does the chapter have?

10 Introduction to C++ Programming and Graphics

1.3 Binary system arithmetic

The English word “arithmetic” derives from the Greek word αριθµoς, which
means “number.” We can add, subtract, multiply, and divide two numbers in
their binary number representation using rules that are similar to those for the
decimal representation.

Addition

To compute the sum of two binary numbers, we add the corresponding
digits according to four basic rules:

(0)2 + (0)2 = (0)2
(0)2 + (1)2 = (1)2
(1)2 + (0)2 = (1)2 (23)
(1)2 + (1)2 = (0)2, and carry (1)2 to the left.

For example, following these rules, we find

(111)2 + (111)2 = (1110)2, (24)

which is equivalent to 7 + 7 = 14. The sequence of incremental operations that
led us to this result is:

+ 111 110 110 100 0100 0000 0000
+ 111 110 100 100 1000 1000 0000

carry: + 1 1 1
---- --- --- --- ---- ---- ----

0 0 10 10 110 1110

The bits in the third row are the “carry.”

To compute the difference between two binary numbers, we subtract the
corresponding digits according to four basic rules:

(0)2 − (0)2 = (0)2
(1)2 − (1)2 = (0)2
(1)2 − (0)2 = (1)2
(0)2 − (1)2 = (1)2, with (1)2 borrowed from the left. (25)

For example, following these rules, we find

(1000)2 − (11)2 = (101)2, (26)

which is equivalent to 8 − 3 = 5. The sequence of incremental operations that
led us to this result is:

1.3 Binary system arithmetic 11

+ 1000 1000 1000 1000 1000 1000
- 11 10 100 100 1000 1000

carry: - 1
---- ---- ---- ---- ---- ----

1 1 01 101 0101

The negative “carry” in the third row are added to those in the second row.

To develop rules for multiplication, we observe that, if we multiply a
number by 2 = (10)2, the binary digits is shifted to the right by one place. This
is analogous to the rule that, if we multiply a number by 10, the decimal digits
is shifted to the left by one place. For example,

(1101.0)2 × (10)2 = (11010.0)2, (27)

and
(10101.001)2 × (10)2 = (101010.010)2. (28)

If we multiply a number by 0.5 = (0.1)2, which amounts to dividing by two,
the binary point will be shifted to the left by one place.

More generally, if we multiply a number by 2i = (10 . . . 0)2, where the
binary string contains i zeros, the binary digits will be shifted to the right by i
places. For example,

(1101.000)2 × (1000)2 = (1101000.0)2. (29)

If the integer i is negative, corresponding to division, the binary digits will be
shifted to the right. For example,

(1101.0)2 × (0.01)2 = (11.01)2. (30)

The distributive property of multiplication allows us to write for any
number α:

α × (bk bk−1 · · · b0 · b−1 · · · b−l)2
= bk × α × 2k + bk−1 × α × 2k−1 . . . + b−l × α × 2−l. (31)

This expression serves as a basis for implementing multiplication in terms of
binary point shifts and additions. As an example, we compute the product:

(111)2 × (101)2
= 1 × (111)2 × (100)2 + 0 × (111)2 × (010)2 + 1 × (111)2 × (001)2

= (11100)2 + (111)2 = (100011)2. (32)

which confirms the equation 7 × 5 = 35. The method is implemented in terms
of the intuitive rules of binary digit multiplication:

(0)2 × (0)2 = (0)2
(0)2 × (1)2 = (0)2
(1)2 × (0)2 = (0)2 (33)
(1)2 × (1)2 = (1)2.

12 Introduction to C++ Programming and Graphics

Using these rules, we confirm the previous calculation,

111
x 101

111 (111 times 1)
000 (111 times 0 shifted once)

+ 111 (111 times 1 shifted twice)

100011

The procedure is similar to that learned in elementary school for multiplying
two numbers in their decimal representation.

Different processors employ different methods of performing division (see,
for example, http://www.cap-lore.com/Hardware/Divide.html.) In numer-
ical analysis, we learn that division can be implemented in terms of multipli-
cation. Suppose that we want to compute the ratio x = a/b, where a and b
are given real numbers. This can be done by writing x = a × r, where we have
defined the inverse of b, r ≡ 1/b. A simple rearrangement yields r = r (2− b r),
which suggests the following algorithm:

• Guess the value of r, call it r(0).

• Improve the guess by computing: r(1) = r(0) (2 − b r(0)).

• Further improve the guess by computing: r(2) = r(1) (2 − b r(1)).

• Repeat until convergence.

This algorithm implements Newton’s method for solving a nonlinear equation.
It can be shown that a necessary and sufficient condition for the iterations to
converge is that the initial guess lie inside the interval (0, 2/b).

In computer hardware, addition and subtraction are implemented by
straightforward combinations of electrical signals. Multiplication is a more com-
plex operation, involving multiplication by a single binary digit using the rules
described above, column shifting, and addition of the various subtotals. For this
reason, addition and subtraction are often not counted as floating point oper-
ations (flops). Modern CPUs are endowed with a floating point unit (FPU)
that performs addition, subtraction, multiplication, division, and sometimes
computation of the square root of real numbers at comparable cost.

Problems

1.3.1. Add the binaries of 7 and 10, and confirm that the result is the binary
of 17.

1.4 Computer memory 13

1.3.2. Subtract the binary of 7 from the binary of 10, and confirm that the
result is the binary of 3.

1.3.3. Multiply the binary of 7 with the binary of 3, and confirm that the result
is the binary of 21.

1.3.4. Find the inverse of the number 5.0 by carrying out multiplications alone,
using the method discussed in the text.

1.4 Computer memory and addresses

The central processor receives information from, and deposits information to, a
memory unit housed in an external memory bank mounted on the motherboard.
The individual slots are identified by memory addresses. It is important to make
a distinction between a memory address and a memory content at the outset.

In contemporary byte-addressable architectures, each address is associated
with a memory slot consisting of one byte. Long data are stored in multiple
bytes identified by a number of consecutive addresses. The real number 9.34556
absorbs more addresses than the integer 124.

Computer architectures are designed to work with memory addresses
whose maximum possible value is expressed by the number of bits allocated
to the memory addressing system:

• A 24-bit memory addressing system can accommodate 224= 1,6777,216
addresses, and this limits the maximum number of memory slots to sixteen
Mbytes.

• A 32-bit memory addressing system can accommodate 232= 4,294,967,296
addresses, and this limits the maximum number of memory slots to four
Gbytes. At the present time, computers with that much memory are rare.

• A 64-bit memory addressing system can accommodate 264 = 1.8446744
07370955×1019 addresses, and this limits the maximum number of mem-
ory slots to sixteen Ebytes.

In a 32-bit memory addressing system, the first memory address is 0 and the
last memory address is 4,294,967,296.

RAM

The random access memory (RAM) is the primary memory bank. Its
name reflects the ability to access the individual memory addresses at about
the same amount of time, independent of the memory location last visited. In
contrast, information stored in an external storage device, such as a hard drive
or a CD-ROM, is accessed sequentially.

14 Introduction to C++ Programming and Graphics

RAM is commonly called “system memory” or “internal memory.” Input
is sent to the RAM from the CPU through the address bus and control bus, and
information is returned through the data bus. RAM memory is non-permanent
and volatile; when the computer is switched off, the information disappears.
RAM cells are organized in RAM units with different architectures.

RAM should be distinguished from the CPU register memory residing
inside the processor. C++ has direct access to both.

SRAM, DRAM, and cache

The fundamental element of the static RAM (SRAM) is the storage cell
unit consisting of a number of memory cells, each recording one bit in a flip-flop
switch. Address lines transmit information regarding the address where infor-
mation will be recorded or retrieved, read-write control lines dictate whether
information will be recorded or retrieved, and data lines transfer the data either
way. Other devices incorporated in the storage cell unit include the address
register and decoder, the memory buffer register, and drivers in the form of
transducers or amplifiers. The SRAM unit preserves its content as long as
electricity is supplied, and loses its content when the computer is powered off.

The vast majority of system memory consists of dynamic RAM (DRAM).
This inexpensive alternative differs from the SRAM in that each bit is stored
as charge in a capacitor. Each DRAM cell incorporates a capacitor used to
store the bit, and a transistor used to modify or retrieve the bit. A pulse of
electrical current constantly refreshes the memory cells; when the pulse is lost,
information is irreversibly erased. Every time information is read, the capacitor
holding the data is discharged. DRAM is packaged in 30-pin or 70-pin single
in-line memory modules (SIMM) or dual in-line memory modules (DIMM).

Other types of RAM memory include the level 1 (L1) or 2 (L2) cache
memory consisting of SRAM cells. Because this memory is closer to the CPU,
it has a much shorter access time. L1 cache memory is described as the “inter-
nal memory” of the CPU, whereas L2 cache memory is described either as the
“secondary cache” or as the “external memory” of the CPU. Newer designs in-
corporate level 3 (L3) and level 4 (L4) cache memory. Preserved RAM (PRAM)
runs on a battery, and its content is preserved even after the main power has
been disconnected.

ROM system memory

A small amount of memory is designated as read-only memory (ROM),
meaning that the information stored can be read but not modified. Like RAM,
ROM addresses can be accessed at about the same amount of time. Many
electronic devices such as hand-calculators and clocks use ROM. In a computer,

1.5 Computer programming 15

ROM is used for storing the basic input/output operating system (BIOS). Since
information stored in a strict ROM cannot be changed, BIOS recorded cannot
be upgraded.

The programmable read-only memory (PROM) allows us to record
information after fabrication. In an erasable programmable ROM (EPROM),
data is erased and recorded using a special ultraviolet (UV) light burner. In an
electronically erasable programmable ROM (EEPROM), data is erased by con-
ventional electronic techniques. Modern hardware uses upgradable flash BIOS
recorded in the EEPROM.

Problems

1.4.1. A number is stored in four bytes. How many addresses does this number
occupy?

1.4.2. What is the maximum useful memory size of an eight-bit memory add-
ressing system in Mbytes?

1.5 Computer programming

The central processor is designed to respond to only a specific set of instructions
written in machine language and encoded as binary strings. An instruction
is composed of operation codes and accompanying arguments or parameters.
For example, the binary equivalent of instruction 67099098095 may request
addition, designated by the digits 98, of the content of the memory positioned
at the address 670 and that of the memory positioned at the address 990, placing
the sum in the memory positioned at the address 095.

Symbolic languages

Symbolic languages employ words instead of operation codes, and refer
to operations by symbolic terms such as add. An instruction in the lowestlevel
symbolic language, called the assembly language, is translated into
the machine language code (object code) using a translation program called
the assembler. The instructions of an assembly language make reference to the
loading of variables to memory locations and fetching variables from memory
locations. The mapping of assembly language commands to machine language
instructions is one-to-one: each command is implemented by one instruction.
The assembly language implements the lowest level of communication that is
meaningful to humans.

A typical assembly command is: mov b2, 3Ah, meaning “move the hex-
adecimal value 3A to the processor register b1”; the hexadecimal representation

16 Introduction to C++ Programming and Graphics

is explained in Section 1.7. An assembly code implementing the bubble-sort
algorithm for sorting a list of numbers or names reads:

bs proc array:DWORD,len:DWORD

mov ecx,len

mov edx,array

bs_o:

xor ebp,ebp

bs_i:

mov eax,DWORD PTR [edx+ebp*4+4]

cmp DWORD PTR [edx+ebp*4],eax

jb @F

xchg eax,DWORD PTR [edx+ebp*4]

mov DWORD PTR [edx+ebp*4+4],eax

@@:

add ebp,1

cmp ebp,ecx

jb bs_i

loop bs_o

pop ebp

retn 8

bs endp

(See: http://www.codecodex.com/wiki/index.php?title=Bubble sort). Try
explaining this code to a relative! The assembly language is esoteric, to say the
least, let alone notoriously difficult to debug. Today, assembly programming
is used for writing BIOS, real-time applications such as programs initializing
television sets, and device drivers.

It is much more convenient to work with high-level symbolic languages
that employ English words and standard mathematical notation. Examples are:

• The Basic language (Beginner’s All-purpose Symbolic Instruction Code)
developed in the mid 1960s and still surviving.

• The fabulous Fortran (FORmula TRANslator) developed in the mid
1950s and still thriving.

• The UCSD Pascal introduced in the early 1970s.

• The C language developed in the mid 1970s.

• The C++ language developed in the mid 1980s.

A plethora of other languages have been developed for general and special-
purpose applications. Because C and C++ allow the manipulation of bits,
bytes, and memory addresses, they are considered mid-level languages, half a
step above the assembler. The ranking of these computer languages in terms
of efficiency and convenience can be the subject of great debate.

1.5 Computer programming 17

In a typical symbolic language, we issue statements such as A=A+B, which
means “add the number B to the number A.” The CPU executes this task
through a sequence of steps:

• (FETCH A,R1): copy the binary of A from RAM to the CPU register R1.

• (FETCH B,R2): copy the binary of B from RAM to the CPU register R2.

• (ADD, R1,R2,R3): copy the contents of R1 and R2 to the adder, perform
the addition, and store the results in register R3.

• (STORE, R3,A): copy the content of R3 to the RAM address of A.

We see that the mapping of an upper-level language command to machine
language instructions is one-to-many; each command is implemented by several
instructions.

Binary executables

Every computer command or application is implemented in a binary exe-
cutable file encoding machine-language instructions. This file is loaded into the
RAM by issuing the name of the command or typing the name of the applica-
tion, and then hitting the Enter key; on a graphical interface, we click on an
icon. To locate a specified binary executable file, the operating system searches
through a user-defined ordered execution directory path.

The instruction cycle, also called the fetch-decode-execute cycle (FDX),
describes the time required for a single instruction written in machine language
to be fetched from the RAM, decoded, and executed by the CPU.

Compiling and creating an executable

To write a set of instructions in a mid- or high-level language, we first
generate one file or a number of files containing the main program, subroutines,
and necessary data. The files are created using a text editor, such as the
legendary vi editor that comes with any Unix distribution, and is also available
in Windows. These files constitute the source code.

Secondly, we compile the program and subroutines using the language
compiler to create each file’s object code. The object code is the translation of
the source code into machine language that can be communicated to the CPU.
The compiler basically assigns memory addresses to variables and translates
arithmetic and logical operations into the machine-language instructions. The
compiler itself is a binary executable installed in a directory that must be inc-
luded in the user’s executable directory path. The main difference between

18 Introduction to C++ Programming and Graphics

a compiler and an assembler is that the former understands logical structures,
whereas the latter performs a blind translation.

Thirdly, we link the object codes with other installed or system binary
libraries called by the program, thereby producing the executable. Library
files may contain mathematical functions, graphical tools, and graphical user
interfaces that allow a program to run in its own exclusive space on the computer
desktop. Some compilers have their own linkers, other compilers use linkers that
are provided by the operating system.

Finally, we load the executable code into the memory and thereby launch
the executable; the presence of the compiler is not necessary. Since different
CPUs have different machine languages, an executable produced on one CPU
will not necessarily run on another. Moreover, the object files are not necessarily
portable across different versions of an operating system on the same hardware
platform.

Some language compilers produce bytecode, which is portable across a
variety of platforms. The bytecode is further compiled to produce machine
code, or else executed directly through an interpreter.

While these are the general rules, there are exceptions. A program written
in the standard version of the Basic language or in Matlab is compiled, or,
more accurately, interpreted line-by-line as it runs. The presence of the compiler
or interpreter is thus necessary for the program to run. A buggy interpreted
code may run until failure, whereas a buggy compiled code will not compile.
Executable codes run much faster than interpreted programs.

Data files

Numerical and other parameters are either contained in separate files,
called data or configuration files, or are entered from the keyboard as the pro-
gram runs. Data files are usually denoted with the suffix .dat, and configuration
files are usually denoted with the suffix .conf.

Problems

1.5.1. Conduct an Internet search to prepare a list of ten computer languages.

1.5.2. An executable was generated using an operating systems with a particu-
lar CPU. Is it possible that this executable may also run under a different
operating system on the same CPU?

1.6 Floating-point representation 19

1.6 Floating-point representation

The floating-point representation allows us to store real numbers (non-integers)
with a broad range of magnitudes, and carry out mathematical operations be-
tween numbers with disparate magnitudes.

Consider the binary number:

1001100101.01100011101

To develop the floating-point representation, we recast this number into the
product:

1.00110010101100011101 × 1000000000 (34)

Note that the binary point has been shifted to the left by nine places, and
the resulting number has been multiplied by the binary equivalent of 29. The
binary string 100110010101100011101 is the mantissa or significand, and 9 is
the exponent.

To develop the floating-point representation of an arbitrary number, we
express it in the form:

± s 2e

where s is a real number called the mantissa or significand, and e is the integer
exponent. This representation requires one bit for the sign, a set of bytes for
the exponent, and another set of bytes for the mantissa. In memory, the bits
are arranged sequentially in the following order:

exponentsign mantissa

The exponent determines the shift of the binary point in the binary represen-
tation of the mantissa.

Many combinations of s and e generate the same number. The normalized
representation leaves as many zeros as possible at the end of the binary string.
This means that the first digit of the mantissa is always non-zero and thus equal
to one. We can exploit this convention to avoid storing this bit and thus gain
one binary digit of accuracy. We then say that the mantissa has one “hidden
bit.” The exponent is stored after it has been shifted by an integer bias so as
to become positive. This shift saves us from allocating one bit to the exponent
sign.

How can we store the number zero? By convention, if all bits of the
floating point string after the sign are zero, the hidden bit is also zero, yielding
the number zero. Infinity is encoded by a floating point string with all ones for
the bits of the exponent, and all zeros for the bits of the mantissa.

20 Introduction to C++ Programming and Graphics

When the exponent takes a value that is higher than the maximum value
or lower than the minimum value that can be described with the available
number of bits, the operating system sends a message (exception) of system
overflow or underflow. Improper operations, such as dividing zero by zero or
computing the square root of a negative number, activate the Not-a-Number
(NaN) warning.

Precision

The number of bytes assigned to a real variable (word length) is controlled
by the programmer through the option of single, double, and extended precision.
A variable can be declared either as integer, in which case the binary point is
fixed at the end of the word length, or as real (floating-point) in which case the
binary point floats across the word-length.

Single precision

Single precision reserves 32-bit (4-byte) word lengths. A real number
in the range 1–2 can be resolved up to only the eighth decimal place, and
the machine accuracy is 10−8. The mantissa is usually described by 23 bits,
and the biased exponent is described by 8 bits. System overflow or underflow
typically occurs when the absolute value of the exponent is higher than 127. The
maximum and minimum positive numbers that can be stored are 1.701 × 1038

and 5.877 × 10−39.

As an example, we consider the floating-point representation:

0 011 1111 1000 0000 0000 0000 0000 0000 (35)

The first bit specifies the sign, the bold-faced digits represent the exponent
shifted by 127, and the rest of the bits represent the mantissa. We note that
the binary string of 127 is precisely equal to the bold-faced sequence, and find
that the exponent is zero. We recall the implicit presence of a hidden bit and
the convection that a zero sign bit corresponds to the plus sign, and find that
this floating point string represents the number 1.0.

Double precision

Double precision reserves 64-bit (8-byte) word lengths. A real number
in the range 1–2 can be resolved up to the fourteenth or sixteenth decimal
place. The mantissa is usually described by 52 bits, and the biased exponent
is described by 11 bits. System overflow or underflow typically occurs when
the absolute value of the exponent is higher that 1023, and the maximum and
minimum positive numbers that can be stored are 8.988 × 10307 and 1.123 ×
10−308.

1.6 Floating-point representation 21

Extended precision

It is sometimes necessary to use extended precision that employs 128-bit
(16-byte) word lengths and allows us to describe a number up to the twentieth
significant figure. This high level of resolution is necessary for solving a certain
class of highly sensitive, nearly ill-posed mathematical problems.

C++ allows us to implement arbitrary precision by dividing a number in
pieces and storing them in separate memory slots.

Round-off error

An arbitrary real number that has a finite number of digits in the decimal
system generally requires an infinite number of bits in the binary system. In
fact, only the numbers ±n 2m are represented exactly in the single-precision
floating point representation, where 0 ≤ n < 223, and −127 ≤ m ≤ 126, with
m and n being two integers. An ideal computing machine would be able to
register the number and carry out additions and multiplications with infinite
precision, yielding the exact result to all figures. In real life, one must deal with
non-ideal machines that work with only a finite number of bits and thus incur
round-off error.

Some computers round a real number to the closest number they can de-
scribe with an equal probability of positive or negative error. Other computers
simply chop off the extra digits in a guillotine-like fashion.

When two real numbers (non-integers) are added in the floating-point
representation, the significant digits of the number with the smaller exponent
are shifted to align the decimal point, and this causes the loss of significant
digits. Floating-point normalization of the resulting number incurs additional
losses. Consequently, arithmetic operations between real variables exacerbates
the magnitude of the round-off error. Unless integers are only involved, iden-
tities that are precise in exact arithmetic become approximate in computer
arithmetic.

The accumulation of the round-off error in the course of a computation
may range from negligible, to observable, to significant, to disastrous. Depend-
ing on the nature of the problem and the sequence of computations, the round-
off error may amplify, become comparable to, or even exceed the magnitude of
the actual variables.

In certain simple cases, the damaging effect of the round-off error can be
predicted and thus minimized or controlled. As a general rule, one should avoid
subtracting two nearly equal numbers. In computing the sum of a sequence of
numbers, we should start summing the numbers with the smaller magnitudes
first, and the largest magnitudes last.

22 Introduction to C++ Programming and Graphics

Problems

1.6.1. Derive the floating-point representation in single precision with a hidden
bit of (a) -2.00, (b) -0.50, and (c) -2.50.

1.6.2. Find the number whose floating-point representation in single precision
with a hidden bit is:

1 100 0000 0100 1001 0000 1111 1101 1011

1.7 The hexadecimal system

A number in the hexadecimal system is denoted as

(hk hk−1 · · ·h0.h−1 · · ·h−l)2 (36)

where k and l are two integers, the hexadecimal characters, hi, take sixteen
values, 0–15, and the period (.) is the hexadecimal point. For convenience, the
six two-digit numbers, 10–15, are represented by the letters A–F.

The corresponding decimal value is

hk × 16k + hk−1 × 16k−1 + · · · + h0 × 160

+h−1 × 16−1 + · · · + h−l × 16−l. (37)

Table 1.1.2 shows the hexadecimal representation of zero and first seventeen
integers.

It is easy to find the hexadecimal string of a given binary string. Starting
from the left or right or the binary point, we divide the binary string into blocks
of four digits, and look up the hexadecimal digit corresponding to each block
according to Table 1.1.2. For example,

(101111)2 = (2F)16. (38)

The backward translation from hexadecimal to binary can also readily be per-
formed using a similar method.

In C++, hexadecimal numbers are designated by the prefix 0x. Thus, we
write

(101111)2 = (2F)16. = 0x2F (39)

Storing and retrieving data

Since one byte can hold two hexadecimal digits, the hexadecimal repre-
sentation is ideal for storing and retrieving data. Consider the floating-point

1.7 The hexadecimal system 23

representation in single precision using four-byte word lengths that accommo-
date eight hexadecimal digits. Assume that the hexadecimal representation of
a stored number is:

0x3F800000 (40)

The associated binary string is:

0 011 1111 1000 0000 0000 0000 0000 0000. (41)

In Section 1.6, we saw that this is the floating point representation of 1.0.

Problems

1.7.1. Compute the hexadecimal representation of 66.75.

1.7.2. Derive in hexadecimal form the single-precision, hidden-bit floating point
representation of the number (a) 0.125, and (b) -40.5.

1.7.3. A number in the octal system is denoted as

(ok ok−1 · · · o0.o−1 · · · o−l)8 (42)

where k and l are two integers, the octal characters oi take eight values
0–7, and the period (.) is the octal point. The corresponding decimal
value is

ok × 8k + ok−1 × 8k−1 + · · · + o0 × 80 + o−1 × 8−1 + · · · + o−l × 8−l.

(43)

(a) Write the octal representation of zero and first seventeen integers.

(b) To find the octal representation of a given binary string, we start from
the left or right or the binary point, divide the binary string into blocks
of two digits, and look up the octal digit corresponding to each block.
Apply this procedure to find the octal representation of (101111)2.

General Features of C++ 2
In this chapter, we explain how to write, compile, and execute (run) a basic
C++ program.

The program is written in a file using a text editor such as vi, gedit, or
emacs. A file containing C++ code is conventionally designated by one of the
suffixes:

.c .cc .cpp .cxx

Thus, a C++ source file can be named

kalambaka.c edessa.cc kourkoubinia.cpp mageiras.cxx

The C++ source files are compiled and linked through a C++ compiler to
produce the corresponding binary executable, as discussed in Chapter 1.

Free C++ compilers are available for the Linux platform thanks to the
gnu free-software foundation. Cygwin and Borland offer complimentary compil-
ers for other operating systems. Some compilers are bundled in an integrated de-
velopment environment (IDE) offering dazzling graphical user interfaces (GUI).

2.1 The main function

Each C++ application (complete code) has a main function that is first loaded
into memory and then transferred to the CPU for execution. When execution
has been concluded, the main function returns the integer 0. This practice is
motivated partly by issues of backward compatibility.

The main function has the general syntax:

int main()

{
...

return 0;

}

2.2 Grammar and syntax 25

where:

• int indicates that an integer will be returned on completion. The penul-
timate line sets this integer to 0, signaling the success of the execution.

• The parentheses after main enclose the arguments of the main function;
in this case, there are no arguments.

• The curly brackets mark the beginning and the end of the enclosed main
program consisting of various instructions.

• The dots stand for additional lines of code.

• The semicolon is a delimiter, marking the end of the preceding command
return 0, which concludes the execution.

A simplified version of the main program that returns nothing on execu-
tion is:

main()

{
...

}

However, the previous structure with the return statement included is highly
recommended as a standard practice.

In Chapter 5, we will see that the main function can not only return, but
also receive information from the operating system. In that case, the parenthe-
ses in

int main()

will enclose command line arguments.

Problem

2.1.1. We saw that C++ uses parentheses and curly brackets. What other
bracket delimiters do you anticipate based on the symbols printed on
your keyboard?

2.2 Grammar and syntax

Next, we review the most important rules regarding the grammar and syntax
of C++. If an error occurs during compilation or execution, this list should
serve as a first checkpoint.

26 Introduction to C++ Programming and Graphics

C++ is (lower and upper) case sensitive

For example, the variable echidna is different from the variable echiDna,
and the C++ command return is not equivalent to the non-existent command
Return.

Beginning of a statement

A C++ statement or command may begin at any place in a line and
continue onto the next line. In fact, a statement may take several lines of code.
We say that C++ is written in free form.

End of a statement

The end of a statement is indicated by a semicolon “;” (statement delim-
iter.) Thus, we write:

a=5;

If we do not include the semicolon, the compiler will assume that the statement
in the next line is a continuation of the statement in the present line.

Multiple commands in a line

Two or more statements can be placed in the same line provided they are
separated with semicolons. Thus, we may write:

a=5; b=10;

White space

An empty (blank) space separates two words. The compiler ignores more
than one empty space between two words. A number cannot be broken up
into pieces separated by white space; thus, we may not write 92 093 instead of
92093.

Statement and command blocks

Blocks of statements or commands defining procedures are enclosed by
curly brackets (block delimiters)

{
...

}

2.2 Grammar and syntax 27

Note that it is not necessary to put a semicolon after the closing bracket. This
practice is consistent with the structure of the main program discussed in Sec-
tion 2.1.

In-line comments

In-line comments may be inserted following the double slash “//”. For
example, we may write:

a = 10.0; // ignore me

The text: // ignore me is ignored by the compiler.

To deactivate (comment out) a line, we write:

// a = 34.5;

A distinction should be made between the slash (/) and the backslash
(\). These are two different symbols separated by two rows on the keyboard.

Commentary

All text enclosed between a slash-asterisk pair (/*) and the converse
asterisk-slash pair (*/) is commentary and ignored by the compiler. Thus, we
may write:

/* ---- main program ----- */

To provide documentation at the beginning of a code, we may write:

/* PROGRAM: late

AUTHOR: Justin Case

PURPOSE: produce an excuse for being late */

Problems

2.2.1. How many commands are executed in the following line?

a=3.0; // b=4.0;

2.2.2. How does the compiler interpret the following line?

/* my other /* car is */ a vartburg */

28 Introduction to C++ Programming and Graphics

2.3 Data types

In mathematical modeling and computer programming, we introduce variables
representing abstract notions and physical objects. Examples are the temper-
ature, the velocity, the balance of a bank account, and the truthfulness of a
theorem.

In C++, the name of a variable must start with a letter and contain only
letters, numbers, and the underscore (). Names reserved for C++ grammar
and syntax given in Appendix E cannot be employed. Acceptable variables
obey the rules discussed in this section.

Numerical variable declaration:

Every numerical variable must be declared either as an integer (whole
number) or as a real (floating point) number registered in single or double
precision. In the remainder of this text, we adopt a mathematical viewpoint
and we refer to a non-integer as a real number.

Suppose that a is an integer, b is a real number registered in single pre-
cision, and c is a real number registered in double precision. The statements
declaring these variables are:

int a;

float b;

double c;

Suppose that i is an integer and j is another integer. We can declare
either:

int i;

int j;
or

int i, j;

Note the obligatory use of a comma.

Why does a variable have to be declared? Appropriate space must be
reserved in memory by the compiler.

Numerical variable initialization and evaluation

A numerical variable is not necessarily initialized to zero by default when
declared, and may be given a value already recorded previously in the assigned
memory address.

2.3 Data types 29

Once declared, a numerical variable can be initialized or evaluated. For
example, we may write:

int a;

a=875;

Declaration and initialization can be combined into a single statement:

int a = 875;

An equivalent but less common statement is:

int a (875);

In these statements, the numerical value 875 is a literal.

To introduce a real number registered in single precision, we may state:

float b = -9.30;

or

float c = 10.45e-3;

meaning that c = 10.3× 10−3. The numerical values on the right-hand sides of
these statements are literals.

A literal cannot be broken up into pieces separated by white space. For
example, the following declaration is incorrect:

double pi=3.141592 653589 793238;

The correct declaration is:

double pi=3.141592653589793238;

Integer evaluation

An integer can be evaluated in the decimal, octal, or hexadecimal system.
The statement:

int a=72;
implies

a = 7 × 102 + 2 × 100.

30 Introduction to C++ Programming and Graphics

The statement:

int a = 023;

with a leading zero (0), implies

a = 2 × 81 + 3 × 80.

The statement:

int a = 0xA4;

with a leading zero (0) followed by x implies

a = 10 × 161 + 4 × 160.

Boolean variables

A Boolean variables can be either false or true. When a Boolean vari-
able is printed, it appears as 1 or 0, respectively, for true and false.

The following statements declare and initialize the Boolean variable hot:

bool hot;

hot = true;

An equivalent statement is:

bool hot = true;

Boolean variables are useful for assessing states and making logical decisions
based on deduced outcomes.

Characters

A single character is encoded according to the ASCII protocol described
in Appendix D. The following statements declare and initialize a character:

char a;

a = 66;

In compact form:

char a = 66;

2.3 Data types 31

When the character a is printed, it appears as the letter B. Alternatively, we
may define:

char a;

a = ’B’;

or even combine the two statements into one line:

char a = ’B’;

Note the mandatory use of single quotes. This example confirms that the ASCII
code of the letter B is 66.

To find the ASCII code of a character, we may typecast it as an integer.
For example, we may write:

char a = ’B’;

int c = a;

If we print the integer c, it will have the value 66.

Strings

A string is an array of characters. The following statements define and
initialize a string:

string name;

name = "Kolokotronis";

Note the mandatory use of double quotes. The two statements can be consoli-
dated into one:

string name = "Kolokotronis";

Alternatively, we may state:

string name ("Kolokotronis");

Other data types

C++ supports the data types shown in Table 2.3.1. The number of bytes
reserved in memory and the range of the data types depend on the specific
system architecture. The values shown in Table 2.3.1 are those found on most
32-bit systems. For other systems, the general convention is that int has the
natural size suggested by the system architecture (one word), and each of the
four integer types:

32 Introduction to C++ Programming and Graphics

Type Description Byte size

short int Short integer 2
short Ranges from -32768 to 32767
signed short int Ranges from 0 to 65535
unsigned short int

int Integer 4
signed int Ranges from -2147483648 to 2147483647
unsigned int Ranges from 0 to 4294967295

long int Long integer 4
long Ranges from-2147483648 to 2147483647
signed long int Ranges from 0 to 4294967295
unsigned long int

float Floating point number 4
Real number inside 3.4 e±38

double Double precision 8
Floating point number
Real number inside 1.7 e±308

long double Long double precision 12
Floating point number
Real number inside 1.7 e±308

bool Boolean value “true”or “false” 1

char Encoded character 1
signed char Integer ranging from -128 to 127
unsigned char Integer ranging from 0 to 255

wchar t Wide character 4
Used for non-English letters

string stringname String of characters 4
char stringname[] Array of characters

Table 2.3.1 Data types supported by C++ and their common memory allocation.
unsigned only allows positive integers. signed is the default type of integers
and characters.

2.3 Data types 33

char short int long

must be at least as large as the one preceding it. The same applies to the
floating point types:

float double long double

Each must provide at least as much precision as the one preceding it.

The size of the different data types listed in Table 2.3.1 can be confirmed
by using the sizeof operator discussed in Section 3.1.

Constants

To fix the value of a variable and thus render the variable a constant, we
include the keyword const. For example, we may declare

const float temperature;

Constants are variables that, once evaluated, remain fixed and thus cease to be
variables.

Aliases

We can introduce an alias of a declared variable so that we can refer to
it by a different name. For example, we may declare:

float a;

float& a alias = a;

Since a alias and a are truly the same variable, any operation on one amounts
to the same operation on the other. In C++, an alias is better known as a
reference.

Defined data types

C++ allows us to duplicate a data type into something that is either more
familiar or more convenient. For example, if year is a non-negative integer, we
may declare:

unsigned int year;

Since the year is positive, we have exercised the unsigned option.

We can duplicate the cumbersome “unsigned int” into “hronos” mean-
ing year in Greek, by stating:

34 Introduction to C++ Programming and Graphics

typedef unsigned int hronos;

The data types unsigned int and hronos are now synonyms. We may then
declare:

hronos year;

The Unix-savvy reader will notice that the “typedef” command works like
the copy command, “cp”, the move command, “mv”, and the symbolic link
command,“ln -l”:

cp file1 file2

copies file1 into file2,

mv file1 file2

renames file1 into file2, and

ln -s file1 file2

symbolically links file1 into its alter ego file2.

Problems

2.3.1. Declare and initialize at the value of 77 the integer a using (a) the octal,
and (b) the hexadecimal representation.

2.3.2. What are the values of the integers c and d evaluated by the following
statements?

char a = ’=’; int c = a;

char b = ’1’; int d = b;

2.4 Vectors, arrays, and composite data types

The basic data types introduced in Section 2.3 can be extended into composite
groups that facilitate notation and book-keeping in a broad range of scientific
and other applications.

2.4 Vectors, arrays, and composite data types 35

Vectors

In C++, a one-dimensional array (vector) vi is declared as v[n], where
n is an integer, and i = 0, . . . , n − 1. Thus, the lower limit of an array index is
always 0.

For example, a vector v with thirty slots occupied by real numbers reg-
istered in double precision, beginning at v[0] and ending at v[29], is declared
as:

double v[30];

Note that the elements of the vector are denoted using square brackets, v[i],
not parentheses, v(i). Parentheses in C++ enclose function arguments.

Similarly, we can declare:

char a[19];

and
string a[27];

Successive elements of a vector are stored in consecutive memory blocks
whose length depends on the data type.

In C++ jargon, the term “vector” sometimes implies a one-dimensional
array with variable length.

Matrices

A two-dimensional array (matrix) Aij is declared as A[m][n], where n
and m are two integers, i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1. The lower
limit of both indices is 0.

For example, the two indices of the 15 × 30 matrix A[15][30] begin at
i, j = 0 and end, respectively, at i = 14 and j = 29. If the elements of this
matrix are integers, we declare:

int A[15][30];

Note that the elements of the matrix are denoted as v[i][j], not v(i,j). The
individual indices of a matrix are individually enclosed by square brackets.

Similarly, we can declare the array of characters:

char A[13][23];

36 Introduction to C++ Programming and Graphics

and the array of strings:

string A[9][38];

Successive rows of a matrix are stored in consecutive memory blocks.

Data structures

Consider a group of M objects,

o1, o2, . . . , oM,

a group of N properties,
p1, p2, . . . , pN,

and denote the jth property of the ith object by:

oi.pj

The individual properties of the objects can be accommodated in a data
structure defined, for example, as:

struct somename

{
int p1;

float p2;

double p3;

double p4;

}
o1, o2, o3;

Alternatively, we may define a data structure in terms of the properties
alone by declaring:

struct somename

{
int p1;

float p2;

double p3;

double p4;

};

and then introduce members by declaring:

somename o1;

somename o2, o3;

Objects and properties are threaded with a dot (.) into variables that

2.4 Vectors, arrays, and composite data types 37

convey expected meanings:

int o1.p1;

float o1.p2;

double o2.p3;

char o1.p4;

The mathematically inclined reader will recognize that this threading is the
tensor product of two vectors, o ⊗ p. In computer memory, the variables

o1.p1 o1.p2 o1.p3 ...

are stored in consecutive memory blocks.

As an example, we define the used car lot structure:

struct car

{
string make;

int year;

int miles;

bool lemon;

}
vartburg1, skoda1, skoda2;

and then set:

skoda1.make = "skoda";

vartburg1.miles= 98932;

skoda1.lemon = true;

skoda2.lemon = false;

Data structures and their members are preludes to classes and objects
discussed in Chapter 6.

Enumerated groups

One way to represent a property, such as flavor, is to encode it using
integers. For example, we may assign:

bitter → 4, sweet → 5, salty → 6, hot → 7, sour → 8.

We then know that if peasoup flavor=6, the soup is salty.

C++ allows us to mask this encoding by defining enumerations. In our
example, we declare:

enum flavor {bitter=4, sweet, salty, hot, sour};

38 Introduction to C++ Programming and Graphics

where bitter is encoded as 4, sweet is encoded as 5, salty is encoded as 6, hot
is encoded as 7, and sour is encoded as 8. The starting integer, 4, is arbitrary
and can be omitted, in which case the default value of 0 is used. We may then
state:

flavor peasoup flavor;

peasoup flavor = salty;

The broad range of standard features offered by C++, combined with its
ability to generate unlimited user-defined structures, explain its popularity and
suitability for building large code.

Problems

2.4.1. Define a structure of your choice.

2.4.2. Define an enumerated group of your choice.

2.5 System header files

When a Fortran 77 code is compiled to produce an executable (binary) file,
the linker automatically attaches the necessary library files that allow, for ex-
ample, data to be read from the keyboard and data to be written to the monitor.
Other library files ensure the availability of intrinsic mathematical and further
functions.

In contrast, in C++, supporting functions, mathematical functions, and
other ancillary services required during execution must be explicitly requested.
This is done by placing at the beginning of each file containing the C++ code
an include statement or a collection of include statements handled by the
preprocessor. The C++ preprocessor runs as part of the compilation process,
adding to the compiled program necessary code and removing unnecessary code.

An include statement asks the preprocessor to attach at the location of
the statement a copy of a header file containing the definition of a desired class
of system or user-defined functions. Both are regarded as external implemen-
tations.

The system header files reside in a subdirectory of a directory where the
C++ compiler was installed, whereas the user-defined header files reside in user-
specified directories. For example, in Linux, system header files reside in include
directories, such as the /usr/include or the /use/local/include directory.

Once the header files have been copied, the compiler searches for and at-
taches the implementations of the required external functions located in system
or user-defined library files and directories.

2.5 System header files 39

For example, putting at the beginning of the code the statement:

#include <iostream>

instructs the C++ preprocessor to attach a header file containing the definition,
but not the implementation, of functions in the input/output stream library.
In the Fedora Core 5 Linux distribution, the iostream header file is located in
the /usr/include/c++/4.1.1 directory.

Thus, the main function of a code that uses this library has the general
structure:

#include <iostream>

...

int main()

{
...

return 0;

}

where the three dots denote additional lines of code.

Similarly, putting at the beginning of a source code the statement:

#include <cmath>

ensures the availability of the C++ mathematical library. In this case, cmath
is a header file containing the definition, but not the implementation, of math-
ematical functions.

Thus, the main function of a code that uses both the input/output and
the mathematical libraries has the general syntax:

#include <iostream>

#include <cmath>

...

int main()

{
...

return 0;

}

where the three dots denote additional lines of code.

A statement following the # character in a C++ code is a compiler or
preprocessor directive. Other directives are available.

40 Introduction to C++ Programming and Graphics

Problems

2.5.1. Locate the directory hosting the iostream header file in your computer.

2.5.2. Prepare a list of mathematical functions declared in the cmath header
file.

2.6 Standard namespace

Immediately after the include statements, we state:

using namespace std;

which declares that the names of the functions defined in the standard std
system library will be adopted in the code. This means that the names will be
stated plainly and without reference to the std library.

In large codes written by many authors, and in codes linked with libraries
obtained from different sources or vendors, names may have multiple meanings
defined in different namespaces.

If we do not make the “using namespace std” declaration, then instead
of stating:

string a;

we would have to state the more cumbersome:

std::string a;

What names are defined in the std library? We can find this out by trial
and error, commenting out the “using namespace std” line and studying the
errors issued on compilation.

Thus, the main function of a code that uses the standard input/output
library and the mathematical library has the general form:

#include <iostream>

#include <cmath>

using namespace std;

...

int main()

{
...

return 0;

}

2.7 Compiling in Unix 41

where the three dots denote additional lines of code. This fundamental pattern
will be used as a template in all subsequent codes.

Problem

2.6.1. Is the integer declaration int in the standard namespace? Deduce this
by trial and error.

2.7 Compiling in Unix

Suppose that a self-contained C++ program has been written in a single file
named addition.cc. To compile the program on a Unix system, we navigate to
the directory where this file resides, and issue the command:

c++ addition.cc

This statement invokes the C++ compiler with a single argument equal to
the file name. The compiler will run and produce an executable binary file
named a.out, which may then be loaded into memory (executed) by issuing the
command:

a.out

It is assumed that the search path for executables includes the current
working directory where the a.out file resides, designated by a dot (.). To be
safe, we issue the command:

./a.out

which specifies that the executable is in the current directory.

Alternatively, we may compile the file by issuing the command:

c++ -o add addition.cc

This will produce an executable file named add, which may then be loaded
(executed) by issuing the command:

add

or the safer command:

./add

42 Introduction to C++ Programming and Graphics

Other compilation options are available, as explained in the compiler
manual invoked by typing:

man gcc

for the GNU project C and C++ compilers.

Makefiles

C++ programs are routinely compiled by way of Unix makefiles, even if
a code consists of a single file. If a complete C++ code is contained in the file
addition.cc, we create a file named makefile or Makefile in the host directory of
addition.cc, containing the following lines:

LIBS =

papaya: addition.o

c++ -o add addition.o $(LIBS)

addition.o: addition.cc

c++ -c addition.cc

The empty spaces in the third and fifth lines must be generated by pressing the
Tab key inside the text editor.

• The first line of the makefile defines the variable LIBS as the union of
external binary libraries and header files to be linked with the source
code. In this case, no libraries or header files are needed, and the variable
LIBS is left empty.

• The second line defines a project named papaya that depends on the
object file addition.o. Subsequent indented lines specify project tasks.

• The third line names the process for creating the executable add ; in this
case, the process is compilation and linking. Note that the name of the
executable is not necessarily the same as the name of the the source file.
The flag -o requests the production of an executable.

• The fourth line defines the project addition.o that depends on the source
file addition.cc. The flag -c signifies compilation.

• The fifth line states the process for creating the object file addition.o; in
this case, the process is compilation.

The object file addition.o and the executable add are generated by issuing the
command:

make papaya

2.7 Compiling in Unix 43

make is a Unix application that reads information from the file makefile
or Makefile in the working directory. In our example, the application performs
all operations necessary to complete the project papaya. A condensed version
of the papaya project is:

papaya: addition.cc

c++ -o add addition.cc

Other projects can be defined in the same makefile. If we type:

make

the first project will be tackled. Further information on the make utility can be
obtained by referring to the manual pages printed on the screen by issuing the
command:

man make

In Chapter 4, we will discuss situations in which the C++ code is split
into two or more files. Each file is compiled individually, and the object files are
linked to generate the executable. In these cases, compiling through a makefile is
practically our only option. If the code is written in an integrated development
environment (IDE), the compilation process is handled as a project through a
graphical user interface (GUI).

Typesetting this book

This book was written in the typesetting language latex. To compile the
source file named book.tex and create a portable-document-format (pdf) file,
we have used the makefile:

manuscript:

latex book.tex

makeindex book

dvips -o book.ps book.dvi

ps2pdf book.ps

The first line names the task. The second and third lines compile the source
code, prepare the subject index, and generate a compiled device-independent
(dvi) file named book.dvi. The fourth line generates a postscript (ps) file named
book.ps from the dvi file. The fourth line generates a pdf file named book.pdf
as a translation of the ps file. To initiate the task, we issue the command:

make manuscript

44 Introduction to C++ Programming and Graphics

Postscript is a computer language like C++. A postscript printer un-
derstands this language and translates it into pen calls that draw images and
high-quality fonts.

Software distributions

Suppose that a project named rizogalo and another project named tra-
hanas are defined in the makefile. To execute both, we define in the same
makefile the task:

all:

rizogalo

trahanas

and issue the command:

make all

The tasks install and clean, defining software installation and distilla-
tion procedures, are common in makefiles accompanying software distributions.
To install software, we type

make install

To remove unneeded object files, we type

make clean

Problems

2.7.1. Define in a makefile a project called clean that removes all .o object files
from the current directory using the Unix rm command (see Appendix A.)

2.7.2. Define in a makefile a project that generates the executable of a C++
program and then runs the executable.

2.8 Simple codes

We are in a position to write, compile, and execute a simple C++ code.

The following program declares, evaluates, and prints an integer:

#include <iostream>

using namespace std;

2.8 Simple codes 45

int main()

{
int year;

year = 1821;

cout << year << "\n";

return 0;

}

The output of the code is:

1821

The cout statement prints on the screen the value of the variable year using
the cout function of the internal iostream library, and then moves the cursor to
a new line instructed by the \n string. The syntax of these output commands
will be discussed in detail in Chapter 3.

The fifth and sixth lines could have been consolidated into:

int year = 2006;

This compact writing is common among experienced programmers, though it is
often stretched to the point of obfuscation. Albert Einstein once said: “Things
should be made as simple as possible, but not any simpler.”

The following C++ code contained in the file addition.cc evaluates the
real variables a and b in double precision, adds them into the new variable c,
and then prints the value of c on the screen along with a comforting message:

#include <iostream>

using namespace std;

int main()

{
double a=4;

double b=2;

double c;

c=a+b;

cout << c << "\n";

string message;

message = "peace on earth";

cout << message << "\n";

return 0;

}

46 Introduction to C++ Programming and Graphics

The output of the code is:

6

peace on earth

The first cout statement prints the variable c on the screen using the cout
function of the internal iostream library, and then moves the cursor to a new
line instructed by the endl directive, as will be discussed in Chapter 3. The
second cout statement performs a similar task.

Problems

2.8.1. Write a program that prints on the screen the name of a person that
you most admire.

2.8.2. Investigate whether the following statement is permissible:

cout << int a=3;

2.8.3. Run the following program. Report and discuss the output.

#include <iostream>
using namespace std;

int main()

{
bool honest = true;

cout << honest << "\n";

cout << !honest << "\n";

return 0;

}

2.8.4. What is the output of the following program?

#include <iostream>

using namespace std;

int main()

{
string first name;

string last name;

first name = "Mother";

last name = "Theresa";

string name = first name + " " + last name;

cout << name << endl;

}

Programming in C++ 3
Having illustrated the general structure of a C++ program, we now turn to
discussing the basic operators, commands, and logical constructs. Most of these
are either identical or similar to those encountered in other languages. However,
C++ supports some unconventional and occasionally bizarre operations that
require familiarization.

In Appendix C, a correspondence is made between Matlab, Fortran

77, and C++ in the form of a dictionary that explains how to translate corre-
sponding code.

3.1 Operators

Operators apply to one variable or a group of variables to carry out arithmetic
and logical tasks.

Assignation

The equal sign (=) is the assignation or right-to-left copy operator. Thus,
the statement

a = b;

means “replace the value of a with the value of b”, and the statement

a = a+5;

means “replace the value of a with itself augmented by 5”.

The assignation operator is distinguished by lack of reciprocity: the state-
ment a=b is different from the statement b=a.

Arithmetic operators

The basic implementation of C++ supports the following arithmetic
operators:

48 Introduction to C++ Programming and Graphics

• Addition (+): We may write

c=a+b;

• Subtraction (-): We may write

c=a-b;

• Multiplication (*): We may write

c=a*b;

• Division (/): We may write

c=a/b;

• Modulo (%): We may write

c=a%b;

This operator extracts the remainder of the division a/b. For example

5%3 = 2

Unconventional operators

In C++, we can write:

a = b = c = 0.1;

with the expected result. A perfectly acceptable C++ statement is:

a = 1 + (b = 3);

meaning:

b=3;

a = 1 + b;

Compound assignation

Other unconventional statements mediated by compound assignation
operators are listed in Table 3.1.1.

3.1 C++ Operators 49

Operation Meaning

a +=b; a=a+b;
a -=b; a=a-b;
a *=b; a=a*b;
a /=b; a=a/b;
a *= b+c; a=a*(b+c);
a++; a=a+1;
++a; a=a+1;
a--; a=a-1;
--a; a=a-1;

Table 3.1.1 Unconventional statements mediated by compound assignation
operators in C++. The language name C++ translates into C+1, which
subtly indicates that C++ is one level above C. Alternatively, we could have
given to C++ the name C and rename C as C−−.

To illustrate the difference between the a++ and ++a operators, we issue
the commands:

a = 5;

b = a++;

After execution, a=6 and b=5.

Alternatively, we issue the commands:

a = 5;

b = ++a;

After execution, a=6 and b=6.

Relational and logical operands

Relational and logical operands are shown in Table 3.1.2. For example,
to find the maximum of numbers a and b, we write:

max = (a>b) ? a : b;

If a > b is true, the variable max will set equal to a; if a > b is false, the variable
max will set equal to b.

50 Introduction to C++ Programming and Graphics

Equal to a == b
Not equal to a != b

Less than a<b
Less than or equal to a<=b

Greater than a>b
Greater than or equal to a>=b

And A && B
Or A || B

Boolean opposite or true or false !A
Conditional operator A ? a : b;

Table 3.1.2 Relational and logical operands in C++; a, b are variables, and A,B
are expressions. The conditional operator shown in the last entry returns the
value of the variable a if the statement A is true, and the value of the variable
b if the statement A is false.

Threading

The statement:

c = (a=1, b=2, a+b);

is a compact representation of the statements:

a=1;

b=2;

c=a+b;

In these constructions, the variable c is evaluated from the rightmost expression
inside the parentheses.

Byte size operator

To find how many memory bytes are allocated to the variable a, we use
the sizeof operator:

b = sizeof(a);

where b has been declared as an integer.

The practical usage of the C++ operators discussed in this section will
be demonstrated in following chapters by numerous applications.

3.2 Vector and matrix initialization 51

Problems

3.1.1. Are the following three statements equivalent?

c++;

c+=1;

c=c+1;

3.1.2. Implement the conditional operator to compute the absolute value of a
real number.

3.2 Vector and matrix initialization

To declare and initialize a vector v whose three elements are real numbers
registered in double precision, we write

double v[3] = {1.0, 2.0, 4.5};

or

double v[] = {1.0, 2.0, 4.5};

which sets: v[0] = 1.0, v[1] = 2.0, v[2] = 4.5.

If we declare and initialize:

double v[5] = {1.0, 2.0};

then: v[0] = 1.0, v[1] = 2.0, v[2] = 0.0, v[3] = 0.0, v[4] = 0.0. Thus, the
uninitialized values of a partially initialized vector are set to zero.

If we only declare and not initialize by stating:

double v[5];

then the vector components are undefined.

Declaration and initialization must be done in a single line. We may not
first declare and then initialize a vector.

Similarly, we can write

char u[3]= {78, 34, 78};

char e[10]= {’a’, ’b’, ’c’};

52 Introduction to C++ Programming and Graphics

char q[]= ’zei’;

string n[3]= {"who", "am", "I?"};

string b[]= {"who", "are", "they?"};

The size of q is four, as a final 0 is appended to indicate the end of a character
array.

To declare and initialize a 2×2 matrix A whose elements are real numbers
registered in double precision, we write

double A[2][2] = { {1.0, 2.0}, {4.5,-3.5} };

or

double A[][] = { {1.0, 2.0}, {4.5,-3.5} };

which sets: A[0][0] = 1.0, A[0][1] = 2.0, A[1][0] = 4.5, A[1][1] = −3.5.

Thus, the matrix elements are initialized row-by-row.

Similarly, we can write

char D[2][3]= { {60, 61, 65}, {62, 63, 66} };

string C[2][3]= { {"who", "am", "I?"}, {"who", "is", "she?"} };

string C[][]= { {"who", "am", "I?"}, {"who", "is", "she?"} };

Problems

3.2.1. A vector is declared and initialized as:

double v[128] = {4.0};

What are the components of this vector?

3.2.2. A character vector is declared and initialized as:

char v[128] = {67};

What are the components of this vector?

3.3 Control structures 53

3.3 Control structures

Control structures are blocks of statements that implement short algorithms
and make logical decisions based on available options. An algorithm is a set of
instructions that achieves a goal through sequential or repetitive steps.

C++ employs control structures with single or multiple statements. The
former are simply stated, while the latter are enclosed by curly bracket delim-
iters, {}.

• if statement:

The if statement implements conditional execution of one command or
a block of commands.

For example, we may write

if(a==10)

b=10;

or
if(a==10)

{
b=10;

}

If more than one statements is involved, the use of curly brackets is manda-
tory:

if(a!=10)

{
b=a+3;

c=20;

}

We highly recommend using the curly brackets even in the case of one
statement.

• if/else structure:

The if/else structure implements conditional execution based on two
options.

For example, we may write:

if(a!=10)

{

54 Introduction to C++ Programming and Graphics

b=a+3;

c=20;

}
else

{
cout << "angouraki" << endl;

}

The statement

cout << "angouraki" << endl;

prints the word “angouraki” on the screen and moves the cursor to the
next line.

• if/else if structure:

The if/else if structure implements conditional execution based on
several options.

For example, we may write:

if(a==1)

{
b=a+3;

c=20;

}
else if (a==2.3)

{
cout << "angouraki" << endl;

}
else

{
cout << "maintanos" << endl;

}

We can use multiple else if blocks and skip the last else block. If
two options coincide, the first-encountered option will be executed before
exiting the structure.

Note that else and if are two separate words separated by white space.
In Matlab, these two words are merged into the ungrammatical elseif.

• switch structure:

Consider an integer or character variable, diosmos. If diosmos = n1

3.3 Control structures 55

we want to execute a block of commands, if diosmos = n2 we want to
execute another block of commands, if diosmos = n3 we want to execute
a third block of commands; otherwise, we want to execute a default block
of commands.

These conditional choices are best implemented with the switch struc-
ture:

switch(diosmos)

case n1:

{
...

}
break;

case n2:

{
...

}
break;

...

default:

{
...

}

The default block at the end is not mandatory. Note that this block does
not contain a break; .

• for loop:

To compute the sum: s =
∑N

i=1 i, we use the for loop:

double s=0;

int i;

for (i=1; i<=N; i+1)

{
s = s + i;

}

The plan is to first initialize the sum to zero, and then add successive
values of i. The i+1 expression in the argument of the for statement can
be written as i++.

• Break from a for loop:

To escape a for loop, we use the command break.

56 Introduction to C++ Programming and Graphics

For example, to truncate the above sum at i = 10, we use:

double s=0;

for (int i=1; i<=N; i++)

{
if(i==10) break;

s = s + i;

}

• Skip a cycle in a for loop:

To skip a value of the running index in a for loop, we use the command
continue.

For example, to skip the value i = 8 and continue with i = 9 and 10, we
use:

double s=0;

for (int i=1; i<=10; i++)

{
if(i==8) continue;

s = s + i;

}

for loops can be nested multiple times. For example, we may write:

double a[10][10];

for (int i=0; i<=9; i++)

{
for (int j=0; j<=9; j++)

{
a[i][j]=i*j;

}
}

If we break out from the inner loop, we will find ourselves in the outer
loop.

• goto:

We use this statement to jump to a desired position in the code marked
by a label designated by a colon (:).

3.3 Control structures 57

For example, consider the block of commands:

goto mark;

a=5;

mark:

The statement a=5 will be skipped.

Fortran 77 users are fondly familiar with the Go to statement. Mat-

lab users are unfairly deprived of this statement.

Some programmers consider the goto statement an anathema and a recipe
for “spaghetti code.” In the opinion of this author, this is only an exag-
geration.

• while loop:

We use the while loop to execute a block of commands only when a
distinguishing condition is true.

For example, the following while loop prints the integers: 1, 2, ..., 9,
10:

int i=0;

while(i<10)

{
i=i+1;

cout << i << " ";

}

Note that the veracity of the distinguishing condition i<10 is checked
before executing the loop enclosed by the curly brackets.

The compiler interprets the expression i<10 as a Boolean variable that is
true, and thus equal to 1, or false, and thus equal to 0. Accordingly, the
loop

int i=1;

while(i)

{
i=i-1;

}

will be executed only once.

58 Introduction to C++ Programming and Graphics

• do-while:

This is identical to the while loop, except that the veracity of the distin-
guishing condition is examined after the first execution of the statements
enclosed by the curly brackets. Thus, at least one execution is granted
even if the distinguishing condition is never true.

For example, the do-while loop

int i=0;

do

{
i=i+1;

cout << i << " ";

}
while(i<10);

prints the integers: 1, 2, 3, ..., 9, 10.

The do-while loop is favored when a variable in the distinguishing con-
dition is evaluated inside the loop itself, as in our example.

• exit:

To stop the execution at any point, we issue the command:

exit(1);

The use of these control structures will be exemplified throughout this
book.

Problems

3.3.1. Assess whether the following two structures are equivalent:

if(i==5) cout << "i=5"; j=i;

if(i==5) { cout << "i=5"; j=i; }

3.4 Keyboard and monitor 59

3.3.2. Discuss the function of the following loop:

double sum=1.0;

int i=1;

double eps=10.0;

while(eps>0.00001)

{
i=i+1;

eps=1.0/(i*i);

sum=sum+eps;

}

What is the value of sum after execution?

3.4 Receiving from the keyboard and displaying
on the monitor

The iostream library allows us to enter data from the keyboard and display
data on the monitor. In computer science, the keyboard is the standard input
and the monitor is the standard output.

It is illuminating to view the keyboard and monitor as abstract objects
that can be replaced by files, printers, and other hardware or software devices.
The mapping of physical to abstract objects is done by software interfaces called
device drivers.

Receiving from the keyboard

To read a numerical variable from the keyboard, we issue the statement:

cin >> variable;

On execution, the computer will wait for input followed by the Enter key.

To read two numerical variables, we use either the separate statements:

cin >> variable1;

cin >> variable2;

or the composite statement:

cin >> variable1 >> variable2;

On execution, the computer will wait for two inputs separated by a space,
comma, or the Enter keystroke.

60 Introduction to C++ Programming and Graphics

Leading white space generated by the space bar, the tab key, and the
carriage return is ignored by the cin function.

Now consider the following block of commands:

double pi;

int a;

cin >> pi;

cin >> a;

Suppose that, on execution, we enter the number π in segments separated by
white space:

3.14159 265358

Since the two cin statements are equivalent to:

cin >> pi >> a;

the program will take

pi=3.14159 a=265358.

Thus, the computer will not pause for the second cin, giving the false im-
pression of a coding error.

In professional codes, we circumvent this difficulty by reading all input
date as strings, and then making appropriate data type conversions.

Receiving a string

To read a string variable from the keyboard, we use:

cin >> astring;

The string variable astring in this statement is not allowed to have any
blank spaces; that is, it cannot be a sentence composed of words. To circumvent
this difficulty, we use instead:

getline(cin, astring);

On execution, the computer will wait for a string to be typed in the keyboard,
followed by the Enter keystroke.

3.4 Keyboard and monitor 61

False read

Consider the following while loop calculating the square of a typed inte-
ger:

int a;

while (cin >> a)

{
int a2 = a*a;

}

The while loop will be executed repeatedly as long as an integer is supplied from
the keyboard, and will be exited if a character or a non-integer (real) number is
entered, amounting to a false read. The reason is that the cin function returns
to the program a Boolean variable that is true (1) in the case of successful
input, and false (0) in the case of unsuccessful input.

The single false read can be generalized to multiple false reads. For exam-
ple, the following code reads two variables and quits when inappropriate input
is entered:

int a;

float b;

while(cin>>a && cin>>b)

{
cout << a << " " << b << endl;

}

Later in this section, we shall discuss ways of clearing the false read.

Displaying on the monitor

To display the value of a numerical variable on the monitor, we issue the
command:

cout << variable;

To display the value of a numerical variable and move the cursor to the next
line, we use:

cout << variable << "\n";

To print a message on the screen and move the cursor to the next line, we use:

cout << "hello\n";

62 Introduction to C++ Programming and Graphics

\’ Print a single quote (’)
\” Print a double quote (”)
\? Print a question mark (?)
\\ Print a backslash (\)
\a Sound a beep
\t Press the tab key
\v Issue a vertical tab
\r Issue a carriage return
\b Issue a backspace signal
\f Issue a page feed
\n Issue a line break
\\ Continue a string to the next line

Table 3.4.1 Printing codes preceded by the backslash.

To display the values of two numerical variables separated by space and move
the cursor to the next line, we use:

cout << variable << " " << variable1 << " total" << endl;

Material enclosed by double quotes is interpreted verbatim as text. The text
directive “\n”, and its equivalent end-of-line directive “endl”, both instruct the
cursor to move to the next line.

Other printing codes preceded by the backslash are shown in Table 3.4.1.
For example, we can sound a beep by printing: \a.

Printing characters

As an application, we consider a program contained in the file charac-
ters.cc demonstrating the ASCII code:

#include <iostream>

using namespace std;

int main()

{
int i;

char a;

for (i=60; i<=101; i++)

{
a=i;

cout << a;

}

3.4 Keyboard and monitor 63

cout << endl;

return 0;

}

The output of the code is:

<=>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcde

Note that, although the character variable a is evaluated as an integer, it is
printed as a character through the output.

Exactly the same output would have been obtained if the for loop were
replaced either by:

for (i=60; i<=101; i++)

{
cout << (char) i;

}

or by:

for (i=60; i<=101; i++)

{
cout << char(i);

}

The statements (char) i and char(i) invoke integer-to-character conversion
functions that perform an operation known as typecasting.

To further illustrate that characters are stored as ASCII encoded integers,
we consider the instructions:

char d = 66;

char e = ’B’;

cout << d << e << endl;

The screen display is:

BB

Peculiarities of the input buffer

The following code asks for the user’s name and age, and then prints the
information on the screen:

64 Introduction to C++ Programming and Graphics

#include <iostream>

using namespace std;

int main()

{
string name;

int age;

cout << "Please enter your name:" << endl;

getline(cin, name);

cout << "Please enter your age:" << endl;

cin >> age;

cout << name << endl;

cout << age << endl;

return 0;

}

The code will run without any surprises, as long as the input is reasonable.
However, if the order of the input is switched to:

cout << "Please enter your age:" << endl;

cin >> age;

cout << "Please enter your name:" << endl;

getline(cin, name);

the program will not work properly. In this case, the second cin will apparently
be skipped, and the user’s name will be printed as null. The reason is that the
getline(cin, name) function accepts the Enter keystroke character following
the age input as legitimate input.

To remedy this problem, we erase this character by inserting immediately
after the first cin statement the command:

cin.ignore()

which deletes one character. To delete twenty-six characters, we state:

cin.ignore(26)

To delete seven characters or discard all characters up to and including a new-
line character, whichever comes first, we state:

cin.ignore(7, ’\n’)

3.4 Keyboard and monitor 65

Ensuring a successful read

If a program expects us to enter a real number and we enter instead a
character string, the execution will fail. To ensure a proper read, we use the
limits library and engage the program in a do-while loop, as illustrated in
the following code:

#include <iostream>

#include <limits>

using namespace std;

int main()

{
float a;

int flag; // for successful read

cout << "Please enter a float number:"<< endl;

do{
flag=0;

cin >> a;

if(!cin) // execute in case of a false read

{
cout << "Inappropriate input; please try again"<< endl;

flag=1;

cin.clear(); // reset the false-read flag

cin.ignore(numeric limits<streamsize>::max(),’\n’);

}
} while(flag);

cout << a << endl;

return 0;

}

The statement:

cin.ignore(numeric limits<streamsize>::max(),’\n’);

removes from the input stream the bad input.

Greatest common divisor

As an application, we discuss a code that computes the greatest common
divisor (GCD) of two integers, defined as the greatest integer that divides both.
The GCD is involved in the calculation of the structure of carbon nanotubes
parametrized by a pair of integers determining the chirality.

66 Introduction to C++ Programming and Graphics

Euclid’s algorithm produces the GCD by repeatedly subtracting the
smaller from the larger integer, and then abandoning the larger integer in favor
of the difference. If at any stage the two integers are the same, the GCD has
been identified.

The method is implemented in the following code contained in the file
euclid.cc:

#include <iostream>

using namespace std;

int main()

{
int n=100, m=100, k, save;

cout<<"\n Will compute the Greatest Common Divisor";

cout<<"\n\t of two positive integers\n";

again:

cout<<"\n Please enter the first integer";

cout<<"\n\t 0 quit"<< endl;

cin>>n;

if(n==0) goto quit;

cout<<" Please enter the second integer";

cout<<"\n\t 0 quit\n";

cin>>m;

if(m==0) goto quit;

if(n==m)

{
k=n;

cout<<"\nThe Greatest Common Divisor is: "<<k<<endl;

}
else while (n!=m)

{
if(n>m) // switch n and m to ensure n<m

{
save=m;

m=n;

n=save;

}
k=m-n; // replace (n,m) with (k,n)

m=n;

n=k;

if(n==m) // done

{
k=n;

3.4 Keyboard and monitor 67

cout<<"\nThe Greatest Common Divisor is: "<<k<<endl

}
}

goto again;

quit:

cout<<"\n Thank you for your business\n";

return 0;

}

The text directive “\t” in the second cout command and elsewhere emulates
the Tab key. A typical session follows:

Will compute the Greatest Common Divisor

of two positive integers

Please enter the first integer

0 quit

34 12

Please enter the second integer

0 quit

The Greatest Common Divisor is: 2

Please enter the first integer

0 quit

0

Thank you for your business

Problems

3.4.1. Write a program that receives from the keyboard a vector with three
elements consisting of characters, and prints them on the screen.

3.4.2. Write a program that receives your first and last name as a single string
from the keyboard, and prints it on the screen.

3.4.3. Write a code that receives from the keyboard an integer and assesses
whether it is even or odd based on the modulo operator.

3.4.4. Write a statement that sounds a beep by (a) printing an ASCII charac-
ter, and (b) printing a code.

68 Introduction to C++ Programming and Graphics

3.4.5. What is the output of the following code?

#include <iostream>

using namespace std;

int main()

{
int diosmos=1;

for (diosmos==1;diosmos<=4;diosmos++)

{
switch(diosmos)

{
case 1:{cout << "Two "; }
break;

case 2:{cout << "gallons ";}
break;

case 3:{cout << "of milk" << endl };
}
break;

default:{cout << "please!!!" << endl;}
}

}
return 0;

}

3.4.6. Compute the greatest common divisor of 1986 and 343.

3.5 Mathematical library

Table 3.5.1 lists functions of the C++ mathematical library. To use these
functions, the associated header file must be included at the beginning of the
program by stating:

#include <cmath>

For example, to compute the exponential of a number a, we write:

#include <cmath>

float a = 2.3;

float b = exp(a);

Equally well, we can write

double b = exp(2.3);

3.5 The mathematical library 69

m = abs(n) Absolute value of an integer, n
y = acos(x) Arc cosine, 0 ≤ y ≤ π
y = asin(x) Arc sine, −π/2 ≤ y ≤ π/2
y = atan(x) Arc tangent, −π/2 ≤ y ≤ π/2
y = atan2(x, z) Arc tangent, y = atan(y/z)
y = ceil(x) Ceiling of x (smallest integer larger than or equal to x)
y = cos(x) Cosine
y = cosh(x) Hyperbolic cosine
y = exp(x) Exponential
y = fabs(x) Absolute value of a real number, x
y = floor(x) Floor of x (smallest integer smaller than or equal to x)
y = log(x) Natural log
y = log10(x) Base-ten log
y = pow(x, a) z = xa, where x and a are real
y = sin(x) Sine
y = sinh(x) Hyperbolic sine
y = sqrt(x) Square root
y = tan(x) Tangent
y = tanh(x) Hyperbolic tangent

Table 3.5.1 Common C++ mathematical functions. The statement #include
<cmath> must be included at the preamble of the program.

The argument and return of the mathematical functions are registered
in double precision (double). If an argument is in single precision (float), it
is automatically converted to double precision, but only for the purpose of
function evaluation.

A calculator

An ingenious code due to Fred Swartz implements a simple calculator
(see http://www.fredosaurus.com/notes-cpp):

// Fred Swartz 10 Aug 2003

// Not robust: does not check for division by 0

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
double left, right; // Operands

70 Introduction to C++ Programming and Graphics

double result; // Resulting value

char oper; // Operator

cout << "Please enter: a (+-*/) b, and hit return" << endl;

while (cin >> left >> oper >> right)

{
switch (oper)

{
case ’+’: result = left + right; break;

case ’-’: result = left - right; break;

case ’*’: result = left * right; break;

case ’/’: result = left / right; break;

default : cout << "Bad operator ’" << oper << "’" << endl;

continue; // Start next loop iteration.

}
cout << "="<< result << endl << "another (q to quit): "

<< endl;

}
return 0;

}

The program performs addition, subtraction, multiplication, and division in a
text mode.

Problems

3.5.1. Discuss whether the statement

y = pow(x, pow(a, b));

is equivalent to the statement

y = pow(x, a*b);

3.5.2. Investigate by numerical experimentation the action of the ceil and
floor functions.

3.5.3. Add to the calculator the exponential and the logarithm buttons.

3.6 Read from a file and write to a file

We have learned how to read data from the keyboard and write data to the
screen. To read data from a file and write data to a file, we use the intrinsic
library fstream.

3.6 Read from a file and write to a file 71

Read from a file

To read from a file named stresses.dat, we simply associate the file with
a device that replaces cin of the iostream:

#include<fstream>

ifstream dev1;

dev1.open("stresses.dat");

dev1 >> variable1 >> variable2;

dev1.close();

The first line declares the device dev1 as a member of the “input file stream.”
The second line opens the file through the device, the third line writes to the
device, and the fourth line closes the device.

Note that device and filename are two distinct concepts. A brilliant
notion of C++ (and Unix) is that we can change the device but keep the
filename.

In compact notation, the lines

ifstream dev1;

dev1.open("stresses.dat");

can be consolidated into one,

ifstream dev1("stresses.dat");

which bypasses the explicit use of the open statement.

Suppose that we want to read the components of a vector from a file, but
the length of the vector is unknown so that we cannot use a for loop. Our best
option is to use a while loop based on a false read.

The implementation of the algorithm is:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{
ifstream file9("vector.dat");

int i=1;

double a[10];

while(file9 >> a[i])

{

72 Introduction to C++ Programming and Graphics

cout << i << " " << a[i] << endl;

i++;

}

file9.close();

return 0;

}

If the file vector.dat reads:

3.4 9.8

3.0 9.1

0.45

the output of the code will be:

1 3.4

2 9.8

3 3

4 9.1

5 0.45

A false read arises when either the program has reached the end of a file (EOF),
or the program attempts to read a certain data type and sees another.

Write to a file

To write to a file named post process.dat, we simply associate the file with
a device that replaces cout of the iostream:

#include<fstream>

ofstream dev2;

dev2.open("post process.dat");

dev2 << variable1 << variable2;

dev2 << variable << " " << variable1 << " total" << endl;

dev2.close();

The second line declares the device dev2 as a member of the “output file
stream.” The third line opens the device, the fourth line writes to the device,
and the fifth line closes the device.

The second and third statements can be consolidated into one,

ofstream dev2("post process.dat");

which bypasses the explicit use of the open statement.

3.6 Read from a file and write to a file 73

Parameter Meaning

in Input mode (default for a file of the ifstream class)
out Output mode (default for a file of the ofstream class)
binary Binary mode
app If the file exists, data is written at the end (appended)
ate For a new file, data is written at the end

For an existing file, data is written at the current position
(same as app but we can write anywhere)

trunc If the file exists, delete the old content (same as out)
noreplace If the file exists, do not open
nocreate If the file does not exist, do not open

Table 3.6.1 Open-file parameters for reading data from a file and writing data to
a file.

Qualified open

The general syntax of the open statement is:

dev.open("filename", ios::xxx | ios::yyy | ... | ios:zzz);

where xxx, yyy, ..., zzz are parameter strings defined in Table 3.6.1.

For example, to open a file named results.dat for read and write, we state:

#include<fstream>

fstream file8;

file8.open("results.dat",ios::in|ios::out);

To check whether a file has been successfully opened, we evaluate the
Boolean variable:

dev.is open()

which is true or false. For example, we can state:

if (dev.is open())

{
dev << variable1 << variable2;

}

If the file is not open, the write instructions are bypassed.

74 Introduction to C++ Programming and Graphics

Problems

3.6.1. Write a program that reads from a file a vector with three elements
consisting of characters, and prints them in another file.

3.6.2. Write the a code that reads from a file your name and prints it in another
file.

3.6.3. Write a program that opens an existing file and appends the number 0.

3.6.4. Write a program that opens an existing file and inserts the number 0 at
the beginning.

3.7 Formatted input and output

The input/output manipulation library iomanip allows us to print data in an
orderly fashion. As an example, consider the program:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
double pi;

pi=3.14159265358;

cout << setprecision(5) << setw(10);

cout << pi << endl;

return 0;

}

Running the program prints on the screen:

3.1416

In this case, the set-width manipulator setw(10) reserves ten spaces, and the
set-precision manipulator setprecision(5) allocates five of these spaces to the
decimal part, including the decimal point.

The code:

for (int i=1;i<3;i++)

{
for (int j=1;j<5;j++)

{
cout <<"+"<< setfill(’-’)<<setw(4);

}
cout<< "+" << endl;

}

3.7 Formatted input and output 75

prints on the screen the pattern:

+---+---+---+---+

+---+---+---+---+

+---+---+---+---+

The code:

cout << setfill(’-’) << setw(20) << "-" <<endl;

cout << setfill(’.’) << setw(20) << " " << endl;

cout << setfill(’=’) << setw(15) << "Thank you"

<< setw(5) << ""<< endl;

cout << setfill(’.’) << setw(20) <<""<<endl;

cout << setfill(’-’) << setw(20) <<""<<endl;

prints on the screen the pattern:

...................

======Thank you=====

....................

Table 3.7.1 presents I/O manipulators with brief descriptions. Some of
these manipulators apply to only one read or write, whereas others apply per-
manently until reset.

Formatting can also be implemented by the manipulators

setiosflags(ios::property1 | ios::property2 | ...);

and

resetiosflags(ios::property1 | ios::property2 | ...);

For example, the property attribute property1 can be fixed or scientific
(referring to notation), showpoint, or other. Thus, the commands:

pi=3.14159265358;

cout << setprecision(5) << setw(10);

cout << setiosflags(ios::scientific);

cout << pi << endl;

produce the output:

3.14159e+00

76 Introduction to C++ Programming and Graphics

Manipulator Manipulator Comment

setw(n) width(n) Set the minimum field width
setprecision(n) Set the number of digits printed

to the right of the decimal point
showpoint noshowpoint Decimal point
uppercase nouppercase
dec oct Decimal or octal form
hex setbase(8—10—16) Hexadecimal
left right Margin justification

used after setw(n)
showbase noshowbase
setfill(ch) Fill empty fields with a character
boolalph anoboolalpha Boolean format
fixed scientific Notation
ends
showpos noshowpos
skipws noskipws Skip white space in reading
ws Ignore white space

at the current position
internal flush
unitbuf nounitbuf
setiosflags(f) resetiosflags(f)

Table 3.7.1 Input/Output manipulators for formatted reading and printing.

Tabulation

The following code contained in the file tabulate.cc prints a table of
exponentials:

#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{
int i;

double step=0.1;

cout << setiosflags(ios::fixed | ios::showpoint);

for (i=1;i<=6;i++)

{
double x=(i-1.0)*step;

3.7 Formatted input and output 77

double y=exp(x);

cout << setprecision(2) << setw(5) << x << " ";

cout << setprecision(5) << setw(7) << y << endl;

}

return 0;

}

The output of the code is:

0.00 1.00000

0.10 1.10517

0.20 1.22140

0.30 1.34986

0.40 1.49182

0.50 1.64872

What would the output be if the setiosflags() manipulator were not in-
cluded?

Random numbers

As a second application, we discuss a code contained in the file random.cc
that computes and prints on the screen random numbers with uniform prob-
ability distribution in the range [0, 1], also called uniform deviates, using the
C++ compiler random-number generator:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int N=6, random integer;

float random real, random number, max=RAND MAX;

cout<< setiosflags(ios::fixed | ios::showpoint);

for(int i=1;i<=N;i++)

{
random integer = rand();

random real = random integer;

random number = random real/max;

cout << setw(3) << i << " " << setw(6) << setprecision(5)

<< random number << endl;

78 Introduction to C++ Programming and Graphics

}

return 0;

}

The internal C++ function rand generates random integers ranging from 0 up
to the maximum value of RAND MAX. Converting these integers to real numbers
and normalizing by the maximum generates the requisite list. The output of
the code is:

1 0.84019

2 0.39438

3 0.78310

4 0.79844

5 0.91165

6 0.98981

Student grades

In the third application, we discuss a code contained in the file grades.cc
that reads student names and grades from file grades.dat, and prints them nicely
formatted on the screen:

#include <iomanip>

#include <fstream>

using namespace std;

int main()

{
ifstream file2("grades.dat");

string lastname[201], firstname[201]; // 200 students max

float grade[201][11]; // 10 grades max

int i=1; // assume one student

/*------loop over students----------------*/

while(file2 >> lastname[i]) // read the last name

{
cout << setw(3) << right << i << " " ;

file2 >> firstname[i]; // read the first name

cout << setw(15) << left << lastname[i]+" "+firstname[i] << " ";

int j=1;

3.7 Formatted input and output 79

/*------loop over student grades----------------*/

while(file2 >> grade[i][j]) // read the grades

{
cout << setw(3) << right << grade[i][j] << " ";

j++;

}

cout << endl;

file2.clear(); // allow for more reads

i++;

} // end of loop over students

file2.close();

return 0;

}

An interesting feature of the code is the presence of two nested while
loops of reads. When a false name-read is encountered, the outer loop is exited.
When a false grade-read is encountered, the inner loop is exited, and the cin
flag is cleared by issuing the command:

file2.clear();

to allow for additional name readings.

If the file grades.dat contains the data:

Johnson Bob 8 10

Kerr Jean 9 10 9

Wang J-Y 8 10 9

then the output on the screen is:

1 Johnson Bob 8 10
2 Kerr Jean 9 10 9
3 Wang J-Y 8 10 9

Problems

3.7.1. Print the value of RAND MAX set by your compiler.

80 Introduction to C++ Programming and Graphics

3.7.2. Pascal’s triangle appears as

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
· · · · · · · · · · · · · · · · · ·

.

Each entry is the sum of the two entries immediately above it, and the
outermost entries are equal to unity. The entries of the pth row provide
us with the coefficients of the binomial expansion (a+ b)p−1, where a and
b are two variables and p is an integer.

For example, when p = 3, the third row provides us with the coefficients
of the quadratic expansion,

(a + b)2 = 1 a2 + 2 ab + 1 b2.

When p = 4,
(a + b)3 = 1 a3 + 3 a2b + 3 ab2 + 1 b3.

Write a program that computes and prints the Pascal triangle.

3.7.3. Modify the student code so that the number of grades recorded is printed
next to the students’ names before the grades.

3.7.4. Write a code that reads from a file the names of pets in a pet store, and
prints, nicely formatted, their species, age, and usual mood.

3.8 Sample algorithms

We have learned how to enter data from the keyboard, print data to the screen,
read data from a file, and write data to a file. In scientific and other applications,
the data are manipulated according to carefully designed algorithms to achieve
a specific goal.

We have defined an algorithm as a set of instructions that achieves a
goal through sequential or repetitive steps. Certain algorithms provide us with
systematic ways of eliminating events and narrowing down possibilities. Other
algorithms provide us with craftily devised methods of producing a sequence of
approximations to a desired solution.

3.8 Sample algorithms 81

Maximum and minimum of an array

The algorithm implemented in the following code identifies the maximum
number in an array, a[i], where i = 1, 2, . . . N . We begin by assuming that
the maximum is the first entry, a[1], and update the maximum by successive
comparisons:

int max pos = 1;

for(int i=2; i<=N; i++)

{
if(a[i] > a[max pos])

{
max pos = i;

}
}

A slight variation yields the minimum:

int min pos = 1;

for(int i=2; i<=N; i++)

{
if(a[i] < a[min pos])

{
min pos = i;

}
}

Ranking an element of an array

Next, we consider an algorithm that ranks a specified element in a nu-
merical array a[l], where l = 1, 2, . . . N . If the specified element is the largest
number in the array, its rank is 1; if the specified element is the smallest number
in the array, its rank is N .

The ranking algorithm is based on the observation that, if a[i] is the
element to be ranked, then its rank is equal to one plus the number of times
that a[i]<a[j] for j = 1, 2, . . . , N and j �= i. The last exception is included to
safeguard against round-off error. The implementation of the algorithm is:

rank = 1;

for(int j=1; j<=N; j++)

{
if(a[i]<a[j] && i!=j) rank++;

}

82 Introduction to C++ Programming and Graphics

Indexing an array

Now we want to index the elements of the array a[l], for l = 1, . . . , N , so
that the index of the largest number is equal to 1, and the index of the smallest
number is equal to N . The following code contained in the file index.cc uses
the ranking algorithm to index the array:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
float a[6]={0.0, 8.0, 9.7, -1.4, -8.0, 13.8};
int i,j;

int m[6]; // indexing array

const int N=5;

for(i=1; i<=N; i++)

{
m[i]=1;

for(j=1; j<=N; j++)

{
if(a[i]<a[j] && i!=j) m[i]++;

}
}

//--- print the list

cout << fixed << showpoint;

for(i=1; i<=N; i++)

cout << setw(8) << setprecision(2) << a[i] << " " << m[i] << endl;

}

The output of the code is:

8.00 3

9.70 2

-1.40 4

-8.00 5

13.80 1

Bubble sort

It is often necessary to sort an array of numbers contained in a vector
x[i]. The sorting can be done in ascending order where the largest number
is placed at the bottom, or in descending order where the smallest number is
placed at the bottom.

3.8 Sample algorithms 83

In the bubble-sort algorithm, we first find the highest number, and put
it at the bottom of the list. This is done by comparing the first number with
the second number and swapping positions if necessary, then comparing the
second with the third number and swapping positions if necessary, and repeating
the comparisons all the way to the bottom. In the second step, we find the
second-largest number and put it in the penultimate position using a similar
method. In this fashion, light numbers “bubble up” to the top. The algorithm
is implemented in the following code contained in the file bsort.cc:

#include<iostream>

#include<iomanip>

using namespace std;

int main()

{
const int n=5;

float save, x[n+1]={0.0, -0.5, -0.9, 0.3, 1.9, -0.3 };
int Istop, i, k;

//--- bubble sort:

k = n-1; // number of comparisons

do {
Istop = 1; // will stop if Iflag 1

for (i=1;i<=k;i++) // compare

{
if(x[i]>x[i+1])

{save = x[i]; // swap

x[i]=x[i+1];

x[i+1] = save;

Istop = 0; // an exchange occurred; do not stop

}
}
k--; // reduce the number of comparisons

}
while(Istop==0);

//--- print the sorted array:

for (i=1;i<=n;i++)

{
cout << setw(5) << right << x[i] << endl;

};

return 0;

}

84 Introduction to C++ Programming and Graphics

The output of the code is:

-0.9

-0.5

-0.3

0.3

1.9

Selection sort

In the selection-sort algorithm, we perform only one swap per pass. In
the first pass, we identify the minimum of all elements and put it at the top. In
the second pass, we identify the minimum of all elements except for the first,
and put it in the second position. In the last pass, we identify the minimum of
the last two elements. The implementation of the algorithm is:

/*---------selection sort---------*/

int min pos; float save;

for (int pass=1; pass<n; pass++)

min pos = pass;

for (i=pass+1;i<=n;i++) // compare

{
if(x[i]<x[min pos])

{
min pos = i;

}
save = x(pass);

x(pass) = x(min pos);

x(min pos) =save;

}
}

Alphabetizing a list

The sorting algorithm can be used verbatim to alphabetize a list of names.
The only difference is that the float vector x[i] is declared as an array of strings
defined, for example, as:

x[1]="Johnson";

x[2]="Brown";

x[3]="Smith";

x[4]="Wu";

x[5]="Yang";

3.9 Bitwise operators 85

The C++ compiler interprets the “greater than” or “less than” comparison in
the expected alphabetical sense.

Problems

3.8.1. Modify the bubble-sort code to arrange the array in descending order
with the smallest number put at the bottom.

3.8.2. Discuss whether it is possible to insert a stopping check in the selection-
sort algorithm.

3.8.3. Alphabetize a list of ten cities.

3.9 Bitwise operators

In the binary system, an integer, a, is expressed as the modulated sum of powers
of two,

a = bk × 2k + bk−1 × 2k−1 + . . . + b1 × 21 + b0 × 20, (1)

where bi = 0, 1 are the binary digits (bits). The binary representation of this
integer is

a = (bk bk−1 . . . b1 b0)2.

For example,

50 = 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20, (2)

and thus,

50 = (110010)2. (3)

If a is declared as a short integer, the binary digits are stored in a two-byte
memory block consisting of sixteen memory cells, as:

0 0 . . . 0 bk bk−1 . . . b1 b0 (4)

where an appropriate number of leading bits on the left are set to zero. Thus,
the number 50 is stored as:

0000000000110010 (5)

The bitwise operators of C++ allow us to produce new integers by
manipulating the bits of a given integer.

86 Introduction to C++ Programming and Graphics

Shift operators

The commands:

short a=50;

short b;

b = a << 3;

cout << a << ", " << b << endl;

print on the screen:

50, 400

We note that the binary representation of 400 is:

0000000110010000

and conclude that the statement a << 3 causes the binary string of a to be
shifted to the left by three places.

More generally, the statement a << m causes the binary string of a to be
shifted to the left by m places. The statement a >> m causes the binary string
of a to be shifted to the right by m places. When the binary string is shifted
to the left or to the right by m places, the number a is multiplied or divided by
2m. Accordingly, << and >> are the left and right Shift bitwise operators.

“and” operator

The statements:

short a=50;

short b = a << 3;

cout << "a=" << a << " b=" << b << endl;

short c = a & b;

cout << "c=" << c << endl;

print on the screen:

a=50 b=400

c=16

To understand the c=a&b operation in the penultimate line of the code, we
consider the binary representation of the three numbers involved,

3.9 Bitwise operators 87

Bitwise operator Binary operation

<< left shift
>> right shift
& and
| or
^ xor (exclusive or)
~ not

Table 3.9.1 Bitwise operators in C++. When operating on a number, these
operators produce a new number with altered bits.

a = 50 0000000000110010
b = a << 3 = 400 0000000110010000
c = a & b = 16 0000000000010000

Evidently, the operation a & b produces a number whose ith binary digit is 1
only if the corresponding binary digits of a and b are both 1, and 0 otherwise.
Accordingly, & is the and bitwise operator.

“or” and “xor” operators

The “or” operation a|b produces a number whose ith binary digit is 1
only if at least one of the corresponding ith binary digits of a and b is 1, and 0
otherwise.

The “exclusive or” operation a^b produces a number whose ith binary
digit is 1 if the corresponding binary digits of a and b are different, and 0
otherwise.

“not” operator

The not operator ~a produces a number whose ith binary digit is 0 if the
corresponding digit of a is 1, and vice versa.

Applications

Table 3.9.1 summarizes the bitwise operators. In practice, these opera-
tors are commonly used for packing multiple values into one integer and thus
compressing a file. This is done by shifting with and to extract values, and
using xor to add values.

88 Introduction to C++ Programming and Graphics

For example, the following code contained in the file binary.cc written by
Fred Swartz prints the binary number of a specified integer, n, described by 32
bits:

for (int i=31; i>=0; i--)

{
int m = n >> i;

int bit = m & 1;

cout << bit;

}

The idea is to successively shift to the right the binary digits of n, and then
sample the last digit using the bitwise and operation with the number 1 whose
binary representation is:

00...0001

In other applications, the or operator is used to ensure that a given bit
of a given integer is set to 1, while the xor operator is used to toggle two bits.

Problems

3.9.1. Describe the combined action of the following statements:

x = x^y; y = x^y; x = x^y;

3.9.2. Write a code that uses bitwise operations to assess whether a given in-
teger is a power of two.

Hint: The binary string of the even integer 2p consists of zeros led by
one, whereas the binary string of the odd integer 2p − 1 consists of ones.

3.9.3. Write a code that deduces whether the fifth binary digit of an integer is
1 or 0.

3.10 Preprocessor define and undefine

The C++ preprocessor assists the compilation process by making substitutions
and by inserting and removing chunks of code. It is important to realize that
the preprocessor does not interpret C++ code, and only performs mechanical
tasks reminiscent of cut-and-paste.

Consider the following code involving the define preprocessor directive:

#include <iostream>

using namespace std;

3.10 Preprocessor define and undefine 89

#define print cout <<

int main()

{
string a = "hello";

print a;

print endl;

return 0;

}

Running the code prints on the screen:

hello

The preprocessor has substituted the C++ command “cout <<” for every in-
stance of the “print” statement in the code. Effectively, “print” has become
a macro for “cout <<”.

A macro can be removed at any time using the undef preprocessor
directive. As an example, consider the code:

#include <iostream>

using namespace std;

#define print cout <<

int main()

{
#define eol << endl

string a = "hello";

print a eol;

#undef eol

#define eol << " for your business" << endl

string b = "thank you";

print b eol;

return 0;

}

Running the code prints on the screen:

hello

thank you for your business

The define preprocessor directive may also be used to implement simple
functions. For example, the block of commands:

#define square(x) x*x;

double e = 5.0;

90 Introduction to C++ Programming and Graphics

cout << square(e);

cout << endl;

prints on the screen:
25

Two further uses of the define directive are illustrated in the following
example:

#define andy kaufman(x) #x;

cout << andy kaufman(genius) << endl;

#define gatoula(x,y) x ## y;

int iatros = 10;

cout << gatoula(ia,tros) << endl;

which prints on the screen:

genius

10

The first directive places the variable x between double quotes. The second
directive glues together the strings represented by x and y. Other preprocessor
directives will be discussed in Chapter 5.

Problems

3.10.1. Define a macro so that the following command makes sense:

enter a;

3.10.2. Define a macro so that the following command makes sense:

We will now print the value of x;

User-Defined Functions 4
The use of main programs and subprograms that perform modular tasks is
an essential concept of computer programming. In Matlab and C++ we use
functions, in Fortran 77 we use functions and subroutines. In C++, even the
main program is a function loaded in memory on execution. Large application
codes and operating systems may contain dozens, hundreds, or even thousands
of functions.

In mathematics, a function is a device that receives one number or a
group of numbers in the input, and produces a new number or groups of num-
bers in the output. The input and output may contain vectors and matrices
collectively called arrays. Computer programming functions work in similar
ways. In addition, the input and output may contain characters, strings of
characters, words, sentences, and even more complex objects.

The individual variables comprising the input and output of a C++ func-
tion are communicated through the function arguments enclosed by parentheses
following the function name. We will see that, for reasons of efficient design,
single variables (scalars) are communicated differently than arrays.

4.1 Functions in the main file

The following C++ code contained in the file ciao.cc prints on the screen the
greeting “Ciao” by invoking the function ciao:

#include <iostream>

using namespace std;

//--- function ciao:

void ciao()

{
cout << "Ciao\n";

}

//--- main:

92 Introduction to C++ Programming and Graphics

int main()

{
ciao();

return 0;

}

The statement ciao() in the main program prompts the execution of the func-
tion ciao, which prints on the screen “Ciao” and returns nothing to the main
program; that is, the return is void. The mandatory parentheses () enclose the
function arguments after the function name; in this case null, the arguments
are null.

Note that the function ciao has been defined before the main program.
If the order is transposed, the compiler will complain that the function is at-
tempted to be used before declaration. To satisfy the compiler, we duplicate
the function prototype before the main function, as shown in the following code:

#include <iostream>

using namespace std;

void ciao();

//--- main:

int main()

{
ciao();

return 0;

}

//--- function main:

void ciao()

{
cout << "Ciao\n";

}

A function can call another function. An example is implemented in the
following code:

#include <iostream>

using namespace std;

void greet1();

//--- main:

int main()

4.2 Static variables 93

{
greet1();

return 0;

}

void greet2();

//--- function greet1:

void greet1()

{
cout << "bye now" << " ";

greet2();

}

//--- function greet2:

void greet2()

{
cout << "come again" << endl;

}

Running this program prints on the screen:

bye now come again

The second function declaration void greet2() could have been stated before
the main program.

Problems

4.1.1. Investigate whether a function can call the main program.

4.1.2. Write a program that calls two functions, one function to print your
first name and another function to print your last name. The functions
should be declared before the main program and implemented after the
main program.

4.2 Static variables

Suppose that a variable is defined inside a function. When the function is exited,
the value of the variable evaporates. To preserve the variable, we declare it as
static using the qualifier static.

94 Introduction to C++ Programming and Graphics

As an example, running the program:

#include <iostream>

using namespace std;

void counter();

//--- main:

int main()

{
for(int i=1;i<3;i++)

{
counter();

}
cout << endl;

return 0;

}

//--- function counter:

void counter()

{
static int n=0;

n++;

cout << n << " ";

}

prints on the screen:

1 2

Every time the function counter is entered, the static variable n increases by
one unit. A static variable can be used to count the number of times a function
is called from another function.

In another application, we use the static declaration to prevent a vari-
able from being reinitialized:

for (i=1;i<=5;i++)

{
static int count = 0;

count++;

}

At the end of the loop, the value of count will be 5, not 1.

4.3 Function return 95

Problem

4.2.1. Does it make sense to use a static variable in the main program outside
a loop that initializes the variable?

4.3 Function return

A function can return to the main program a scalar, a character, or a string by
means of the return statement. Thus, running the program:

#include <iostream>

using namespace std;

double piev();

//--- main:

int main()

{
double pi = piev();

cout << pi << endl;

return 0;

}

//--- function piev:

double piev()

{
double pidef=3.14157;

return pidef;

}

prints on the screen:

pi=3.14157

A function may contain more than one return statement at different
places, evaluating the same variable or different variables. When a return state-
ment is executed, control is passed to the calling program.

As an example, a function may contain the following structure:

...

if(index==1)

{
return value1;

}

96 Introduction to C++ Programming and Graphics

else if(index==2)

{
return value2;

}
...

where the three dotes indicate additional lines of code.

A scalar, character, or string computed in a function is customarily passed
to the calling program through the return statement. A less common alter-
native is to pass it through a function argument enclosed by the parentheses
following the function name, as will be discussed later in this chapter. Groups
of scalar variables and arrays must be communicated as function arguments.

Prime numbers

As an application, we discuss a code that decides whether a given integer
is prime. By definition, a prime number is divisible only by itself and unity.

The prime-test is based on the observation that the remainder of the
division between two integers is an integer only if the two numbers are divisible.

The following code contained in the file prime.cc assesses whether an
integer entered through the keyboard is prime:

#include<iostream>

using namespace std;

int GetN();

//--- main:

int main()

{
int k,l,m,n=1;

while (n>0)

{
n=GetN();

for(m=2; m<=n-1; m++)

{
l=n/m; //--- Test for the remainder

k=l*m;

if(k==n) //--- Not a prime:

{
cout<<"\n"<<n<<" is not a prime number;";

4.3 Function return 97

cout<<" the highest divisor is: "<<l<<"\n";

break;

}
}

if(k!=n && n!=0 || n==2) //--- Found a prime:

{
cout<<"\n"<<n<<" is a prime number";

}
}
return 0;

}

//---- Function GetN:

int GetN()

{
int n;

cout<<"\nPlease enter the integer to be tested: \t";

while (cin>>n)

{
if (n<0)

{
cout<<"\nThe integer must be positive; try again\n";

}
else

{
goto dromos;

}
}

dromos:

return n;

}

The user-defined function GetN is used to solicit input in a while loop. If an
entered number is negative, a request is made for a repeat. The input is then
returned to the main program. If the input is not an integer, the while loop
in the main program is exited and the execution terminates. A typical session
follows:

Please enter the integer to be tested: -10

The integer must be positive; try again

897

897 is not a prime number; the highest divisor is: 299

Please enter the integer to be tested: q

98 Introduction to C++ Programming and Graphics

Combinatorial

Imagine that we are given n identical objects and are asked to select from
these a group of m objects, where m = 0, 1, . . . , n. The number of possible
combinations is given by the combinatorial,

p =
(

n
m

)
=

n!
m! (n − m)!

, (1)

where the exclamation mark denotes the factorial,

n! = 1 · 2 · . . . · n, m! = 1 · 2 · . . . · m,

(n − m)! = 1 · 2 · . . . · (n − m), (2)

and the centered dot designates multiplication; by convention, 0! = 1. When
m = 0, we select no object, and p = 1; when m = n, we select all objects, and
p = 1; when m = 1, we select one object, and p = n; when m = n− 1, we select
all but one objects, and p = n.

The following main program contained in the file combinatorial.cc re-
ceives the pair (n,m) from the keyboard and calls a function to compute the
combinatorial:

#include <iostream>

using namespace std;

int combin(int, int);

//--- main:

int main()

{
int n,m;

cout<< endl <<"Please enter n and m (n>=m);";

cout<<"’q’ for either one to quit" << endl;

while(cin>>n && cin>>m)

{
if(m>n|n<0|m<0)

{
cout<<"Invalid input; please try again\n";

}
else

{
int p = combin(n,m);

cout<<"Combinatorial:�" << p << endl;

cout<< endl << "Please enter a new pair" << endl;

}
}

4.3 Function return 99

return 0;

}

If a non-integer is entered for either n or m, the while loop is exited due to the
false read and the execution terminates.

It would appear that the combinatorial requires the computation of three
factorials. Even when f n and m are moderate, the factorial can be huge leading
to memory overflow. To prevent this, we use the expression

p = n · n − 1
2

· . . . · n − k + 1
k

· . . . n − l + 1
l

, (3)

where l is the minimum of m and n − m. This formula is implemented in the
following function:

int combin(int n, int m)

{
int l,p;

//--- Find the minimum of m and n-m:

l = m;

if(n-m<l)

{
l=n-m;

}

//--- Apply the formula:

p=1;

for(int k=1; k<=l;k++)

{
p=p*(n-k+1)/k;

}
return p;

}

Problems

4.3.1. Prepare and print a list of the first twenty prime numbers.

4.3.2. Using a home computer, twenty-nine-year-old programmer Joel Armen-
gaud discovered that 21398269 − 1 is a prime number. Confirm his finding.

4.3.3. Write a function that computes the combinatorial in terms of the three
factorials, and discuss its performance.

100 Introduction to C++ Programming and Graphics

#include <file> file is a system header file provided with the compiler

#include ”file” file is either a user-defined header file
or a system header file

Table 4.4.1 Syntax of the include directive system and user-defined header files.
The current directory is searched first for a user-defined header file.

4.4 Functions in individual files and header files

Medium-size and large codes are split into a number of source files hosting the
main program and various functions. Each file is compiled independently to
produce the corresponding object file, and the object files are linked to build
the executable. In C++, each file containing user-defined functions must be
accompanied by a header file that declares these functions.

As an example, consider a code that has been split into two files. The
first file named greetings dr.cc contains the following main program:

#include "greetings.h"

using namespace std;

int main()

{
greetings();

return 0;

}

The second file named greetings.cc contains the following user-defined
function:

#include <iostream>
using namespace std;

void greetings()

{
cout << "Greetings\n";

}

The first line of the main program is a compiler preprocessor directive
requesting the attachment of the header file greetings.h. The significance of the
double quotes in the syntax #include "greetings.h" is illustrated in Table
4.4.1.

4.4 Functions in individual files 101

The content of the header file greetings.h is:

#ifndef GREETINGS H

#define GREETINGS H

#include<iostream>
using namespace std;

void greetings();

#endif

The “if not defined” loop checks whether the variable GREETINGS H has been
defined. If not, the enclosed block of commands is executed:

• The first of these commands defines the variable GREETINGS H, so that the
loop will not be executed if the header file is linked for a second time. By
convention, the name GREETINGS H arises by capitalizing the name of the
header file and then appending H.

• The rest of the statements in the “if not defined” loop duplicate the
function preamble and declaration.

The overall procedure ensures that a function is not defined multiple times.

A makefile that compiles the individual files and links the object files to
form an executable named greetings reads:

OBJ1 = greetings dr.o greetings.o

greetings: $(OBJ1)

c++ -o greetings $(OBJ1)

greetings dr.o: greetings dr.cc

c++ -c greetings dr.cc

greetings.o: greetings.cc

c++ -c greetings.cc

• The first line defines the variable OBJ1 as the union of two object files.
This variable is subsequently cited as $(OBJ1).

• The second line states that the executable depends on $(OBJ1).

• The third line performs the linking.

• The last four lines compile the individual source files and generate the
object files.

The white space in the third, fifth, and seventh lines must be generated by
pressing the Tab key in the text editor.

102 Introduction to C++ Programming and Graphics

Problems

4.4.1. Split the prime-number code discussed in Section 4.3 into two files, one
containing the main program and the second containing the getN function,
and write the necessary header file.

4.4.2. Split the combinatorial code discussed in Section 4.3 into two files, one
containing the main program and the second containing the combin func-
tion, and write the necessary header file.

4.5 Functions with scalar arguments

An important concept in C++ is the distinction between global and local vari-
ables. The former are pervasive, whereas the latter are private to the individual
functions.

Global variables

Global variables are defined outside the main function and user-defined
functions. Because their memory addresses are communicated implicitly, their
values do not need to be passed explicitly through the function argument list
enclosed by parentheses.

The following code employs three global variables:

#include <iostream>

using namespace std;

void banana(); // function declaration

double a = 2.0;

double b = 3.0;

double c;

//---- main ---

int main()

{
banana ();

cout << a << " " << b << " " << c << endl;

return 0;

}

//---- banana ---

void banana ()

{

4.5 Functions with scalar arguments 103

a = 2.0*a;

b = -b;

c = a+b;

}

Running the executable prints on the screen:

4 -3 1.

Numerical global variables do not have to be initialized, and are set to zero by
the compiler.

Local variables

Local variables are defined inside the main function or user-defined func-
tions, and are private to the individual functions.

The following code employs only local variables:

#include <iostream>

using namespace std;

double pear (double, double); // function declaration

//---- main

int main()

{
double a = 2.5;

double b = 1.5;

double c = pear (a, b);

cout << a << " " << b << " " << c << endl;

return 0;

}

//--- pear ----

double pear (double a, double b)

{
a = 2.0*a;

b = 3.0*b;

double c = a+b;

return c;

}

Running the executable prints on the screen:

2.5 1.5 9.5

104 Introduction to C++ Programming and Graphics

Note that the function pear is unable to permanently change the values of
the variables a and b defined in the main program. When these variables are
communicated to the function pear, they are assigned new memory addresses,
all calculations are done locally, and the temporary variables disappear when
control is passed to the main program.

Thus, scalar variables passed to a function are not automatically updated.
This feature of C++ represents an important difference from Matlab and
Fortran 77.

Referral by address

To allow a function to change the value of a communicated scalar, we
specify that the scalar is not stored in a new memory address, but is referred
instead to the original address pertinent to the calling program. This is done
by employing the reference declarator “&”, which causes the argument of the
scalar to be the memory address instead of the actual memory content.

The implementation of the reference declarator is illustrated in the fol-
lowing code:

#include <iostream>

using namespace std;

void melon (double, double, double&);

//--- main ---

int main()

{
double a = 2.0;

double b = 3.0;

double c;

melon (a, b, c);

cout << a << " " << b << " " << c << endl;

return 0;

}

//--- melon ----

void melon (double a, double b, double& c)

{
a = 2.0*a;

c = a+b;

cout << a << " " << b << " " << c << "; ";

}

4.5 Functions with scalar arguments 105

The reference declarator & has been appended to the variable type definition
“double” both in the function melon prototype and in the function implemen-
tation. Running the executable prints on the screen:

4 3 7; 2 3 7

In contrast, if the reference declarators were omitted, the output would have
been:

4 3 7; 2 3 1

The reference declarator must be used when a function returns one variable or
a group of scalar variables through the function arguments.

Maximum integer with given bits

For example, we consider a code that computes the maximum integer
that can be described with a specified number of bits, n. According to our
discussion in Section 1.2, this is equal to

20 + 21 + . . . 2n = 2n+1 − 1

It is convenient to split the code into two files, one file containing the
main program and the second file containing a function ipow that computes
the integral power of an integer. The content of the main file named bits.cc is:

/* --

Greatest integer that can be described a specified number of bits

--*/

#include <iostream>

#include <iomanip>

#include "ipow.h"

using namespace std;

int main()

{
int n, i;

const int two = 2;

cout << " Will compute the greatest integer" << endl;

cout << " that can be described with n bits" << endl;

while(n!=0)

{
cout << endl;

cout << " Please enter the maximum number of bits" << endl;

106 Introduction to C++ Programming and Graphics

cout << " (should be less than 32)" << endl;

cout << " q to quit" << endl;

cout << " ------------------------------" << endl;

if(!(cin >> n)) break;

cout << setw(13) << " bits " << " "

<< setw(10) << " increment" << " "

<< setw(16) << "largest integer" << endl;

int q = 0;

for (i=0; i<=n-1; i++)

{
int p = ipow(two, i);

q = q + p;

cout << setw(10) << i+1 << " "

<< setw(10) << p << " "

<< setw(10) << q << endl;

};
};

return 0;

}

The while loop is abandoned when a false read is encountered. The content of
the second file named ipow.cc is:

/*--

function ipow computes the integer power ij

--*/

int ipow(int i, int j)

{
int k, accum=1;

for (k=1; k<=j; k++)

{
accum = accum * i;

};
return accum;

}

The content of the header file ipow.h is:

#ifndef IPOW H

#define IPOW H

using namespace std;

int ipow (int, int);

#endif

Note that the declaration:

int ipow (int, int)

4.5 Functions with scalar arguments 107

serves to specify the number and type of arguments. The alternative declaration

int ipow (int a, int b)

is also acceptable, where a and b are two irrelevant variables serving the role
or name-holders.

A makefile that compiles the files and links them into an executable
named bits reads:

bits: bits.o ipow.o

g++ -o bits bits.o ipow.o

ipow.o: ipow.cc

g++ -c ipow.cc

bits.o: bits.cc

g++ -c c bits.cc

The executable is built by issuing the Unix command:

make bits

and is subsequently run by issuing the command

./bits

A typical session follows:

Will compute the greatest integer

that can be described with n bits

Please enter the number of bits

(should be less than 32)

q to quit

31

bits increment largest integer

1 1 1

2 2 3

3 4 7

4 8 15

5 16 31

6 32 63

7 64 127

8 128 255

9 256 511

10 512 1023

11 1024 2047

108 Introduction to C++ Programming and Graphics

12 2048 4095

13 4096 8191

14 8192 16383

15 16384 32767

16 32768 65535

17 65536 131071

18 131072 262143

19 262144 524287

20 524288 1048575

21 1048576 2097151

22 2097152 4194303

23 4194304 8388607

24 8388608 16777215

25 16777216 33554431

26 33554432 67108863

27 67108864 134217727

28 134217728 268435455

29 268435456 536870911

30 536870912 1073741823

31 1073741824 2147483647

Please enter the number of bits

(should be less than 32)

q to quit

q

Return of an alias

An alias, also called a reference, is a duplicate name of a defined variable.
In Chapter 2, we saw that an alias can be declared by stating, for example,

double a;

double & b = a;

In this case, b is an alias of a.

A function can receive a number of variables, and return an alias to one
of these variables. For example, the following function receives two integers and
returns a reference to the greater

int& max alias(int& a, int& b)

{
if(b>a)

{
return b;

}

4.6 Functions with array arguments 109

return a;

}

Now consider the main program:

int main()

{
int a=5, b=10;

int & c = max alias(a, b);

c = 20;

cout << a << " " << b << endl;

return 0;

}

The output is:

5 20

We can circumvent introducing the alias c by replacing the second and third
lines with the single line:

maxal(a, b) = 20;

We see that returning an alias allows us to bypass temporary variables
and thus save memory space.

Problems

4.5.1. Write a function that returns the product of two real numbers through
an argument, and the ratio through the function return.

4.5.2. Write a function that returns the sum and the difference of two real
numbers through its arguments.

4.5.3. Explain why the results of the bits program discussed in the text are
consistent with the data given in Table 2.3.1.

4.6 Functions with array arguments

Unlike scalar variables, array variables communicated to a function are referred
to the memory address allocated in the calling program. Thus, array variables
are called by reference or by address. By default, user-defined functions are
able to change the values of the elements of a communicated array.

110 Introduction to C++ Programming and Graphics

The following main program contained in the file prj.cc calls a user-
defined function to compute the inner product (projection) of two vector arrays:

#include <iostream>

using namespace std;

void prj (double[], double[], int, double&);

//--- main ---

int main()

{
const int n=2;

double a[n] = {0.1, 0.2};
double b[n] = {2.1, 3.1};
double prod;

prj (a,b,n,prod);

cout << "inner product: " << prod << endl;

return 0;

}

//--- prj ---

void prj (double a[], double b[], int n, double& prod)

{
prod = 0.0;

for (int i=0;i<=n-1;i++)

prod = prod + a[i]*b[i];

}

Running this program prints on the screen:

inner product: 0.83

Constant arguments

To deny a user-defined function the privilege of changing the values of a
communicated array, we declare the array as “constant” in the function call. If
the function attempts to change the values of this array, an error will be issued
during compilation. Consider the following working code:

#include <iostream>

#include <cmath>

using namespace std;

4.6 Functions with array arguments 111

void squirrel (const double[], double[], int);

/*-------main---------*/

int main()

{
const int n=3;

double a[n] = {1, 2, 3};
double b[n] = {1, 4, 9};
squirrel (a, b, n);

for (int i=0; i<=n-1; i++)

{
cout << a[i] << " " << b[i] << endl ;

}
return 0;

}

/*-------squirrel---------*/

void squirrel(const double a[], double b[], int n)

{
for (int i=0; i<=n-1; i++)

{
// a[i] = sqrt(a[i]);

b[i] = sqrt(b[i]);

}
}

If the fourth line from the end is uncommented, the compiler will produce the
error message:

squirrel.cc:22: assignment of read-only location

Matrix arguments

In the case of vectors, we do not have to specify the length of the arrays
in the argument of a function. This is not true in the case of matrices where
only the length of the first index can be omitted. The reason is that C++ must
know the row width in order to assess the memory addresses of the first-column
elements and store the row elements in successive memory blocks.

The following code calculates and prints the sum of the diagonals (trace)
of a square matrix:

112 Introduction to C++ Programming and Graphics

#include <iostream>

using namespace std;

const int n=2;

void trace (double[][n], double&);

//---------------- main -----------------

int main()

{
double a[n][n] = {{0.1, 0.2}, {0.9, 0.5}};
double Trace;

trace (a, Trace);

cout << "Trace: " << Trace << endl ;

return 0;

}

//---------------- trace -----------------

void trace (double a[][n], double& Trace)

{
Trace= 0.0;

for(int i=0; i<=n-1; i++)

{
Trace = Trace + a[i][i];

}
}

Running the core prints on the screen:

Trace: 0.6

An alternative implementation of the trace function that passes the trace
through the function return is:

double trace (double a[][n])

{
Trace=0.0;

for(int i=1; i<=n-1; i++)

{
Trace = Trace + a[i][i];

}
return Trace;

}

In this case, the function call is:

double Trace = trace (double a[][n]);

4.6 Functions with array arguments 113

Vector projections

As an application, we read a matrix and a vector from the file ma-
trix v.dat, and then multiply the vector by the matrix numerous times. The
code consists of the main program and a function that performs the multiplica-
tion, both contained in the file mapping.cc. After each mapping, the vector is
optionally normalized so that its length becomes equal to one, and aesthetically
printed on the screen.

/*--

Multiply a vector by a square matrix many times

--*/

#include <iostream>

#include <iomanip>

#include <fstream>

#include <cmath>

using namespace std;

void mat vec (int, double[][50], double[], double[]);

//--- main ---

int main()

{
int n, i, j, norm;

double b[50],c[50],a[50][50];

cout << endl;

cout << " Normalize the vector after each projection?" << endl;

cout << " Enter 1 for yes, 0 for no" << endl;

cout << " -------------------------" << endl;

cin >> norm;

//--- Read the matrix and the vector:

ifstream input data;

input data.open("matrix v.dat");

input data >> n;

for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)

{
input data >> a[i][j];

}
}

for (i=1;i<=n;i++)

114 Introduction to C++ Programming and Graphics

{
input data >> b[i];

}

input data.close();

//--- Display:

cout << endl ;

cout << " Matrix - initial vector:";

cout << "\n\n";

for (i=1;i<=n;i++)

{
for (j=1;j<=n;j++)

{
cout << setw(8) << a[i][j];

}
cout << " " << setw(8) << b[i] << endl;

}
cout << "\n\n";

//--- Mapping:

int icount=0, more=1;

while (more!=0)

{
mat vec (n,a,b,c);

for (i=1;i<=n;i++)

{
b[i]=c[i];

}
//..................

if(norm == 1)

{
double rnorm = 0;

for (i=1;i<=n;i++)

{
rnorm = rnorm + b[i]*b[i];

}
rnorm = sqrt(rnorm);

for (i=1;i<=n;i++)

{
b[i]=b[i]/rnorm;

}
}

4.6 Functions with array arguments 115

//..................

cout << " Projected vector at stage: " << icount;

cout << "\n\n";

for (i=1;i<=n;i++)

{
cout << setprecision(5) << setw(10);

cout << b[i] << endl;

}

icount = icount+1;

cout << " One more projection? "<< endl ;

cin >> more;

}
return 0;

}

/*---

function mat vec performs matrix-vector

multiplication: c i = a ij b j

--*/

void mat vec (int n, double a[][50], double b[], double c[])

{
int i, j;

for (i=1;i<=n;i++)

{
c[i] = 0;

for (j=1;j<=n;j++)

{
c[i] = c[i] + a[i][j]*b[j];

}
}

}

The content of the file matix v.dat is:

5

1.0 -2.0 3.0 1.2 2.6

-4.0 2.0 -3.0 8.9 -5.9

3.0 -3.0 3.0 -2.7 0.1

1.2 8.9 -2.7 3.2 1.3

2.6 -5.9 0.1 1.3 -0.2

0.1 0.4 -0.2 -0.1 -2.9

116 Introduction to C++ Programming and Graphics

A typical session is:

Normalize the vector after each projection?

Enter 1 for yes, 0 for no

1

Matrix - initial vector:

1 -2 3 1.2 2.6 0.1

-4 2 -3 8.9 -5.9 0.4

3 -3 3 -2.7 0.1 -0.2

1.2 8.9 -2.7 3.2 1.3 -0.1

2.6 -5.9 0.1 1.3 -0.2 -2.9

Projected vector at stage: 0

-0.45848

0.88114

-0.077777

0.006652

-0.085453

One more projection?

1

Projected vector at stage: 1

-0.22529

0.3709

-0.36126

0.62582

-0.53807

One more projection?

1

Projected vector at stage: 2

-0.19481

0.828

-0.33318

0.38323

-0.13635

One more projection?

1

Projected vector at stage: 3

-0.1947

0.54262

-0.3629

0.64434

-0.34753

One more projection?

1

Projected vector at stage: 4

-0.1737

0.74636

4.7 External variables 117

-0.35276

0.49945

-0.19718

One more projection?

1

Projected vector at stage: 5

-0.18376

0.61676

-0.36129

0.608

-0.29267

One more projection?

0

Problems

4.6.1. Write a function that returns the Cartesian norm of a vector,

L2 =
√

v[1]2 + v[2]2 + · · · + v[n]2.

4.6.2. Write a function that returns the p-norm of a vector,

Lp = (v[1]p + v[2]p + · · · + v[n]p)1/p,

where p is a specified real number.

4.6.3. Write a function that computes and passes to the main function the
transpose of a two-dimensional matrix. If A[i][j] is an arbitrary m× n
matrix, its transpose is another n×m matrix whose elements are defined
as: B[i][j]=A[j][i].

4.6.4. Run the mapping code to assess the fate of the vector as the iterations
continue.

4.7 External variables

Assume that a code has been split into two files, one file containing the main
program and the second file containing a function. Moreover, assume that the
global integer variable kokoras is defined and possibly evaluated in the first file
before the implementation of the main function.

The same global variable cannot be defined in the second file, or the
linker may throw an exception on multiple variable definitions. However, if the
variable is not defined in the second file, the individual compilation of this file
will fail.

118 Introduction to C++ Programming and Graphics

To circumvent this difficulty, we declare the variable in the second file as
external by issuing the statement:

extern int kokoras;

which reassures the compiler that the value of this variable will be supplied
externally.

As an example, the main program contained in the file kotoula.cc, and a
function named kalaboki are implemented, respectively, as:

#include <iostream>

#include "kalaboki.h"

using namespace std;

int kokoras = 10;

int main()

{
kalaboki();

cout << kokoras << endl;

return 0;

}

and

using namespace std;

extern int kokoras;

void kalaboki()

{
kokoras++;

return kokoras;

}

The header file of the function kalaboki.cc is:

#ifndef KALABOKI H

#define KALABOKI H

using namespace std;

extern int kokoras;

void kalaboki();

#endif

4.8 Function overloading 119

If more than two files are involved, a variable may be declared as external
in all but one file where it is defined and possibly evaluated. This may be the
file hosting the main program or another file hosting a function.

Problems

4.7.1. What is the output of the kotoula code?

4.7.2. Write a code contained in three files hosting the main program and two
functions. A matrix array should be defined and evaluated in a function
file, and should be declared as external in the other two files.

4.8 Function overloading

With the exception of the main function, two entirely different functions are
allowed to have the same name, provided they have distinct lists of arguments.
The compiler will realize that these are distinct functions, distinguished by the
list or type of their arguments.

For example, the following code computes the inverse-distance potential
of two charged particles along the x axis. When the particles coincide, the
potential is infinite and a warning is issued:

#include <iostream>

using namespace std;

/*---------- regular potential ----------*/

double potential(double a, double b)

{
return 1/(a-b);

}

/*---------- singular potential ----------*/

string potential()

{
return "Warning: singular potential";

}

/*---------- main----------*/

int main()

{
double a=1.1;

double b=2.2;

120 Introduction to C++ Programming and Graphics

if(a!=b)

{
double V = potential(a, b);

cout << "Potential: " << V << endl;

}
else

{
string message = potential();

cout << message << endl;

}

return 0;

}

In this case, we implement the function potential twice, the first time with
two arguments and the second time with no arguments. The return of these
functions is also different, though this is not necessary for the functions to be
distinguished by the compiler.

Problems

4.8.1. Write a code that overloads twice a function of your choice.

4.8.2. Consider two functions with the same name and same arguments but
different return data types. Are these functions distinguishable?

4.9 Recursive calling

C++ functions are allowed to call themselves in a recursive fashion that is
reminiscent of a nested sequence.

For example, recursive function call can be used to compute the factorial
of an integer n! = 1 · 2.̇.. · n, as implemented in the following algorithm:

int factorial (int n)

{
if(n==1)

int fact = 1;

else

fact = n * factorial(n-1);

return fact;

}

Recursive calling is ideal for computing self-similar objects such as fractals con-
taining an infinite cascade of geometrical patterns. On the down side, recursive
calling carries the risk of prolonged execution time.

4.10 Function templates 121

Problem

4.9.1. What is the output of the following bizarre code?

#include <iostream>

using namespace std;

int main()

{
static int i=0;

i++;

cout << i << endl;

i = main();

return 0;

}

4.10 Function templates

Assume that a function performs a certain task on numbers, and the same
function performs the same task on strings. For example, the function may
sort an array of numbers or alphabetize a list.

We can avoid duplicating the function by declaring it as a template and
putting it in a header file. This is one instance where the implementation of a
function must be included in the header file. The header file then becomes an
implementation-included or definition-included header file.

The reason for including the implementation in the header file is that the
template function materializes on demand. If we compile separately the source
code of the implementation, we will get an empty object code. Though some
compilers allow declaration-only header files for template functions, this is the
exception rather than the rule.

The following header file prsum.h contains the implementation of a func-
tion template that adds and prints two variables:

#ifndef PRSUM H

#define PRSUM H

#include <iostream>

using namespace std;

template <class T>

void prsum (T x, T y)

{
T z = x+y;

cout << z << endl;

122 Introduction to C++ Programming and Graphics

}

#endif

This function template has two arguments whose data type is left unspecified.
The symbol T representing the generic data type of x and y is arbitrary, and can
be replaced by any other symbol or variable name. However, it is a standard
practice to use T, standing for template.

Replacing T with an actual data type, such as int, we obtain the familiar
function definition:

void prsum (int x, int y)

This example suggests a method of constructing the template of a function:
write out the function as usual, and then replace a chosen data type in the
input, output, or both with a generic type denoted as T.

The following main program contained in the file fava.cc calls this func-
tion template to print the sum of two integers, the sum of two real numbers,
and the sum of two strings:

#include <iostream>

#include "prsum.h"

using namespace std;

int main()

{
int i=5, j=10;

prsum<int>(i,j);

float a=4.5, b=-30.4;

prsum<float>(a,b);

string s="amphi", t="theater";

prsum<string>(s,t);

return 0;

}

The executable fava is produced by issuing the command:

c++ -o fava fava.cc

Running the executable produces on the screen:

15

-25.9

amphitheater

4.10 Function templates 123

Bubble sort

The header file bsort.h containing the implementation of the bubble-sort
algorithm discussed in Section 3.8 reads:

#ifndef BSORT H

#define BSORT H

using namespace std;

template <class T>

T bsort (int n, T x[])

{
int Istop,k,i;

T save;

k = n-1; // number of comparisons

do {
Istop = 1; // will stop if Iflag 1

for (i=1;i<=k;i++) // compare

{
if(x[i]>x[i+1])

{save = x[i]; // swap

x[i]=x[i+1];

x[i+1] = save;

Istop = 0; // an exchange occurred; do not stop

}
}

k--; // reduce the number of comparisons

} while(Istop==0);

return x[n];

}

#endif

This function template returns to the calling program the entry at the bottom
of the sorted list. The function has two arguments: the integer n, and the vector
variable x[] whose data type is left unspecified.

Replacing T with an actual data type, such as float, we obtain the
familiar function definition:

float bsort (int n, float x[])

The main program cities.cc listed below calls this template function to
alphabetize a list of cities:

#include <iostream>

#include <iomanip>

124 Introduction to C++ Programming and Graphics

#include "bsort.h"

using namespace std;

int main()

{
const int n=6;

string city[n+1];

city[1]="Oslo";

city[2]="Bayreuth";

city[3]="Chevy-Chase";

city[4]="Baltimore";

city[5]="Waco";

city[6]="Kalambaka";

string bottom = bsort<string> (n, city);

for(int i=1;i<=n;i++)

{
cout << setw(3) << right << i << " " ;

cout << setw(15) << left << city[i] << endl;

}

return 0;

}

The executable cities is produced by issuing the command:

c++ -o cities cities.cc

Running the executable produces on the screen the alphabetized list:

1 Baltimore

2 Bayreuth

3 Chevy-Chase

4 Kalambaka

5 Oslo

6 Waco

The main program income.cc listed below calls this template function to
sort an array of taxpayer income in dinars:

#include <iostream>

#include <iomanip>

#include "bsort.h"

using namespace std;

int main()

{

4.10 Function templates 125

const int n=5;

float income[n+1];

income[1]=73020;

income[2]=63250;

income[3]=83890;

income[4]=20340;

income[5]=80234;

float bottom = bsort<float> (n, income);

for(int i=1;i<=n;i++)

{
cout << setw(3) << right << i << " " ;

cout << setw(15) << left << income[i] << endl;

}

return 0;

}

Running the executable produces on the screen the sorted list:

1 20340

2 63250

3 73020

4 80234

5 83890

Further properties of templates

Templates allow us to transmit values of constant parameters. As an
example, consider the code:

#include <iostream>

using namespace std;

//------prsum--------

template <class T, int n>

void prsum (T x, T y)

{
T z = x+y;

cout << n << " " << z << endl;

}

//------main--------

int main()

{

126 Introduction to C++ Programming and Graphics

int i=5, j=10;

prsum<int,1>(i,j);

float a=4.5, b=-30.4;

prsum<float, 2>(a,b);

string s="amphi", t="theater";

prsum<string, 3>(s,t);

return 0;

}

Running the code produces on the screen:

1 15

2 -25.9

3 amphitheater

Problems

4.10.1. Write a function template of your choice.

4.10.2. Convert the selection-sort algorithm discussed in Section 3.8 into a
template, and then run it for (a) a list of real numbers, and (b) a list of
strings.

Pointers 5
C++ offers an arsenal of tools that allow us to access the inner workings of a
code and directly manipulate and allocate memory. Among these tools, pointers
play a prominent role. Pointers are both revered and feared for their possible
misuse.

A pointer is the identification number of a variable or function, assigned
by the CPU on execution. A pointer can be used to identify a variable in
the memory bank, reserve space for new data, and erase unwanted data to
eliminate memory leaks. The implementation of pointers can be simple or
subtle depending on the data types considered.

5.1 Pointers to scalars and characters

As soon as a scalar variable is declared in the main program or in a function,
it is given a memory address. The content of the memory address is the value
of the variable, which may change during execution. If the variable occupies
more than one byte, the memory address of the variable is the memory address
of the first byte.

Reference operator

We can extract the memory address of a variable using the reference
operator, &, which should be read as: “memory address of variable ...”; the
name of the appended variable should replace the three dots.

The following code continued in the file pointer1.cc evaluates four vari-
ables and extracts their memory addresses:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int a=4;

128 Introduction to C++ Programming and Graphics

float b=1.2;

double c=3.45;

char d=99;

cout << setw(5) << a << " " << (unsigned int) &a << endl;

cout << setw(5) << b << " " << (unsigned int) &b << endl;

cout << setw(5) << c << " " << (unsigned int) &c << endl;

cout << setw(5) << d << " " << (unsigned int) &d << endl;

return 0;

}

The output of the code is:

4 3219066260

1.2 3219066256

3.45 3219066248

c 3219066247

The memory addresses printed as unsigned integers appear in the second col-
umn.

We can store the memory address of a variable in a new integer variable.
In our example, we can state:

unsigned int mab = (unsigned int) &b;

The parentheses on the right-hand side implement typecasting. When printed,
the integer mab will have the value 3219066256.

Pointer variables

Instead of implementing typecasting, we can store the memory address
of a variable in another variable of the pointer type called, for example, pname.
This practice prevents us from confusing true integer variables with those hold-
ing memory addresses.

A pointer corresponding to an integer variable is declared as:

int * pname

or

int *pname

A pointer corresponding to a real variable registered in double precision
is declared as:

double * pname

5.1 Pointers to scalars and characters 129

or

double *pname

Similar declarations are made for other types.

Once declared, a pointer can be evaluated using the reference operator,
(&). For example, if pname is a pointer to an integer and a is an integer, we
may evaluate:

pname = &a;

Declaration and initialization can be combined into one statement:

int * pname = &a;

The following code contained in the file pointer2.cc evaluates four variables and
extracts their memory addresses through pointers:

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int a=4;

float b=1.2;

double c=3.45;

char d=99;

int * memad a;

float * memad b;

double * memad c;

char * memad d;

memad a = &a;

memad b = &b;

memad c = &c;

memad d = &c;

cout << setw(5) << a << " " << (unsigned int) memad a << endl;

cout << setw(5) << b << " " << (unsigned int) memad b << endl;

cout << setw(5) << c << " " << (unsigned int) memad c << endl;

cout << setw(5) << d << " " << (unsigned int) memad d << endl;

return 0;

}

130 Introduction to C++ Programming and Graphics

The prefix & in the statements evaluating the pointer variables is the reference
operator. The output of the code is:

4 3219988068

1.2 3219988064

3.45 3219988056

c 3219988055

Alternatively, we could have combined pointer declaration and evaluation
by stating:

int * memad a = &a;

float * memad b = &b;

double * memad c = &c;

char * memad d = &d;

Dereference operator

Conversely, we can extract the memory content of a specified memory
address using the dereference operator, *, which should be read: “content of
the memory address ...”; the name of the appended pointer variable should
replace the three dots.

The following statements declare and evaluate an integer, extract its
memory address through a pointer, and then deduce the memory content:

int a=4;

int * memad a = & a;

int verify a = * memad a;

cout << a << " " << memad a << " " << verify a << endl;

The prefix * in the statement evaluating the content of the pointer variable is
the dereference operator. The output of the code is:

4 0xbfa6e2c8 4

Note that the memory address is printed in the hexadecimal system.

It is unfortunate that the asterisk is used both in the pointer declaration
and as the dereference operator. It would have been much less confusing if a
different symbol were chosen for the declaration.

5.1 Pointers to scalars and characters 131

Two ways of changing a variable

We can change the value of variable either directly or indirectly by chang-
ing the content of its memory address. The direct route amounts to telling a
friend, “I will send you a gift”; the indirect way amounts to saying, “I will send
a gift to the occupant of your house.”

The indirect way is illustrated in the following code contained in the file
pointer3.cc:

#include <iostream>

using namespace std;

int main()

{
double a = 3.4;

cout << a << " ";

double * memada = &a;

*memada = 3.5;

cout << a << endl;

return 0;

}

Running the code prints on the screen:

3.4 3.5

Null pointer

A declared but non-initialized pointer has an arbitrary and possibly in-
appropriate value leftover in the memory block where it resides. To ensure a
proper value, we initialized the pointer as NULL by stating, for example,

int * pnt1 = NULL;

Pointer arithmetic

When we increase or decrease the value of a pointer by one unit, we
obtain the memory address of a memory cell that is shifted to the right or left
by a number of memory cells corresponding to the byte size of the stored data
type.

The following code illustrates the memory layout of a two-dimensional
array (matrix):

132 Introduction to C++ Programming and Graphics

#include <iostream>

using namespace std;

int main()

{
float A[2][2]={ {1.1, 1.2}, {1.3, 1.4} };
float * memad1, * memad2; * memad3, * memad4;

memad1 = &A[0][0];

memad2 = memad1+1;

memad3 = memad2+1;

memad4 = memad3+1;

cout << memad1 << " " << *memad1 << endl;

cout << memad2 << " " << *memad2 << endl;

cout << memad3 << " " << *memad3 << endl;

cout << memad4 << " " << *memad4 << endl;

return 0;

}

The output of the code is:

0xbfafdfe0 1.1

0xbfafdfe4 1.2

0xbfafdfe8 1.3

0xbfafdfec 1.4

The memory addresses are printed in the hexadecimal system. We observe that
the first and second rows of the matrix are stored in memory addresses that
differ by increments of four. The byte size of float is clearly four, in agreement
with the data type listing of Table 1.1.1.

Pointer to pointer

A second-order pointer holds the memory address of a pointer associated
with a regular (non-pointer) variable.

The following code contained in the file pointer2p.cc evaluates a variable,
extracts its memory address through a pointer, extracts the memory address
of the pointer through a second-order pointer, and then deduces the memory
contents:

#include <iostream>

using namespace std;

int main()

5.1 Pointers to scalars and characters 133

{
double a=8.45;

double * memada;

double ** memadb;

memada = &a;

memadb = &memada;

double verifya = *memada;

double verifyb = **memadb;

cout << a << endl;

cout << memada << " " << memadb << endl;

cout << verifya << " " << verifyb << endl;

return 0;

}

Running the code prints on the screen:

8.45

0xbfd40150 0xbfd4014c

8.45 8.45

Third- and high-order pointers are defined in similar ways.

Inverse typecasting

At the beginning of this section, we saw that the memory address of
a variable can be stored as a regular integer of a non-pointer type through
typecasting.

Double use of the dereference operator allows us to map the integer back
into the variable. To demonstrate the method, we consider the statements:

float b=1.2;

unsigned int mab = (unsigned int) &b;

cout << b << " " << mab << " " << * (float*) mab << endl;

The output on the screen is:

1.2 3215432204 1.2

The expression * (float*) mab typecasts the integer mab as a pointer corre-
sponding to a float, and then extracts the pointer content.

134 Introduction to C++ Programming and Graphics

It would seem that this method can be used to extract the content of a
given memory address by stating, for example,

cout << b << " " << mab << " " << * (char*) 234 << endl;

However, since we do not know the data type stored in that address, we will be
greeted with the dreaded segmentation fault.

Problems

5.1.1. Assess the data types of the variables p1 and p2 declared in the line:

int * p1, p2;

5.1.2. Initialize a pointer to a data type of your choice as NULL, and then
print and discuss its value.

5.1.3. A collection of pointers to the same data type can be accommodated in
a vector array. Write a program that evaluates and prints such an array.

5.1.4. Write a program that defines and prints the fourth-order pointer of a
character.

5.2 Pointers to arrays and strings

To locate a vector v in memory, we require the address of the first element,
v[0]. Subsequent elements are located in consecutive memory addresses.

The following code contained in the file pointer vector.cc extracts the
address of a vector and confirms that it is equal to the address of the first
element:

#include <iostream>

using namespace std;

int main()

{
double A[4]={1.1, 1.2, 1.3, 1.4};
double * memad1 = A;

double * memad2 = &A[0];

cout << memad1 << " " << memad2 << endl;

return 0;

}
The output of the code is:

0xbf83b6c8 0xbf83b6c8

5.2 Pointers to vectors and strings 135

Note that it is not permissible to state:

double * memad1 = &A;

A vector name is a pointer

The perfectly valid statement:

double * memad1 = A;

reveals that a vector name is a pointer. The statement:

cout << *A << endl;

will print the first element of the vector (in our case 1.1), and the statement

cout << *(A+1) << endl;

will print the second element of the vector (in our case 1.2). Thus, the expression
A[0] is identical to *A, the expression A[1] is identical to *(A+1), and the
expression

A[n]

is identical to

*(A+n)

where n is an integer. In fact, the compiler blindly substitutes *(A+n), for every
instance of A[n].

Vector layout

The following code contained in the file pointer vector1.cc further illus-
trates the layout of a vector in a contiguous memory block:

#include <iostream>

using namespace std;

int main()

{
double A[3]={1.1, 1.2, 1.3 };
double * memad1 = A;

double * memad2 = memad1+1;

double * memad3 = memad2+1;

136 Introduction to C++ Programming and Graphics

cout << memad1 << " " << memad2 << " "<< memad3 <<endl;

cout << *memad1 << " " << *memad2 << " "<< *memad3 <<endl;

return 0;

}

The output of the code is:

0xbf9c6e48 0xbf9c6e50 0xbf9c6e58

1.1 1.2 1.3

Strings

Pointers of string variables behave in a similar fashion. Consider the
following code contained in the file pointer string.cc:

#include <iostream>

using namespace std;

int main()

{
string onoma = "iakovos";

string * memad = &onoma;

cout << onoma << endl;

cout << memad << endl;

return 0;

}

Running the executable produces the output:

iakovos

0xbfa845f4

In this example, 0xbfa845f4 is the memory address of the first letter of the
string iacovos.

String to character conversion

We can use pointers to convert a string variable to a character array.
First, we find the length of the string using the length function and introduce
an equal-sized character array. Second, we run through successive pointers of
the string characters while evaluating successive elements of the character array,
as illustrated in the following block:

string onoma= "arkouditsa";

int l = onoma.length();

5.3 Sorting with the STL 137

char oros[l];

char * memad;

for (int i=0;i<l;i++)

{
memad = &onoma[i];

oros[i] = *memad;

cout << oros[i];

}

Running the code produces the output:

arkouditsa

Problems

5.2.1. Describe the action of the following statements:

float a[5];

float * pnt = a;

pnt = 3.5;

5.2.2. Explore whether it is possible to convert a character array into a string.

5.3 Sorting with the STL

Consider a vector v defined in the main program and passed to a function named
ex fnc(v) as a function argument, ex fnc(v). We have seen that, in fact, the
main program passes to the function the memory address of the first element of
the vector v. Accordingly, v in ex fnc(v) should be interpreted as a pointer.

C++ includes the standard template library (STL) offering a variety of
utility functions and data structures (see Appendix G). Among them is the
function sort that sorts a a subset of a list encapsulated in a vector v[i],
where i = 0, . . . , N − 1. This function receives as input the memory address of
the first element of the subset, and the memory address of the last element of
the subset increased by one unit.

For example, if v is a vector of floats, the following statements will sort
the whole list:

float * pnt = &v[0];

sort(pnt, pnt+N);

138 Introduction to C++ Programming and Graphics

These two statements can be replaced by the single statement:

sort(v, v+N)

which confirms that the vector v is passed to the function as a pointer.

The following code contained in the file sorting.cc uses the sort function
of the STL to sort and then print a list:

#include <iostream>

#include <iomanip>

#include <algorithm>

using namespace std;

int main()

{
const int N=7;

float v[N]={10.0, -9.4, 3.4, -3.4 -10.8, 199.0, -3.56};

sort(v, v+N);

cout<< setiosflags(ios::fixed | ios::showpoint);

for(int i=0;i<=N-1;i++)

{
cout << setw(3) << i << " " << setw(6) << setprecision(2)

<< v[i] << endl;

}

return 0;

}

Note that we have included the header file algorithm of the STL. Running the
code prints on the screen:

0 -14.20
1 -9.40
2 -3.56
3 0.00
4 3.40
5 10.00
6 199.00

If we only want to sort a subset of the list, we can state, for example,

float * pnt = &v[3];

sort(pnt, pnt+2);

5.3 Sorting with the STL 139

Order of an algorithm

We can assess the performance of the sort function by studying the
relation between the elapsed CPU time and the list size, N . The following code
contained in file ransort.cc generates and sorts a random list of integers:

#include <algorithm>

using namespace std;

int main()

{
const int N=1048*1048*2;

int random integer[N];

for(int i=1;i<=N;i++)

{
random integer[i] = rand();

}

sort(random integer, random integer+N+1);

return 0;

}

Now we compile the code into the executable ransort, and issue the Unix com-
mand:

time ransort

On execution, we see on the screen:

0.664u 0.020s 0:00.70 97.1% 0+0k 0+0io 0pf+0w

The first field is the CPU time used by the program (user), the second field is
the CPU time used by the operating system in support of the program (system),
and the third field is total CPU time (user and system). The significance of
the rest of the fields is explained in the time manual invoked by issuing the
command: man time.

Running the program with list size N = 219, 220, and 221, requires, res-
pectively, 0.180u, 0.312u, and 0.652u of CPU time. We observe that, as N is
doubled, the CPU time also nearly doubles, which means that the algorithm
implemented in sort is almost linear. In fact, analysis shows that the CPU
time scales with N log N . By contrast, if we had used the bubble-sort algo-
rithm discussed in Chapter 3, we would have found that the CPU scales with
N2, which is much inferior.

140 Introduction to C++ Programming and Graphics

Problems

5.3.1. Use the sort function to alphabetize a list of ten African countries.

5.3.2. Verify by computation that the CPU time of the bubble-sort algorithm
scales with N2. This means that, when N is doubled, the CPU time is
multiplied nearly by a factor of four.

5.4 Command line arguments

When execution has been concluded, the main program returns to the operating
system (OS) an integer. Conversely, the main program can receive information
from the operating system with the help of pointers.

To illustrate the protocol, we consider the following code contained in the
file os.cc and compiled into an executable named os:

#include <iostream>

using namespace std;

int main(int argc, char * argv[])

{
for (int i=0;i<=argc-1;i++)

{
cout << i+1 << " " << argv[i] << endl;

}
return 0;

}

Running the executable by typing in the command line:

os

prints on the screen:

1 os

The integer argc is an argument counter indicating the number of string vari-
ables (character arrays) passed from the operating system to the main program.
The variables themselves are contained in a string array indicated by the pointer
char * argv holding the argument values. In this case, the argument counter
is one, and the sole component of the string array is the name of the executable.

If we run the executable by typing in the command line:

os is running

5.4 Command line arguments 141

we will see on the screen:

1 os

2 is

3 running

We can use a double pointer to simplify the arguments of the main func-
tion by stating:

int main(int argc, char ** argv)

Building commands

The ability to receive information from the operating system allows us to
build command-line applications. For example, suppose that we want to build
a command that generates a file with a specified name, prints a zero in the file,
and then closes the file. The command is implemented in the following code
contained in the file nfz.cc and compiled into an executable named nfz:

#include <fstream>

using namespace std;

int main(int argc, char **argv)

{
ofstream file1;

file1.open(argv[1]);

file1 << "0";

file1.close();

return 0;

}

Running the code by typing in the command line:

nfz sage

generates a file named sage containing a zero.

What if we forget to type the name of the file or accidentally type multiple
file names? In the first case argc=1, and in the second case argc>2. To issue
a warning, we include the iostream system header file and insert the following
block at the top of code:

if(argc != 2)

{
cout<< "Please use: "<< argv[0] <<" <filename>" << endl;

return 1;

};

142 Introduction to C++ Programming and Graphics

Print a file

In a more advanced application, we generate a binary executable named
pfile that displays the content of a file with a specified name filename in response
to the command:

pfile filenme

This is accomplished by the following code contained in the file pfile.cc:

#include <fstream>

#include <iostream>

using namespace std;

int main (int argc, char *argv[])

{
ifstream dev1(argv[1])

if(dev1.is open())

{
char x;

while (dev1.get(x))

cout<< x;

}
else

{
cout<<"Unable to open the file" << endl;

}
return 0;

}

The Boolean variable dev1.get(x) is false if the end of the file dev1 has been
reached, and true otherwise.

Problems

5.4.1. Add to the program pfile.cc a check that issues a warning if no file name,
or more than one file name, is specified.

5.4.2. Write an application that concatenates two files – that is, it creates a
new file consisting of the union of two input files.

5.5 Pointers to functions

Pointers to user-defined functions are employed to concisely represent the func-
tions. Like pointers of regular data types, function pointers can be included in
the arguments of functions to give compound functions.

5.5 Pointers to functions 143

Assume that we need to call a function A which, in turn, calls either
function B or function C. We want the call to A to include an argument that
allows us to specify which one of the functions B or C will be called. This can
be done be introducing pointers to functions B and C, called pA and pB, and
calling A with a pointer argument p that is evaluated either as the pointer of
B or as the pointer of C – that is, p=pB or p=pC.

If the prototype of a function is:

double functionname(double, double);

its pointer is declared as:

double (*othername)(double, double) = functionname;

The function may then be called as

c = functionname(a, b);

or

c = (*othername)(a, b);

For example, consider the following code consisting of three functions and
the main program, contained in the file pointer fun.cc:

#include <iostream>

using namespace std;

double ratio(double, double); // function prototype

double (*point ratio)(double, double)=ratio; // and its pointer

double product(double, double); // function prototype

double (*point product)(double, double)=product; // and pointer

/*--

The following is a function prototype; the arguments consist of two

"double" scalars and the pointer of a function that receives

two doubles and returns one double

---*/

double operate(double, double, double(*)(double, double));

/*--------------- main program --------------------*/

int main()

{

144 Introduction to C++ Programming and Graphics

int menu;

double a = 4.0;

double b = 2.0;

double result;

cout << "Please enter 1 for the ratio and 2 for the product" << endl;

cout << "q to quit" << endl;

cout << "q to quit" << endl;

while(cin >> menu)

{
if(menu==1)

{
result=operate(a, b, prat);

cout << a << "/" << b <<"=" << result<< endl;

}
else if(menu==2)

{
result=operate(a, b, pprod);

cout << a << "x" << b <<"=" << result<< endl;

}
}
return 0;

}

/*--------------- ratio --------------------*/

double ratio(double a, double b)

{
double c=a/b;

return c;

}

/*--------------- product--------------------*/

double product(double a, double b)

{
double c=a*b;

return c;

}
/*--------------- operate--------------------*/

double operate(double a, double b,

double (*funcall)(double, double))

{
double c=(*funcall)(a, b);

return c;

}

5.6 Pointers to free memory 145

The syntax of the function-pointer declaration is illustrated near the top of the
code. The main program calls the function operate with a function-pointer
argument that requests division or multiplication. A sample session is:

Please enter 1 for the ratio and 2 for the product q to quit

1

4/2=2

2

4x2=8

q

Problem

5.5.1. Add to the pointer fun code two more functions to perform addition and
subtraction.

5.6 Pointers to free memory

We have discussed pointers associated with declared variables. It is possible to
introduce a pointer not associated with a declared variable but corresponding
instead to unused or free memory that is available to all programs.

When a new pointer is declared, the corresponding memory address is
reserved and the associated memory content is initialized to zero. If the new
pointer declaration fails because free memory is not available, the system will
throw an exception.

A pointer corresponding to an undeclared integer is introduced by the
statements:

int * pname;

pname = new int;

where pname is a chosen pointer name. The two statements can be consolidated
into one:

int * pname = new int;

A pointer corresponding to an undeclared real variable registered in double
precision is declared as:

double * somename = new double;

Similar declarations are made for different data types.

146 Introduction to C++ Programming and Graphics

The following code introduces a new pointer and evaluates its content:

#include <iostream>

using namespace std;

int main()

{
int * memad = new int;

cout << memad << endl;

cout << *memad << endl;

return 0;

}

The output of the code is:

0xbff1b08c

0

which shows that the memory content is zero. In the same spirit, we can write:

double * pnt = new double;

cin >> *pnt;

which evaluates the memory content. Note that we do not have to introduce a
name for the variable contained in the memory slot addressed by the pointer,
and we simply use *pnt.

To free the memory cell, we delete the pointer pname using:

delete pname;

It is highly recommended that the value of a deleted pointer be reset to zero.
When the value of zero is assigned to a pointer, the pointer becomes null, that
is, it points to nothing.

The following code contained in the file pointer free.cc introduces and
immediately deletes a new pointer:

#include <iostream>

using namespace std;

int main()

{
int * memad = new int;

delete memad;

memad=0;

cout << *memad << endl;

5.6 Pointers to free memory 147

return 0;

}

Running the code produces the system-failure message:

Segmentation fault

However, running the same code without the memad=0; statement yields the
irrational answer:

0

New pointers to arrays have interesting properties. Consider the following
declarations:

int n=150;

double * pv;

pv = new double[n];

for (int i=0; i<n; i++)

{
pv[i] = 0;

}

Here we introduce a pointer, assign it to a vector with n slots, and then evaluate
the components of the pointer as though they were the vector. After evaluation,
the pointer becomes the vector!

To see this more clearly, consider the code:

#include <iostream>

using namespace std;

int main()

{
int n=150;

double * pv;

pv = new double[n];

cout << pv << endl;

for (int i=0; i<n; i++)

{
pv[i] = 0;

}

double * pointer1 = pv;

cout << pointer1 << endl;

148 Introduction to C++ Programming and Graphics

return 0;

}

The output is:

0x917e008

0x917e008

To free memory, we can delete the pointer using the commands:

delete []pv;

pv = 0;

The pointer-to-array conversion, and vice versa, is as brilliant as it is baffling.

Problem

5.6.1. What would the output of the pointer free1.cc code be without the line
delete memad; ?

Classes and Objects 6
The intelligent mind has a natural tendency to classify objects, items, concepts,
and abstract notions into groups recognized by given names:

• Races in anthropology

• Species in biology

• Sets and spaces in mathematics

• Elementary particles in physics

• Elementary motions in fluid mechanics

The groups are distinguished by common features and properties, concisely
called attributes, and the members interact by a well-defined set of rules.

An entity that belongs to a group is formally called a member, and an
action that can modify a member, make a member disappear, or generate an
offspring is called a member function.1 Examples of groups are:

The set of natural numbers: 1, 2, 3, 4, . . . :

The member function “addition of unity” operating on the member “2”
produces the member “3”.

The set of integers: . . . , -4, -3, -2, -1, 0, 1, 2, 3, 4, . . . :

The member function “subtraction of unity” operating on the member
“-3” produces the member “-4”.

The set of rational numbers, m/n, where m and n are integers:

The member function “addition” operating on the members m/n and
k/l produces the member (lm + kn)/(nl).

1Groucho Marx once said: “I do not want to belong to any club that would accept me as
a member.”(http://www.groucho-marx.com).

150 Introduction to C++ Programming and Graphics

Generic: Group Member Action
Maths: Space Element Operation
OOP: Class Object Member function
Science: Discipline Phenomenon Dynamics

Table 6.1 Equivalence of groups, spaces, and objects and their relation in object
oriented programming (OOP).

The set of real numbers registered as floating-point numbers in computer science:

The member function “multiplication by zero” operating on a member
produces the null member “0”.

Vector spaces in mathematics:

The member function “inner product” operating on a pair of members
produces a number that is a measure of the angle subtended between the
two vectors. If the inner product is zero, the two vectors are orthogonal.

The set of all two-index matrices aij :

Each member is identified by the pair of integers i and j.

In calculus, a “member function” defined on the set of real numbers is a
device that receives real numbers (input) and produces new numbers (output).
Stated differently, a function maps the input to the output. When the output
is the null point “0”, the input has been annihilated.

In object oriented programming (OOP), a group is a “class,” a member is
an “object,” and a “member function” implements an operation. By operating
on an object with a “function,” we can read, record, and change some or all
of its attributes. As an example, consider the class of all polygons. A member
function can be defined that transforms a rectangle into a triangle in some
sensible fashion.

Classes in object oriented programming can be as simple as the set of
integers (int) or the set of floating point numbers stored in double precision
(double), and as complex as a database whose members (entries) are described
by names, numbers, and other fields.

Table 6.1 displays the equivalence of groups, spaces, and objects and their
relation in object oriented programming (OOP).

6.1 Class objects and functions 151

6.1 Class objects and functions

An apple can be declared and initialized as a member of the “fruit” class by
stating:

fruit apple = fruit(q, w, ..., e);

The parentheses enclose names and numbers that define the apple, and can be
thought of as a bar code. In English, this line says:

Apple is a fruit uniquely defined by the properties (attributes): q, w, ... e.

The attributes can be words, sentences, or numbers.

A member function can be defined to transform an apple to an orange.
Assume that apple has been defined as an object of the fruit class, and change
has been defined as a member function. The C++ command that carries out
this operation is stated as:

apple.change(x, y, ..., q);

The parentheses enclose numbers and strings that ensure the apple-to-orange
transformation. In English, this line says:

Mutate the apple in a way that is uniquely determined by the parameters:
x, y, ..., q.

The apple may disappear after the operation, or continue to co-exist with the
orange. Which will occur depends on how the member function change has
been defined.

Classes define new data types and corresponding class functions beyond
those implemented in the standard C++ library. To see this, we consider the
familiar declaration and initialization of a string:

string gliko = "koulouraki";

We note the similarity with the previously stated apple declaration, and con-
clude that the string data type is implemented in a corresponding class with a
simplified implementation syntax. In this light, C++ endows us with unlimited
degrees of freedom for defining new data types and thereby building a language
inside another language.

152 Introduction to C++ Programming and Graphics

Problem

6.1.1. If the string data type were not available, what would be a sensible
statement declaring and initializing a string variable?

6.2 Class interfaces

The member functions of a class accomplish a broad range of tasks. First, they
construct (initialize) native objects, that is, they evaluate the data fields that
uniquely define an object. Second, they allow us to view and visualize an object.
Third, they allow us to intrusively operate on an isolated object or groups of
objects.

The set of member functions pertinent to a particular class is the class
interface.

Constructors

These member functions initialize an object. Constructors come in two
flavors: default constructors and parametered constructors.

Suppose that we want to create the beautiful Greek sculpture of the think-
ing man. To begin, we introduce the class of all sculptures, and use the default
constructor to materialize the default sculpture, which can be a square block
of clay. Alternatively, we may use the non-default constructor to materialize a
rectangular block of clay.

Accessor member functions

These member functions non-intrusively query an object, that is, they do
so without altering its properties.

Concerning the class of sculptures, an accessor member function may
report the length of the fingernails without actually clipping them.

Mutator member functions

These member functions are able to alter the members on which they
operate.

Concerning the class of sculptures, a mutator function can act like a
chisel.

6.3 Class definition 153

Destructors

Destructors are member functions that delete an object for revenge or to
free up memory and prevent memory leaks.

Transient objects are generated when we call a function to perform certain
operations, and then abandoned when we exit the function. Destructors allow
us to abandon the objects before exiting a function.

Problems

6.2.1. A function takes a bite off an apple declared as a member of the fruit
class. It this a mutator member function?

6.2.2. Define an accessor and a mutator member function operating on the
data type (class) of all integers.

6.3 Class definition

The “fruit” class definition has the general appearance:

class fruit

{
...

};

Here and elsewhere, the dots represent additional lines of code. Note the semi-
colon at the end of the class definition.

Member attributes are declared as public if they are disclosed to the main
program and functions of a different class, and private otherwise. Similarly,
interface functions are declared as public if they can be called from the main
program and from functions of a different class, and private otherwise. This
distinction motivates the class-definition structure:

class fruit

{
public:

...

private:

...

};

154 Introduction to C++ Programming and Graphics

Default constructor

Our first public definition is the default constructor. The fruit class
definition reads:

class fruit

{
public:

fruit ();

...

private:

...

};

Note that the default constructor does not have a return type, not even void.
The name of the default constructor is identical to the class name.

To define a fruit named “kiwi” using the default constructor, we state in
the main program:

fruit kiwi;

kiwi = fruit();

or

fruit kiwi = fruit();

or

fruit kiwi;

It is erroneous to declare:

fruit kiwi();

as the compiler interprets this statement as the prototype of a function named
kiwi that receives no arguments and returns a fruit.

Parametered constructor

Including also the parametered constructor, we obtain the class declara-
tion:

class fruit

{
public:

fruit();

6.3 Class definition 155

fruit(q, w, ..., e);

...

private:

...

};

Like the default constructor, the parametered constructor does not have a return
type, not even void. The name of the parametered constructor is identical to
the class name.

To define a fruit named “kiwi” using the parametered constructor, we
state in the main program:

fruit kiwi;

kiwi = fruit(q value, w value, ..., q value);

or

fruit kiwi = fruit(q value, w value, ..., q value);

or

fruit kiwi(q value, w value, ..., q value);

Two constructors

Since the default and parametered constructors have identical names,
they are distinguished only by the number and type of arguments enclosed
by the parentheses. This duplication is consistent with the notion of function
overloading: two functions with the same name are distinguished by the data
types of their arguments.

Defining a class constructor is not mandatory. If we do not declare a
constructor in the class definition, the compiler will assume that the class has
a default constructor with no arguments. However, it is a good idea to always
define a constructor.

Default destructor

The declaration of the default destructor is similar to that of the default
constructor. The class definition with the default constructor, the parametered
constructor, and the default destructor reads:

class fruit

{

156 Introduction to C++ Programming and Graphics

public:

fruit();

fruit(q, w, ..., e);

~fruit();

...

private:

...

};

To abandon kiwi, we state

kiwi = ~fruit()

Accessor function

To query the members of the fruit class on their color, we introduce the
accessor member function read color. The class definition reads:

class fruit

{
public:

fruit();

fruit(q, w, ..., e);

~fruit();

string read color(a, b, ..., c) const;

...

private:

...

};

The qualifier string indicates that the function read color will return a string
of characters in the form of a word or sentence describing the color. The qualifier
const indicates that the function is non-intrusive, that is, it is an accessor.

To read the color of kiwi, we state in the main program:

string chroma;

chroma = kiwi.read color (a, b, ..., c);

Mutator function

To convert one type of fruit into another, we introduce the mutator mem-
ber function change. The class definition reads:

6.3 Class definition 157

class fruit

{
public:

fruit();

fruit(q, w, ..., e);

string read color(a, b, ..., c) const;

void change(g, o, ..., x);

private:

...

};

The qualifier void indicates that the function change will return neither a
number, nor a word, nor a sentence, but will quietly carry out the requested
operation.

To change kiwi, we state in the main program:

kiwi.change (g, o, ..., x);

Public and private functions

If we declare a class function in the private section of the class, then
this function could be called from other class functions, but not from the main
program or any other external function.

Class implementation

Now we define the precise action taken by the member functions “fruit”,
“read color”, and “change” of the “fruit” class.

The implementation of the default fruit constructor reads:

fruit::fruit()

{
q = dv q;

w = dv w;

...

e = dv e;

}

where “dv q”, “dv w”, etc., are specified default values that describe an object
of the fruit class.

The implementation of the parametered fruit constructor reads:

fruit::fruit(value q, value w, ..., value e)

{

158 Introduction to C++ Programming and Graphics

q = value q;

w = value w;

...

e = value e;

}

where “value q”, “values w”, etc., are specified values or names that describe
an object of the fruit class.

The implementation of the default fruit destructor reads:

fruit::~fruit()

{
delete q;

delete w;

...

delete e;

}

In this case, q, w, ..., e are introduced as pointers.

The implementation of the non-intrusive read color function reads:

string fruit::read color(a, b, ..., c) const

{
...

return color;

}

The dots between the angular brackets denote various operations. The prefix
string indicates that, after operating on a member, the function read color
will return the string color, which can be evaluated as “red”, “green”, or any
other appropriate shade.

The implementation of the mutator change function is:

void fruit::change(g, o, ..., x)

{
...

}

The prefix “void” indicates that, when operating on a member, the function
“change” acts quietly and returns nothing.

The class implementation may be included in the class declaration either
partially or entirely. For example, the fruit class may be defined and imple-
mented as:

6.4 Private fields, public fields, and global variables 159

class fruit

{
public:

fruit();

{
q = dv q;

w = dv w;

...

e = dv e;

}
fruit(q, w, ..., e);

...

private:

...

};

However, this layout obscures the class structure in the absence of a concise
class definition. It is thus highly recommended that class definition and class
implementation are put in separate sections.

Problems

6.3.1. Explain why it does not make practical sense to define private construc-
tors.

6.3.2. An integer variable is declared as:

int a;

Is this statement consistent with a default constructor?

6.4 Private fields, public fields, and global variables

Next, we discuss the “private” variables of a class. To understand this concept,
it is helpful to imagine that a class is a biological cell or capsule whose interior
can be accessed, probed, altered or destroyed only by the member (capsule)
functions. The capsule encloses data which, if declared “private,” can be ac-
cessed only by the member functions of the host class, but not by any other
functions.

For example, if the string variable color, the string variable shape, and
the real variable size are private variables of the “fruit” class, we define:

class fruit

{

160 Introduction to C++ Programming and Graphics

public:

fruit();

fruit(q, w, ..., e);

~fruit();

string read color(a, b, ..., c) const;

void change(g, o, ..., x);

private:

string color;

string shape;

float size;

};

If we want to make the color of a fruit available to the main program and any
other function that uses objects of the fruit class, we must move the declaration:

string color;

to the public section of the class definition.

Suppose, for example, that a function outside the fruit class declares

kiwi = fruit();

If color is a private field, the statement:

cout << kiwi.color;

is unacceptable. However, if color is a public field, this statement is perfectly
acceptable. Class member fields are routinely kept private to prevent inadver-
tent evaluation in unsuspected parts of a code.

Before proceeding to discuss specific class implementations, we emphasize
two important properties regarding variable availability:

• The arguments of the constructor that defines an object, whether public
or private, are implicitly available to the member functions. Thus, the
calling arguments of a member function operating on an object include
by default the arguments of the constructor that defines the object.

For example, suppose that the vendor member function has been defined
as:

void fruit::vendor()

{
...

}

6.5 The fruit class 161

To operate on an apple with this function, we write:

fruit apple = fruit(value q, value w, ,...value e);

apple.vendor();

The attributes of the apple do not need to be passed explicitly to the
vendor. The first line can be shrunk into:

fruit apple(value q, value w, ,...value e);

• Global variables are available to all functions of all classes. Though global
variables must be declared outside the main program and any classes or
functions, they can be initialized and evaluated inside the main program
or any function.

6.5 The fruit class

Our definition of the fruit class involves the default constructor, a parameter
constructor, and two member functions:

#include <iostream>

using namespace std;

//--- CLASS FRUIT DEFINITION

class fruit

{
public:

fruit();

fruit(string color, string shape, float size);

string read color(bool Iprint) const;

void change color(string newcolor);

private:

string color;

string shape;

float size;

};

By way of choice, the three fruit attributes – color, shape, and size – have been
declared private.

The implementation of the default constructor is:

fruit::fruit()

{
color = "green";

shape = "spindle";

162 Introduction to C++ Programming and Graphics

size = 1.2;

}

The implementation of the parametered constructor is:

fruit::fruit(string clr, string shp, float size)

{
color = clr;

shape = shp;

size = 2.3;

}

The implementation of the non-intrusive read color function is:

string fruit::read color(bool Iprint) const

{
if(Iprint==true)

cout << color << endl;

return color;

}

The implementation of the mutator change color function is:

void fruit::change color(string clr)

{
color = clr;

}

The following main program defines and manipulates fruit class members:

int main()

{
bool Iprint = true;

fruit fig = fruit();

string fig color = fig.read color(Iprint);

cout << fig color << endl;

fruit apple = fruit("red", "round", 2.0);

string apple color = apple.read color(Iprint);

apple.change color("yellow");

apple color = apple.read color(Iprint);

return 0;

}

6.6 Friends 163

Running this program prints on the screen:

green

green

red

yellow

Because the attribute color has been declared as private, we cannot state
in the main program:

cout << fig.color << endl;

This would be acceptable only if the declaration:

string color;

were made in the public section of the class.

Problems

6.5.1. Add to the fruit class a member function that prints and returns (a) the
shape, and (b) the size of an object.

6.5.2. Add to the fruit class a member function that changes all three attributes
of an object.

6.5.3. Introduce a global variable of your choice and confirm that it can be
initialized and evaluated inside the main program or any fruit function.

6.5.4. Define the class of all taxpayers whose attributes include last name, first
name, social-security number, and income.

6.6 Friends

Privacy exceptions can be made to friends. If we want to disclose the private
fields of the class members to an external function named package, we state
this in the class definition. In the case of the fruit class, we state:

//--- CLASS FRUIT DEFINITION

class fruit

{
friend void package(fruit item);

public:

fruit();

fruit(string color, string shape, float size);

164 Introduction to C++ Programming and Graphics

string read color(bool Iprint) const;

void change color(string newcolor);

private:

string color, shape;

float size;

};

The function package now has access to color, shape, and price. We will
implement this function as:

//--- FRIEND FUNCTION

void package(fruit item)

{
if(item.size<1.0)

cout << "box" << endl;

else

cout << "crate" << endl;

}

We may then state in the main program:

fruit watermelon("green", "oval", 12.0);

package(watermelon);

The second statement will print on the screen:

box

We recall that, if we want to disclose a private field of an object to all
non-member functions, we must declare it as public.

Problems

6.6.1. Implement a friend function that determines whether the color of a fruit
is green.

6.6.2. Implement a friend function that determines whether the size of a fruit
is less than 3.0 inches.

6.7 Circles and squares

To further illustrate the concept of private variables, we consider a code defining
two classes, one containing circles and the second containing horizontal squares.

6.7 Circles and squares 165

The circles are defined by their center and radius, and the squares are defined
by their center and side length. In both cases, the x and y coordinates of the
center are hosted by a two-slot vector named center[2].

The circle class definition is:

#include <iostream>

using namespace std;

//--- CIRCLE CLASS DEFINITION

class circle

{
public:

circle(double, double, double);

void print() const;

private:

double center[2], rad;

};

The square class definition is:

//--- SQUARE CLASS DEFINITION

class square

{
public:

square(double, double, double);

void print() const;

private:

double center[2], side;

};

The circle class implementation is:

//--- CIRCLE CLASS IMPLEMENTATION

circle::circle(double center x, double center y, double radius)

{
center[0] = center x;

center[1] = center y;

rad = radius;

}

void circle::print() const

{
cout << center[0] << " " << center[1] << " " << rad << endl;

}

166 Introduction to C++ Programming and Graphics

The square class implementation is:

//--- SQUARE CLASS IMPLEMENTATION

square::square(double center x, double center y, double edge)

{
center[0] = center x;

center[1] = center y;

side = edge;

}

void square::print() const

{
cout << center[0] << " " << center[1] << " " << side << endl;

}

Note that the variable center is defined separately in each class. To
understand this practice, imagine that a native of Greece and a native of Cyprus
have the same name, Athenoula. This is permissible, as long as their passports
are issued from the respective different countries.

The following main program defines one object in each class and prints
its properties:

int main()

{
circle A = circle(0.1, 0.2, 0.3);

A.print();

square B = square(0.9, 1.2, 5.3);

B.print();

return 0;

}

Running the code produces on the screen:

0.1 0.2 0.3

0.9 1.2 5.3

Note that the print statement behaves in one way when it applies to A, and
in another way when it applies to B. This is an example of polymorphism.

The composite Greek word “polymorphism” consists of “poly,” which
means “many,” and “morphi,” which means “appearance.”

6.8 Algebra on real numbers 167

Problems

6.7.1. Add to the circle class a member function that computes and prints the
area of a circle, and to the square class a member function that computes
and prints the area of a square.

6.7.2. (a) Add to the circle class a member function that assesses whether two
members overlap. (b) Repeat for the square class.

6.8 Algebra on real numbers

As a further example, we introduce the class of points along the x axis described
by the x value and their color. If x is positive, the color is black, if x is negative,
the color is red, and if x is zero, the color is white.

We will endow the algebra class with several member functions that per-
form the following tasks:

• Initialize a new point using the default constructor.

• Initialize a new point using the parametered constructor.

• Determine the color from the value of x.

• Get the value of x and the color of a specified point.

• Print the value of x and the color of a specified point.

• Shift a point along the x axis.

The algebra class definition is:

/*----------------------

Algebra on real numbers

-----------------------*/

#include <iostream>

using namespace std;

//--- CLASS DEFINITION

class algebra

{
public:

algebra(); // default constructor

algebra(double); // parametered constructor

double get(string&) const;

168 Introduction to C++ Programming and Graphics

void print() const;

void shift(double string);

private:

double x;

string color;

string set color(float);

};

The algebra class implementation is:

//--- CLASS IMPLEMENTATION

algebra::algebra() // default constructor

{
x=0.0;

color = "white";

}

//---

algebra::algebra(double value x) // parametered constructor

{
x=value x;

color = set color(x);

}

//---

string algebra::set color(float x) // set the color:

{
string color;

if(x>eps)

color="black";

else if(x<-eps)

color="red";

else

color="white";

return color;

}

//---

double algebra::get(string& color) const

{
chroma=color;

return x;

}

//---

6.8 Algebra on real numbers 169

void algebra::print() const

{
cout << x << " " << color << endl;

}

//---

void algebra::shift(double y)

{
color = set color(x+y);

x = x+y;

}

Following is a main program that uses the algebra class:

int main()

{
string chroma;

algebra A = algebra();

A.print();

cout << A.get(chroma) << " " << chroma << endl;

algebra B = algebra(-0.9);

B.print();

B.shift(2.1);

B.print();

return 0;

}

Running this program produces on the screen:

0 white

0 white

-0.9 red

1.2 black

Two features are worth emphasizing:

• The get function returns the value of x through the function return
and passes the color through an argument endowed with the reference
declarator (&).

• Because the function set color has been declared private, it cannot be
called from the main program.

170 Introduction to C++ Programming and Graphics

Problems

6.8.1. A point in the plane defines a vector starting at the origin, x = 0, y = 0,
and ending at that point. Add to the algebra class a member function
that rotates the vector by a specified angle around the z axis.

6.8.2. Add to the algebra class a member function that implements subtrac-
tion, a second function that implements multiplication, and a third mem-
ber function that implements division.

6.9 Operator overloading

In the main function of the algebra code, we may add a point A to another
point B to produce the new point C using the following statements:

algebra save = A; // save A

A.shift(B.get(chroma)); // shift A

algebra C=A; // C is the shifted A

A=save; // reinstate A

Alternatively, we can directly add points A and B by overloading the +
operator. This is done by defining the algebra class addition function:

algebra algebra::operator + (algebra patespani)

{
algebra add;

add.x = x+patespani.x;

add.color = set color(add.x);

return add;

}

and then inserting the following declaration in the public section of the class:

algebra operator + (algebra);

Once this is done, we can state in the main program:

C=A+B;

which adds the two points A and B by adding the corresponding x values and
calculating the new color to produce a point C.

Table 6.9.1 displays operators that can be overloaded in C++. Because
the left-to-right copy assignment operator (=) is overloaded by default, it is
declared and implemented only if a special functionality is desired. Tables 6.9.2
and 3 explain the syntax of common overloading declarations. Class overloading

6.9 Operator overloading 171

+ - * / = < > += <<= >>= ==
!= <= >= ++ -- ~ &= ^= | = && ||
%= [] -= *= /= << >> delete % & ^
! | new[] () , ->* -> new delete[]

Table 6.9.1 Operators that can be overloaded in C++. The right-to-left copy
assignment operator (=) is overloaded by default.

Statement Operator Syntax

•a + - * & ! ˜ ++ -- A::operator •()
a• ++ -- A::operator•(int)
a•b + - * / % ^ operator•(A, B)
a•b & | < > == != operator•(A, B)
a•b <= >= << >> && || , A::operator•(B)
a•b = += -= *= /= A::operator•(B)
a•b %= ^= &= A::operator•(B)
a•b |= <<= >>= [] A::operator•(B)

a(b, c...) () A::operator() (B, C...)
a->x -> A::operator->()

Table 6.9.2 Syntax of common operators overloaded as class functions. • stands
for an operator, a is a member of class A, b is a member of class B, and c is
a member of class C.

Statement Operator Syntax

•a + - * & ! ˜ ++ -- operator •(A)
a• ++ -- operator•(A,int)
a•b + - * / % ^ operator•(A, B)
a•b & | < > == != operator•(A, B)
a•b <= >= << >> && || , operator•(A, B)

Table 6.9.3 Syntax of common operators overloaded as global functions. • stands
for an operator, a is a member of class A, b is a member of class B, and c is
a member of class C.

is implemented by member functions, and global overloading is implemented by
outside functions.

As an example, we overload the ++ operator in the algebra class by
inserting the following declaration in the public section of the class:

172 Introduction to C++ Programming and Graphics

void operator ++ ();

The associated class implementation is:

void algebra::operator ++ ()

{
x = x*x;

color= set color(x);

}

Once this is done, we can state in the main program:

++A;

where A is a declared point.

Even more interesting, we can twice overload the + operator by inserting
the following declaration in the public section of the class:

algebra operator + ();

accompanied by the implementation:

void algebra::operator + ()

{
x = 2*x;

color= set color(x);

}

Once this is done, we can write

+A;

where A is a point.

Consider the classes of circles and squares introduced in Section 6.7. The
following global function defined outside these classes overloads the + operator:

void operator + (circle A, square B)

{
A.print();

B.print();

}

Including in the main program the block of commands:

circle A = circle(0.1, 0.2, 0.3);

square B = square(0.9, 1.2, 5.3);

A+B;

6.10 Pointers to class members 173

prints on the screen:

0.1 0.2 0.3

0.9 1.2 5.3

Problems

6.9.1. Overload the multiplication operator for the algebra class.

6.9.2. Demonstrate by example the action of the ++ operator and the twice
overloaded + operator for the algebra class discussed in the text.

6.9.3. (a) Overload the | operator for the circles discussed in Section 6.7, so
that the result is a Boolean variable that is true if the areas of two circles
are the same, and false otherwise. (b) Repeat for the squares.

6.10 Pointers to class members

In Chapter 5, we discussed pointers to scalar variables and various data types
including vectors and matrices. A class defines a new data type whose members
can also be identified with pointers encapsulating the addresses of memory cells
identifying the objects.

As an example, we introduce the algebra class and state in the main
program:

algebra D = algebra(-9.45);

algebra * pnt = &D;

algebra E = *pnt;

D.print();

E.print();

The first line defines object D; the second line defines a pointer to D; the third
line identifies point E with point D stated as the content of the memory space
identified by the pointer pnt; the last two lines print D and E.

The output of the code is:

-9.45 red

-9.45 red

Instead of operating on point D with a function, we can operate on its
pointer. Thus, in the above example, the statement:

D.print();

174 Introduction to C++ Programming and Graphics

can be replaced by:

pnt->print();

Note the “ASCII art” pointer designation of the arrow: ->

“this” communicates the memory address of an object

Let us revisit the algebra class discussed in Section 6.8 and introduce the
member function print1 defined as:

void algebra::print()

{ double * pntx = &x;

string * pntc = &color;

cout << this << " " <<pntx << " " << pntc << " "<< x

<< " " << color << endl;

}

Including in the main program the statements:

algebra Z(-0.4);

Z.print1();

algebra * pntZ = &Z;

cout << pntZ << endl;

prints on the screen:

0xbfdb1cc8 0xbfdb1cc8 0xbfdb1cd0 -0.4 red

0xbfdb1cc8

We see that this is the memory address of point Z regarded as an object of
the algebra class. Furthermore, the memory address of Z is the same as the
memory address of its first field, Z.x

When a function operates on an object, its memory address is implicitly
passed to the object through the variable this. In practice, this is used to
overload the assignation operator and check whether a parameter passed to a
member function is the object itself.

Problems

6.10.1. Illustrate the implicit communication of a member’s memory address
through this for the class of circles discussed in Section 6.7.

6.10.2. What changes are necessary so that the memory address of an algebra
point is the same as the memory address of its color?

6.11 The class of points in a plane 175

6.11 The class of points in a plane

As a further example, we consider the class of points in the xy plane. The loca-
tion of each point is determined by the doublet of real number (x, y) specifying
the Cartesian coordinates. The class definition is:

class point

{
public:

point();

point(double value x, double value y);

double get x() const;

double get y() const;

void print() const;

void move(double dx, double dy);

private:

double x;

double y;

};

The implementation of the default constructor is:

point::point()

{
x = 0.0; y = 0.0;

}

The implementation of the parametered constructor is:

point::point(double a, double b)

{
x = a; y = b;

}

The implementation of the non-intrusive print function is:

void point::print() const

{
cout << x << " " << y << endl;

}

The implementation of the non-intrusive get x function is:

double point::get x() const

{
return x;

}

176 Introduction to C++ Programming and Graphics

The implementation of the non-intrusive get y function is:

double point::get y() const

{
return y;

}

The implementation of the mutator move function is:

void point::move(double dx, double dy)

{
x = x+dx;

y = y+dy;

}

The main function is allowed to make any of the following calls:

• Define the default point A, shift it, and print the original and new coor-
dinates:

point A = point();

A.print();

A.move(-0.2, 0.4);

A.print();

• Define point B, shift it, and print the original and new coordinates:

point B = point(1, 2);

B.print();

B.move(0.3, 0.4);

B.print();

An alternative to the first statement is:

point B(1, 2);

• Print the coordinates of point (10, 15):

point(10, 15).print();

• Print the coordinates of the default point:

point().print();

• Set a equal to the x coordinate of point A:

double a = A.get x();

6.11 The class of points in a plane 177

• Set b equal to the y coordinate of point A:

double b = A.get y();

• Print the coordinates of point A:

cout << A.get x() << " " << A.get y() << endl;

Note that the main function is not able to access directly the private
variables x and y, and must rely on member functions to fetch them.

We can directly add two points A and B by overloading the + operator.
This is done by inserting the following declaration in the public section of the
class:

point operator + (point);

and defining the algebra class addition function:

point point::operator + (point B)

{
point add;

add.x = x + B.x;

add.y = y + B.y;

return add;

}

Once this is done, we can state in the main program:

point C;

C=A+B;

We can refer to the class members by pointers, as discussed in Section
6.10. Thus, if A and Z are defined members, including in the main code the
statements:

point * pntname;

pntname = &A;

cout << pntname << endl;

point Z = *pntname;

Z.print();

pntname->print();

prints on the screen:

0xbfed5168

0.3 0.4

0.3 0.4

178 Introduction to C++ Programming and Graphics

Problems

6.11.1. (a) Overload the ++ operator such that a point is reflected with respect
to the y axis. (b) Overload the – operator such that a point is reflected
with respect to the x axis.

6.11.2. Define the class of all points in three-dimensional space by analogy to
the class of points in the plane discussed in the text.

6.11.3. Define the class of complex numbers x = x+iy, where i is the imaginary
unit, i2 = −1. Implement member functions that carry out addition,
subtraction, multiplication, and division.

6.12 The class of runners

An international sports competition has been subscribed by runners originating
from all over the world. Each runner is recorded by his/her name, country of
origin, and performance time. The runners are placed to the “runner” class
that is defined as follows:

class runner

{
public:

runner();

runner(string runner name, string runner country,

double runner time);

void read();

string get name() const;

string get country() const;

double get time() const;

void print() const;

private:

string name;

string country;

double time;

};

The implementation of the default constructor is:

runner::runner()

{
name = "Euripides";

country = "Nigeria";

time = 9.9;

}

where 9.9 is a default time in seconds.

6.12 The class of runners 179

The implementation of the parametered constructor is:

runner::runner(string runner name, string runner country,

double runner time)

{
name = runner name;

country = runner country;

time = runner time;

}

The purpose of the parametered constructor is to evaluate the private fields
“name”, “country”, and “time” describing each runner.

The implementation of the “read” function is:

void runner::read()

{
cout << " Please enter the runner’s name: ";

getline (cin, name);

cout << " Please enter the runner’s country: ";

getline(cin, country);

cout << " Please enter the runner’s time: ";

cin >> time;

string remainder;

getline (cin, remainder);

}

The implementation of the “get name” function is:

string runner::get name() const

{
return name;

}

The implementation of the “get country” function is:

string runner::get country() const

{
return name;

}

The implementation of the “get time” function is:

double runner::get time() const

{
return time;

}

180 Introduction to C++ Programming and Graphics

The implementation of the print function is:

void runner::print() const

{
cout << name << " Country: " << country << " time: " << endl;

}

The main function is allowed to make any of the following calls:

• Define a default runner R:

runner R=runner();

• Read the properties of runner A:

A.read();

• Print the properties of runner A:

A.print();

• Print the name of runner A and move to the next line:

cout << A.get name() << endl;

• Set and print the properties of runner B:

runner B = runner("Abdul", "Ethiopia", 9.00);

B.print();

• Print the country and the performance time of runner B on different lines:

cout << B.get country() << endl;

cout << B.get time() << endl;

• Set the properties of runner C and print her time:

runner C("Dafela", "Ivory Coast", 9.40);

cout << C.get time() << endl;

• Introduce the default runner D and print his time:

D = runner();

cout << D.get time() << endl;

6.12 The class of runners 181

The following main function contained in the file runner.cc reads the
properties of the runners from the keyboard, keeps a record of the fastest runner,
and prints the fastest runner in the end:

#include <iostream>

#include <string>

using namespace std;

int main()

{
runner fastest; // introduce the default runner

double fast time = fastest.get time(); // default time:

bool more = true;

string answer;

while(more) // repeat as long as more is true

{
runner member; // introduce the next runner

member.read(); // evaluate the next runner named ‘‘member’’

member.print(); // print the properties of ‘‘member’’

if(member.get time() < fast time)

{ fastest = member;

fast time = member.get time();

}

cout << " More runners? (y/n)"; // inquire for more runners

getline (cin, answer);

if(answer != "y") more = false;

}

cout << endl << " Fastest runner:" << endl;

cout << " ---------------" << endl;

fastest.print(); // print the properties of the fastest runner

return 0;

}

If we want to keep a table of the runners, we can introduce the vector
“member[i]” whose entries are objects of the “runner” class. The following main
function contained in the file runner fast.cc reads the properties of the runners
from the keyboard, keeps track of the fastest runner, and prints the fastest
runner in the end:

#include <iostream>

#include <string>

#include "cl runner.h"

using namespace std;

182 Introduction to C++ Programming and Graphics

int main()

{
runner member[200]; // will hold up to 200 runners

runner fastest; // introduce the fastest runner

double fast time = fastest.get time(); // default time

bool more = true;

string answer;

int Ic = 0; // member counter

while (more)

{
Ic=Ic+1;

member[Ic].read(); // enter the next runner

member[Ic].print(); // print the properties of the next runner

if(member[Ic].get time() < fast time)

{
fastest = member[Ic];

fast time = member[Ic].get time();

}

cout << " More runners? (y/n)"; // inquire for additional runners

getline(cin, answer);

if(answer != "y") more = false;

}

int runners = Ic; // number of runners

cout << endl << " List of runners:" << endl;

cout << " ----------------" << endl;

for(int i=1;i<=runners;i++) member[i].print();

cout << endl << " Fastest runner:" << endl;

cout << " ---------------" << endl;

fastest.print(); // print the properties of the fastest runner

return 0;

}

Problems

6.12.1. What is the output of the following code?

E = runner();

cout << E.get name() << endl;

6.13 Header files and projects 183

6.12.2. Endow the runners with an additional integer field expressing their
birth year.

6.12.3. Modify the code “runner” to count the number of countries entered.

6.13 Header files and projects

We want to place the user-defined functions, class declarations, and class mem-
ber functions in separate source files that can be compiled individually and then
linked to form the executable.

Let us assume that a main function uses the “runner” class. In this case,
we generate the following three source files.

File “runner fast.cc” contains the main function:

#include <iostream>
#include <string>
#include "cl runner.h"

using namespace std;

int main()

{
...

return 0;

}

where the three dots denote additional lines of code.

The header file “cl runner.h” contains the class definition:

#ifndef CL RUNNER H

#define CL RUNNER H

#include <iostream>
#include <string>
using namespace std;

class runner

{
public:

...

private:

...

};

#endif

184 Introduction to C++ Programming and Graphics

The source file “cl runner.cc” contains the class implementation:

#include <iostream>
#include <string>
using namespace std;

//--- CLASS DEFINITION

class runner

{
public:

...

private:

...

};

//--- CLASS IMPLEMENTATION

runner::runner()

{
time = 2000.0;

}
...

double runner::get time() const

{
return time;

}

A makefile that compiles separately the main function and the class, and
then links the object files to generate the executable is structured as follows:

runner fast: cl runner.o runner fast.o

c++ -o runner fast cl runner.o runner fast.o

runner fast.o: runner fast.cc

c++ -c runner fast.cc

cl runner.o: cl runner.cc cl runner.h

c++ -c cl runner.cc

To compile the program and create the executable named “runner fast”, we
issue the command:

make runner fast

and then hit the <Enter> key.

Note that the “include” statement:

#include "cl runner.h"

6.14 Inheritance 185

appears both in the main function and class implementation.

The union of the source files, header files, and the makefile constitutes a
project.

Problem

6.13.1. Split the algebra class and main program discussed in Section 6.8 into
separate files.

6.14 Inheritance

In C++, we can generate a hierarchy of derived classes that inherit the at-
tributes and functions of their ancestors and are endowed with added features.
In this way, the class of equilateral triangles can be derived from the class of
all triangles, and the class of roses can be derived from the class of flowers.
The class of flowers is the base-class or super-class, and the class of roses is the
derived class.

A derived class inherits all functions of the base class except for its con-
structor and destructor, the members of the assignation (=) class operator, and
the inherited function friends. A cynic defines friends as people with common
enemies.

As an example, we consider the class of all flowers available in a flower
shop, defined by the type (annual or perennial), color, and price. The flower
class definition is:

#include <iostream>

using namespace std;

//--- FLOWER CLASS DEFINITION

class flower

{
public:

flower(); // default constructor

flower(string, string, float); // parametered constructor

string get type() const;

string get color() const;

float get price() const;

void print() const;

protected:

string type;

string color;

float price;

};

186 Introduction to C++ Programming and Graphics

The only new feature is that we have replaced the statement:

private:

with the statement:

protected:

in anticipation of inheritance.

The flower class implementation is:

//--- FLOWER CLASS IMPLEMENTATION

flower::flower()

{
type = "tulip";

color = "black";

price = 4.99;

}

flower::flower(string ftype, string fcolor, float fprice)

{
type = ftype;

color = fcolor;

price = fprice;

}

string flower::get type() const

{
return type;

}

string flower::get color() const

{
return color;

}

float flower::get price() const

{
return price;

}

void flower::print() const

{
cout << type <<" "<< color <<" "<< "$"<<price << endl;

}

6.14 Inheritance 187

Roses are flowers

Next, we define the derived class of roses, which can be either garden or
long-stem roses. The rose class definition is:

class rose : public flower

{
public:

rose(string, string, string, float); // parametered constructor

void print() const;

private:

string rose type;

};

Since roses derive from flowers, there is no need to repeat the flower attributes or
functions, and we simply add to them. The rose class implementation includes
the parameter constructor and the new function print whose name is identical
to that of a function in the flower class as an illustration of polymorphism:

rose::rose(string ftype, string rtype, string fcolor, float fprice)

{
type = ftype;

rose type = rtype;

color = fcolor;

price = fprice;

}

void rose::print() const

{
cout << type <<" "<<rose type<<" "<< color

<<" "<< "$"<<price << endl;

}

Now consider the main program:

int main()

{
flower A = flower();

A.print();

flower B = flower("annual", "red", 6.0);

string type=B.get type();

string color=B.get color();

float price=B.get price();

cout << type << " " << color << " flower for $" << price << endl;

rose W = rose("perennial", "garden", "yellow", 9.39);

W.print();

return 0;

}

188 Introduction to C++ Programming and Graphics

Running the program prints on the screen:

tulip black $4.99

annual red flower for $6

perennial garden yellow $9.39

Note that a flower uses the flower-class print function, and a rose uses the
rose-class print function.

To further illustrate this distinction, we endow the flower class with the
function:

void flower::print price() const

{
cout <<"PRICE: $"<< price << endl;

}

and the derived rose class with the same-named function:

void rose::print price() const

{
cout << "OUR PRICE: $" << price << endl;

}

We may then state in the main code:

flower A = flower();

A.print price();

rose W = rose("perennial", "garden", "yellow", 9.39);

W.print price();

Running the code produces on the screen:

PRICE: $4.99

OUR PRICE: $9.39

If we had implemented the print price function only in the flower class and
not the print price function in the rose class, the output of the code would
have been:

PRICE: $4.99

PRICE: $9.39

6.15 Pointers and virtual functions 189

Problems

6.14.1. Introduce the class of countries defined by the host continent, size,
population, and official language, and then define the derived class of
countries with two official languages.

6.14.2. Introduce the class of polygons defined by their vertices, and then
define the derived classes of triangles and quadrilaterals incorporating
respective functions that compute the area.

6.15 Pointers and virtual functions

In Section 6.10, we introduced pointers to class members. We can represent a
member of the flower class, F, and a member of the rose class, R, with pointers
that can be declared and initialized as:

flower * pointer = &F;

and

rose * pointer1 = &R;

flower * pointer2 = &R;

If we print pointer1 and pointer2, they will be identical. This example illus-
trates that a pointer of a derived class is type-compatible with a pointer of its
base class.

However, the type-compatibility is a mixed blessing, as the statements:

pointer1 -> print();

pointer2 -> print();

are not equivalent, even though the values of the two pointers are identical!
The first statement uses the print function of the derived class, whereas the
second statement uses the print function of the base class. The first statement
is equivalent to

R.print();

whereas the second statement cannot be implemented in terms of R. Thus, if
a flower pointer is issued for a rose, use of this pointer deprives us from using
rose functions whose names duplicate flower functions.

190 Introduction to C++ Programming and Graphics

To make matters worse, we endow the rose class with the function:

void rose::print rtype() const

{
cout << "Rose type: "<< rose type << endl;

}

and issue the statement:

pointer2 -> print rtype();

only to be greeted with the compiler error:

’class flower has no member named print rtype’

In contrast, the statement

pointer1 -> print rtype();

is perfectly acceptable. Thus, if a flower pointer is issued for a rose, use of this
pointer deprives us from using exclusive rose functions.

Virtual functions

A derived class inherits all parental functions. Can a derived class also
define, implement, and ultimately override parental functions? The answer is
affirmative, thanks to the concept of virtual functions.

In our example, we include in the public section of the flower class the
virtual function print rtype implementation:

virtual void print rtype() const {};

which renders the statement:

pointer2 -> print rtype();

perfectly acceptable. Because pointer2 points to a rose, when this statement
is executed, the function print rtype of the rose class is invoked. Note that
we have entered nothing inside the curly brackets of the flower class function
print rtype, thus rendering this function idle. Alternatively, we could have
stated:

virtual void print rtype() const =0;

6.15 Pointers and virtual functions 191

If instead we include in the public section of the flower the non-virtual
function print rtype implementation:

void print rtype() const { };

then the statement

pointer2 -> print rtype();

will invoke the print rtype function of the flower class, which is idle.

When a virtual function is declared, a v-table is constructed for the class
consisting of addresses to the virtual functions for classes and pointers to the
functions from each of the objects of the derived class. Whenever a function
call is made to the virtual function, the v-table is used to resolve to the function
address by way of dynamic binding.

Virtual functions exemplify intriguing concepts underlying the notion of
object-oriented programming. A class that declares or inherits virtual functions
is called a polymorphic.

Student tuition

The following code exemplifies the use of virtual functions with a base
class of students and two derived classes of resident and non-resident students.
For convenience, the class definition and implementation are consolidated. The
base class is defined and implemented as:

#include <iostream>

using namespace std;

//--- STUDENT CLASS

class student

{
public:

virtual void payment()=0;

};

Note that the base class is endowed with only one idle virtual function, and lacks
a constructor. A class with such minimum functionality is called an abstract
base class.

192 Introduction to C++ Programming and Graphics

The resident class is defined and implemented as:

//--- RESIDENT CLASS

class resident : public student

{
public:

void payment()

{
tuition = 2567.65;

cout << " Resident tuition: " << tuition << endl;

};
private:

float tuition;

};

Note that the resident class is endowed with only one function and lacks a
constructor.

The non-resident class is defined and implemented as:

//--- NONRESIDENT CLASS

class nonresident : public student

{
public:

void payment()

{
tuition = 4879.99;

cout << " Non-resident tuition: " << tuition << endl;

};
private:

float tuition;

};

Note that the non-resident class is also endowed with only one function and
lacks a constructor.

The following main program declares students and pays their tuition
directly or through pointers:

int main()

{
resident R;

R.payment();

nonresident N;

N.payment();

6.16 Class templates 193

student * pntR = &R;

student * pntN = &N;

pntR->payment();

pntN->payment();

return 0;

}

Running this program prints on the screen:

Resident tuition: 2567.65

Non-resident tuition: 4879.99

Resident tuition: 2567.65

Non-resident tuition: 4879.99

Note that pointers of residents and non-residents are defined on the base student
class. Thanks to the virtual function declaration, these pointers assume a proper
identity when interacting with functions of their respective derived class.

Problems

6.15.1. Add to the student, resident, and nonresident classes constructors to
specify the student names.

6.15.2. Add to the student, resident, and nonresident classes a second virtual
function of your choice.

6.16 Class templates

In Section 4.10, we defined function templates with the objective of consolidat-
ing code. If a function operates on integers and the same function operates on
real numbers, we can consolidate the two functions into a template that does
both. Class templates are designed with a similar goal in mind.

In Section 6.11, we discussed the class of points in the xy plane. The
following code generalizes this class into a template. The class definition is:

/*--

This program illustrates the use of class templates

---*/

#include <iostream>

using namespace std;

194 Introduction to C++ Programming and Graphics

//--- CLASS DEFINITION

template <class T>

class point

{
public:

point(); // default constructor

point(T value x, T value y);

T get x() const;

T get y() const;

void print() const;

void move(T dx, T dy);

point<T> operator + (point<T>); // overload +

private:

T x;

T y;

};

Note that the class definition includes the overloading of the + operator. Re-
placing T with a regular data type such as double yields familiar code.

The class implementation is:

template <class T>

point<T>::point(T value x, T value y)

{
x = value x;

y = value y;

}

template <class T>

T point<T>::get x() const

{
return x;

}

template <class T>

T point<T>::get y() const

{
return y;

}

template <class T>

void point<T>::print() const

{
cout << x << " " << y << endl;

}

template <class T>

6.16 Class templates 195

void point<T>::move(T dx, T dy)

{
x=x+dx; y=y+dy;

}

// overload + :

template <class T>

point<T> point<T>::operator + (point<T> param)

{
point<T> add;

add.x = x + param.x;

add.y = y + param.y;

return add;

}

The following main code uses the point class template:

int main()

{
point<int> A = point<int>(1, 2);

A.print();

A.move(4, -5);

A.print();

point<float>B(3.2, 4.9);

cout << B.get x() << " " << B.get y() << endl ;

point<string> C("day", "young");

C.print();

C.move("s","ster");

C.print();

point<string> D("viet", "kambo");

point<string> E("nam", "dia");

point<string> F=D+E;

F.print();

return 0;

}

Running the code produces on the screen:

1 2

5 -3

3.2 4.9

day young

days youngster

vietnam kambodia

196 Introduction to C++ Programming and Graphics

Problems

6.16.1. Generalize the algebra class discussed in Section 6.8 into a template.

6.16.2. Generalize the class of points in a plane discussed in Section 6.11 into
a template.

Graphics Programming
with VOGLE

7
The basic Input/Output system (BIOS) installed on the motherboard by the
manufacturer and the kernel of the operating system (OS) installed on the
hard drive are able to display characters on the screen, but are unable to draw
pictures. Additional graphics libraries are needed to generate icons and menus,
display windows, and launch graphics applications. These graphics libraries are
built on a succession of layers.

On Unix systems, the X11 server provides graphics functionality at the
lowest possible level. Higher-level libraries provide application programming
interfaces (API) in the form of C or C++ code that can be compiled and linked
statically or dynamically with user-defined functions. For example, an API
may encapsulate functions to generate a window on the desktop, or monitor
the mouse and keyboard.

The Very Ordinary Graphics Learning Environment implemented in the
Vogle library for the X11 server is ideally suited for learning the fundamentals
of graphics programming and developing small or private applications.

The Vogle library is written in C and includes Fortran 77 and Pascal

interfaces.1 Drivers are available for a variety of devices to generate graphs and
images suitable for display and printing in black and white or color format.

The source code, the compiled binary file for several Unix systems inc-
luding the cygwin environment running inside Windows, and the necessary
header files, can be downloaded from this book’s Internet site. An informative
reference manual can be found at http://dehesa.freeshel.org/vogle. A
summary of the Vogle functions is given in Appendix B.

To run Vogle on Windows, we launch the cygwin environment by click-
ing on the cygwin shell icon, and then issue the command:

startx

1Implementation in C++ is possible thanks to a header file written by Tim Love of
Cambridge, U.K.

198 Introduction to C++ Programming and Graphics

At the time the VOGLE project get under way, the wife of one of the developers was
working for a library and an article about a group of European Zoologists who came
out to study Australian native animals happened to cross her desk. Unfortunately,
the title of this worthy piece of science is currently lost, however, by way of summary,
we are sad to report that the intention of the investigation (at least originally) was
to demonstrate that since Australian native animals are, in a sense, less evolved
than their European counterparts they are also less intelligent. It happened that one
of the animals helping the scientists in their investigations was an echidna and it
was given the task of learning a maze on the basis of receiving a reward by pushing
a button on a machine at the other end of the maze. Having demonstrated that
it was quite capable of learning a maze, the scientists were then faced with finding
the answer to the next question. If we take the food out of the machine, how
will the echidna react? Will it be dumb enough to keep running through the maze
again and again? What will it do? So they took the food out of the machine.
And this is what happened. The echidna ran through the maze, pushed the button
on the machine, no food came out. The echidna pushed the button again, again
no food came out. It then turned and looked up at the observers giving them
what was described as a “filthy look” and proceeded not only to destroy the food
dispensing machine, but to introduce the observers to how one can traverse a maze
in a straight line by pushing the walls down! It is to the memory of this echidna
(which we dubbed Eric H. Echidna), this software is duly dedicated.

Testimonial: Taken from the Vogle Internet site dedicated to Eric H. Echidna
(http://bund.com.au/~dgh/eric).

This will start the X11 server that allows us to display Vogle graphics on the
Windows desktop.

In this chapter, we demonstrate the usage of the Vogle library and
discuss simple and advanced applications that illustrate the basic concepts of
graphics programming, including animation and user control by the mouse and
keyboard. Further examples can be found in the directory examples of the
Vogle distribution. A extensive collection of applications in Computational
Fluid Dynamics (CFD) through Fortran 77 code can be found in the library
Cfdlab; see http://dehesa.freeshel.org/CFDLAB

7.1 Compilation

To compile a C++ program named oliver.cc residing in a certain directory of
a Linux system, we compose the makefile:

7.1 Compilation 199

oliver: oliver.cc

c++ -o oliver oliver.cc -lX11 VOGLE/vogle linux ansi.a

and issue the command:

make oliver

The compiler options shown in the second line of the makefile have the following
meanings:

• The option -o oliver requests that the binary executable file named
“oliver” be generated after compilation.

• The option -lX11 requests that the library libX11.so be linked with the
object file of the oliver.cc code when producing the executable.

More generally, the compiler option -lpindos requests that a library
named libpindos.a or libpindos.so be linked with the object of the source
code. The suffix “a” denotes an archival static library, and the suffix
“so” denotes a dynamically shared object. The search directories during
linking include several standard system directories listed in the system
archive liblibrary.a

• The entry VOGLE/volge linux ansi.a requests that the Vogle library
vogle ansi.a be linked with the object file of the oliver.cc code to form the
executable.

It has been assumed that vogle ansi.a has been placed in the subdirec-
tory VOGLE of the current working directory. This directory location is
arbitrary and can be replaced by any other convenient location, provided
that access permissions have been granted.

In summary, the object file of our source code will be linked statically with the
Vogle library and dynamically with the X11 library. An equivalent makefile
is:

oliver: oliver.cc

c++ -o oliver oliver.cc -lX11 -lvogle linux ansi -LVOGLE

The compiler option -LVOGLE adds the Vogle directory to the list of library
search directories.

In the cygwin environment inside Windows, we use the makefile:

oliver: oliver.cc

c++ -o oliver oliver.cc VOGLE/vogle cygwin ansi.a \

-lX11 -lm -L/usr/X11R6/lib

200 Introduction to C++ Programming and Graphics

(a) (b)

Figure 7.2.1. (a) A blank Vogle window, and (b) a greeting Vogle window.

where the backslash is a line continuation mark.

Throughout this chapter, we shall assume that the Vogle C++ header
file vogle c++.h resides in the subdirectory VOGLE of the current working
directory.

7.2 Getting started with Vogle

The following code contained in the file window.cc generates the red graphics
window shown in Figure 7.2.1(a):

#include "VOGLE/vogle c++.h"

using namespace std;

int main()

{
prefposition (600,200); // window position

prefsize(300, 300); // window size

vinit("X11"); // initialize the screen

color (RED);

clear();

getkey();

return 0;

}

7.2 Getting started with Vogle 201

The code features the following implementations:

• The graphics window position and size are first defined in screen pixel
units.

• The Vogle device is initialized as “X11” to draw on the screen.

• The background color is set to RED, and the window is cleared. The
menu of available colors is given in Appendix B.

• The Vogle function getkey monitors the keyboard; When the window
is selected and a key is pressed, the session terminates.

Hello

The following code contained in the file hello.cc generates a graphics
window and prints the greeting “Hello”, as shown in Figure 7.2.1(b):

/*-------------

VOGLE to greet

--------------*/

#include<iostream>

#include "VOGLE/vogle c++.h"

using namespace std;

int main()

{

//--- Graphics window position and size in pixel units:

prefposition (600,200); // window position

prefsize (300, 300); // window size

//--- Initialize graphics device to be the screen:

vinit("X11");

color (YELLOW);

clear();

//--- Move to a position defined by default coordinates

//--- ranging from -1 to 1 in the x and y direction

move2 (-0.4, 0.0);

//--- Prepare to write:

202 Introduction to C++ Programming and Graphics

color(BLACK);

font("/tmp/hfonts/times.ib");

textsize(0.4,0.4);

//--- Draw a string:

drawstr("Hello");

//--- Press key to finish:

getkey();

vexit();

return 0;

}

The code features the following new implementations:

• The move2 function moves the pen to a point specified by the coordinates.
By default, the horizontal and vertical coordinates x and y vary from -1
to 1.

• The text color and font are selected, the text size is defined, and a string
of characters is drawn using the textstr Vogle function. The font files
are located in the /tmp/hfonts directory.

Fonts

The hfont directory containing the fonts should be copied from the
directory 07/VOGLE of the software distribution accompanying this book to
the /tmp directory of the operating system. Because all users have “read” and
“write” permissions for this directory, they do not have to buy gifts for the
system administrator. However, because this directory is routinely cleaned, the
font directory must be periodically recopied.

The menu of available fonts includes the following:

astrology futura.m greek math.upp symbolic times.r
cursive gothic.eng japanese meteorology times.g times.rb
cyrillic gothic.ger markers music times.i
futura.l gothic.ita math.low script times.ib

The suffix i stands for italic, b stands for bold, r stands for roman, and l stands
for low.

7.2 Getting started with Vogle 203

Graphics files

To generate a file containing the graphics, instead of initializing the
graphics device to X11, we initialize it to a different device. Postscript files
are generated by choosing the devices:

postscript ppostscript cps pcps

where the prefix “p” stands for “portrait” and the prefix “c” stands for “color”.
The name of the graphics file is defined by inserting the vogle command:

voutput ("filename");

where filename is a chosen graphics file name. If we do not include this state-
ment, the postscript file will be printed on the screen as a text.

For example, to generate a postscript graphics file named hello.ps, we
replace the statement vinit("X11") with the two statements:

voutput ("hello.ps");

vinit("pcps");

written in this particular order. After execution, the file hello.ps will appear in
the current directory.

Vogle allows us to initialize the graphics device to one type, and then
change it to a different type, as will be discussed in later sections. This feature
allows us to draw a graph on the screen and, if approved, print it in a graphics
file.

The postscript file can be transformed into an encapsulated postscript
(eps) file using, for example, the ps2epsi facility in Unix. The eps file may then
be inserted in a document, as was done in the typesetting of this book.

World coordinates

In the default screen coordinates, the horizontal and vertical variables x
and y vary in the range (−1, 1) over the graphics window. To change the screen
coordinates into world coordinates that vary over a specified range, we use the
ortho2 function.

The following code implemented in the file elaiolado.cc introduces world
coordinates, and then prints and underlines olive oil in Greek:

/*-------------------------------

PRINT A WORD IN WORLD COORDINATES

-------------------------------*/

204 Introduction to C++ Programming and Graphics

#include "VOGLE/vogle c++.h"

using namespace std;

int main()

{
prefposition (600,200); // window position

prefsize (300, 300); // window size

vinit("X11"); // initialize on the screen

color (YELLOW); // background color

clear(); // clear the screen

ortho2 (0.0,2.0, 0.0,6.0); // world coordinates for x and y

color(RED); // print the word

move2(0.1, 3.0);

font("/tmp/hfonts/greek");

textsize(0.3,0.9);

drawstr("Elaiolado");

move2(0.1,3.0); // underline the word

draw2(1.6,3.0);

//--- Press key to finish:

getkey();

vexit();

return 0;

}

In this code, the “move to”(move2) and “draw to” (draw2) Vogle functions
have been used to move the pen lifted or pressed down. The generated graphics
window is shown in Figure 7.2.2(a).

Shapes

The following code contained in the file shapes.cc, adapted from an exam-
ple given in the Vogle distribution, illustrates the use of further Vogle draw-
ing functions:

/*--

DRAW A VARIETY OF SHAPES USING VOGLE FUNCTIONS

---*/

#include "VOGLE/vogle c++.h"

using namespace std;

7.2 Getting started with Vogle 205

(a) (b)

Figure 7.2.2. (a) A Vogle window printing and underlining a Greek word in world
coordinates. (b) A Vogle window with several shapes created by changing
the viewport.

int main()

{
prefposition (600,200); // window position

prefsize (300, 300); // window size

vinit("X11"); // initialize on the screen

color (BLACK);

clear();

ortho2 (-1.0,1.0, -1.0,1.0);

//--- Prepare to write:

font("/tmp/hfonts/futura.m");

textsize(0.2,0.2);

//--- Define a viewport in the top left corner and draw a rectangle:

viewport(-1.0, 0.0, 0.0, 1.0);

move2(-0.9, -0.5); /* write out a heading */

color(MAGENTA);

drawstr("rectangle");

rect(-0.2, -0.2, 0.3, 0.2);

206 Introduction to C++ Programming and Graphics

//--- Define a viewport in the top right corner and draw a circle:

viewport(0.0, 1.0, 0.0, 1.0);

move2(-0.9, -0.5);

color(BLUE);

drawstr("circle");

//--- draw a circle of radius 0.4 centered at the point (0.0, 0.0)

circle(0.0, 0.0, 0.4);

//--- Define a viewport in the bottom left corner and draw an ellipse:

viewport(-1.0, 0.0, -1.0, 0.0);

move2(-0.9, -0.5);

color(GREEN);

drawstr("ellipse");

/* To draw an ellipse, we change the aspect ratio so it is no longer

equal to one and call circle. In this case we use ortho2 to make

the square viewport appear rectangular.

The call to pushmatrix saves the current viewing transformation.

After the ortho2 is done, we restore the current viewing

transformation with a call to popmatrix. Otherwise everything

after the call to ortho would come out looking squashed as the

world aspect ratio is no longer 1. */

pushmatrix();

ortho2(-1.0, 1.0, -1.0, 2.0);

circle(0.0, 0.5, 0.4);

popmatrix();

//--- Define a viewport in the bottom right corner and draw an arc:

color(RED);

viewport(0.0, 1.0, -1.0, 0.0);

move2(-0.9, -0.5);

drawstr("arc");

/* Draw an arc centered at (0.0, 0.0), radius of 0.4. The start

angle is 0.0 and the end angle is 90 degrees. */

arc(0.0, 0.0, 0.4, 0.0, 90.0);

//--- Done:

getkey();

7.3 A rotating polygon in animation 207

vexit();

return 0;

}

Figure 7.2.2(b) shows the generated graphics window. We see that the
viewport function combined with the pushmatrix and popmatrix functions con-
siderably facilitates the drawing of composite shapes.

Vogle distribution codes

The Vogle distribution contains the following C programs: trivial.c
text.c, simple.c, slant.c, shapes.c, poly.c, views.c, circtxt.c, moretxt.c, getstr.c,
jtext.c, lstyles.c, curves.c, patches.c, balls.c, objvws.c, world.c, cube.c, licosa.c,
tetra.c, loc.c, lcube.c, beer.c, teapot.c.

These codes have been copied into the directory 07/VOGLE C examples
of the software distribution accompanying this book. Translation into C++ is
both instructive and straightforward.

Problems

7.2.1. Generate a Vogle window and print a word of your choice using a font
and color of your choice.

7.2.2. Generate a Vogle window and draw the outline of a musical instrument
or your choice working in world coordinates.

7.2.3. Generate a Vogle window and paint different colors at the four quad-
rants.

7.2.4. Translate into C++ a Vogle distribution code of your choice.

7.3 Animation

To perform animation, we use two memory spaces holding the graphics, one
called the back buffer and the second called the primary or active buffer. The
computer displays the content of the primary buffer, and then the two buffers
are swapped in a process dubbed double buffering.

A rotating polygon

The following code contained in the file poly 2d.cc displays a rotating
polygon in animation:

208 Introduction to C++ Programming and Graphics

/*---------------------------------

Animation of a rotating polygon

using VOGLE

---------------------------------*/

#include<iostream>

#include<cmath>

#include "VOGLE/vogle c++.h"

using namespace std;

int main()

{
//--- Window plotting limits:

float xmin=0.0; float xmax=1.0; // plotting limits

float ymin=0.0; float ymax=1.0;

float xmarg = 0.2*(xmax-xmin); // plotting margins

float ymarg = 0.2*(ymax-ymin);

//--- Polygon variables:

const int n = 5; // number of vertices

float points[n][2]; // plotting array

float omega = 0.1; // angular velocity

float t=0; // time

float Dt = 0.01; // time step

float xc rot = 0.5; // rotation center

float yc rot = 0.5; // rotation center

//--- Initial polygon vertices:

float x[n] = {0.80, 0.90, 0.90, 0.80, 0.80};
float y[n] = {0.50, 0.50, 0.88, 0.88, 0.50};

//--- Prepare the graphics:

prefposition (500,100); // window position

prefsize (300, 300); // window size

char device[]="X11"; // initialize on the screen

vinit(device);

//--- Define the plotting units

ortho2 (xmin-xmarg, xmax+xmarg, ymin-ymarg, ymax+ymarg);

//--- Polygon plotting option:

bool fill = true; // fill the polygon

polyfill (fill);

7.3 A rotating polygon in animation 209

//--- Animation loop:

backbuffer(); // draw in the back buffer

repeat:

color(BLUE);

clear();

float dot = omega*Dt;

float cs = cos(dot);

float sn = sin(dot);

//--- Rotate the polygon by the angle dot around the rotation center:

for (int i=0; i<n; i++)

{
float xtemp = x[i]-xc rot;

float ytemp = y[i]-yc rot;

x[i] = xtemp*cs + ytemp*sn + xc rot;

y[i] = -xtemp*sn + ytemp*cs + yc rot;

points[i][0]=x[i];

points[i][1]=y[i];

}

//--- Paint the polygon:

color (RED);

poly2 (n,points);

//--- Swap the buffers:

swapbuffers();

//--- check the keyboard:

char kbd = char(checkkey()); // any key pressed?

//--- If s is pressed, wait for another key:

if(kbd == ’s’)

{
char kbd1 = char(getkey());

}

//--- If q is pressed, quit:

if(kbd == ’q’)

210 Introduction to C++ Programming and Graphics

(a) (b)

Figure 7.3.1. Snapshot of (a) an animated rotating polygon produced by the code
poly 2d, and (b) icosahedron produced by the code licosa.

{
vexit();

exit(1);

}

t=t+Dt; // update time

goto repeat;

//--- Done

return 0;

}

Figure 7.3.1(a) shows a snapshot of the animation. The code features the
following implementations:

• When the cursor is on the graphics window and the “q” key is pressed,
the execution terminates.

• When the cursor is on the graphics window and the “s” key is pressed,
the execution halts and resumes when another key is pressed.

We see that only a handful of simple graphics commands are necessary to
program animation, and this is generally true for most applications. However,

7.3 A rotating polygon in animation 211

in Chapter 8 we will see that the menu of available graphics functions and
system dependencies increases considerably with the size and sophistication of
the graphics library.

Interactive drawing of an icosahedron

An icosahedron is a polyhedron with twenty triangular faces defined by
twelve unique vertices. The mapping of faces to vertices is mediated through a
connectivity table.

The following code contained in the file licosa.cc and adapted from an
example given in the Vogle distribution draws an icosahedron and uses the
mouse and keyboard to implement interactive rotation and translation:

include<iostream>

#include "VOGLE/vogle c++.h"

#define TRANS 0.06

void drawshape(int fill);

//--- main

int main()

{
char device[10];

float x, y, tdir = TRANS;

int but, nplanes;

int i;

//--- Initiate the graphics window:

prefposition(50, 50);

prefsize(300, 300);

vinit("X11");

nplanes = getdepth(); // color depth

window(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

lookat(0.0, 0.0, 2.1, 0.0, 0.0, 0.0, 0.0);

textsize(0.15, 0.3);

backface(1);

backbuffer();

//--- Green color map:

for (i=1; i<=20; i++)

{
mapcolor(i, 20, 20+i*10, 20);

}

212 Introduction to C++ Programming and Graphics

//--- Loop indefinitely:

while((but=slocator(&x, &y)) != 44)

{
pushmatrix();

rotate(120.0 * x, ’y’);

rotate(120.0 * y, ’x’);

color(BLACK);

clear();

color(20);

drawshape(1);

if (nplanes == 1)

{
drawshape(0);

}
popmatrix();

swapbuffers();

//--- Check the keyboard:

switch (but = checkkey())

{
case ’p’:

voutput("licosa.ps");

vnewdev("postscript");

pushmatrix();

rotate(100.0 * x, ’y’);

rotate(100.0 * y, ’x’);

color(BLACK);

clear();

drawshape(1);

if (nplanes == 1)

drawshape(0);

popmatrix();

vnewdev(device);

break;

case ’x’:

translate(tdir, 0.0, 0.0);

break;

case ’y’:

translate(0.0, tdir, 0.0);

break;

case ’z’:

translate(0.0, 0.0, tdir);

break;

case ’-’:

tdir = -tdir;

7.3 A rotating polygon in animation 213

break;

case ’+’:

tdir = TRANS;

break;

case 27: /* ESC */

case ’q’:

vexit();

exit(0);

}
}

//--- Done:

vexit();

return(0);

}

//--- vertices

static float xyz[12][3]

= {
{0.000000, 0.000000, 1.0 },
{0.809017, -0.587785, 0.500000 },
{0.809017, 0.587785, 0.500000 },
{-0.309017, 0.951057, 0.500000 },
{-1.000000, 0.000000, 0.500000 },
{-0.309017, -0.951057, 0.500000 },
{1.000000, 0.000000, -0.500000 },
{0.309017, 0.951057, -0.500000 },
{-0.809017, 0.587785, -0.500000 },
{-0.809017, -0.587785, -0.500000 },
{0.309017, -0.951057, -0.500000 },
{0.000000, 0.000000, -1.0 }
};

//--- connectivity table

static int ncon[20][3]

= {
{1, 2, 3},{1, 3, 4},{1, 4, 5},{1, 5, 6},
{1, 6, 2},{2, 7, 3},{3, 8, 4},{4, 9, 5},
{5, 10, 6},{6, 11, 2},{7, 8, 3},{8, 9, 4},
{9, 10, 5},{10, 11, 6},{11, 7, 2},{7, 12, 8},
{8, 12, 9},{9, 12, 10},{10, 12, 11},{11, 12, 7}
};

//--- drawshape

214 Introduction to C++ Programming and Graphics

void drawshape(int fill)

{
polyfill(fill);

if (!fill)

for (int i=0; i<20; i++)

{
if (fill)

{
color(i+1);

}

makepoly();

move(xyz[ncon[i][0]-1][0], xyz[ncon[i][0]-1][1], xyz[ncon[i][0]-1][2]);

draw(xyz[ncon[i][1]-1][0], xyz[ncon[i][1]-1][1], xyz[ncon[i][1]-1][2]);

draw(xyz[ncon[i][2]-1][0], xyz[ncon[i][2]-1][1], xyz[ncon[i][2]-1][2]);

closepoly();

}
}

Figure 7.3.1(b) shows a snapshot of the animation. The code features the fol-
lowing implementations:

• A function is used to draw the icosahedron based on hard-coded data for
the vertex coordinates and a connectivity table relating faces to vertices.

• When the “p” key is pressed, a postscript file of the current shape is
produced.

• When the “x”, “y”, or “z” key is pressed, the icosahedron translates by a
specified shift in the respective directions. When the “-” key is pressed,
the direction of translation is reversed, and when the “+” key is pressed,
the direction of translation is reinstated.

• When either the Escape or the “q” key is pressed, the execution termi-
nates.

Problems

7.3.1. Modify the polygon animation code to implement a rotating regular
hexagon.

7.3.2. Modify the polygon animation code to insert a second rotating polygon.

7.3.3. Translate into C++ a Vogle distribution animation code of your choice.

7.4 Plotting a line 215

7.4 Plotting a line

Next, we build a code that draws the graph of a line in the xy plane defined
by a group of data points. The code will offer an option for drawing markers
at the data points, including circles, squares, and diamonds. The application
will employ two ancillary functions that use basic Vogle commands to move
the cursor and draw straight segments:

1. Function draw marker 2d draws a marker at a specified location.

2. Function draw line 2d draws the graph of a line defined by a group of
points inside a specified window.

We will discuss these functions individually and then illustrate their usage in a
plotting code.

Function draw marker 2d

The implementation of the marker drawing function draw marker 2d is:

/*--

void draw marker 2d

Draw a symbol at the location (x, y) according

to the value of the integer variable marker:

marker:

0 : no symbol

1 : circle

2 : triangle

3 : square

4 : diamond

5 : dot

-- */

#include "VOGLE/vogle c++.h"

using namespace std;

void draw marker 2d (float x, float y, int marker

,float xmin, float xmax

,float ymin, float ymax)

{
float xrange = xmax-xmin; // plotting range

float yrange = ymax-ymin;

float xsize = 0.02*xrange; // marker size

216 Introduction to C++ Programming and Graphics

float ysize = 0.02*yrange;

// move to the point:

move2(x, y);

if (marker==1)

circle (x,y,0.005*xrange) ; // circle

else if(marker==2) // triangle

{
rmove2 (0.0,0.5*ysize);

rdraw2 (-0.4*xsize,-0.75*ysize);

rdraw2 (0.8*xsize,0.0);

rdraw2 (-0.4*xsize,0.75*ysize);

rmove2 (0.0,-0.5*ysize);

}

else if(marker==4) // square

{
rmove2 (0.25*xsize,0.25*ysize);

rdraw2 (-0.5*xsize,0.0);

rdraw2 (0.0, -0.5*ysize);

rdraw2 (0.5*xsize,0.0);

rdraw2 (0.0, 0.5*ysize);

rmove2 (-0.25*xsize,-0.25*ysize);

}

else if(marker==5)

{
rmove2 (0.0,0.5*ysize);

rdraw2 (-0.5*xsize,-0.5*ysize);

rdraw2 (0.5*xsize,-0.5*ysize);

rdraw2 (0.5*xsize,0.5*ysize);

rdraw2 (-0.5*xsize,0.5*ysize);

rmove2 (0.0,-0.5*ysize);

}

else if(marker==6)

circle (x,y,0.00001*xrange);

}

Note that the “move to”(move2) and “draw to” (draw2) Vogle functions have
been used to move the pen lifted up or pressed down.

Function draw line 2d

The implementation of the line drawing function draw line 2d is:

7.4 Plotting a line 217

/*---

void draw line 2d

Draw a polygonal line defined by a set of points

and put symbols at the points

If a segment crosses the boundaries of the plotting

window, interpolate for the crossing point

SYMBOLS

n: number of points to be plotted

x,y: coordinates of the points

xmin,xmax: x plotting window

ymin,ymax: y plotting window

tol: tolerance for window crossing

Icheck: 1 to perform crossing checks

-- */

#include "VOGLE/vogle c++.h"

using namespace std;

void draw line 2d (int n, float x[], float y[]

,float xmin, float xmax

,float ymin, float ymax, int Icheck)

{
float xrange = xmax-xmin;

float yrange = ymax-ymin;

float xp, yp, xpp, ypp; // temporary positions

float xint, yint; // interpolation variables

float tol=0.000001; // tolerance

//--- Move to the first point:

xp=x[0]; yp=y[0];

move2 (xp,yp);

/*--

If both the current and the previous point

lie outside the window, do not draw the line

If a segment crosses the borders, draw up to

the interpolated crossing points

-- */

for (int i=1; i<n; i++) // closes at sousami

{
xpp=x[i-1];

ypp=y[i-1];

218 Introduction to C++ Programming and Graphics

xp=x[i];

yp=y[i];

if(Icheck==1) // perform crossing checks

{

if((xp>xmax && xpp>xmax) // both points are

||(xp<xmin && xpp<xmin) // outside the plotting

||(yp>ymax && ypp>ymax) // window: move

||(yp<ymin && ypp<ymin)) // but do not draw

{
move2 (xp,yp); continue; // consider the next value of i

}

float crossxmax = (xp-xmax)*(xpp-xmax); // crossing test

if (crossxmax<tol)

{
xint = xmax-0.001;

yint = ((xint-xpp)*yp-(xint-xp)*ypp)/(xp-xpp);

if(xpp>=xmax)

{
xpp = xint; ypp = yint;

move2 (xpp,ypp);

}
else

{
xp=xint; yp=yint;

}
}

float crossxmin = (xp-xmin)*(xpp-xmin);

if (crossxmin<tol)

{
xint = xmin+0.001;

yint = ((xint-xpp)*yp-(xint-xp)*ypp)/(xp-xpp);

if(xpp<=xmin)

{
xpp = xint; ypp = yint;

move2 (xpp,ypp);

}
else

{
xp=xint; yp=yint;

}
}

float crossymax = (yp-ymax)*(ypp-ymax);

7.4 Plotting a line 219

if (crossymax<tol)

{
yint = ymax-0.001;

xint= ((yint-ypp)*xp-(yint-yp)*xpp)/(yp-ypp);

if(ypp>=ymax)

{
xpp = xint; ypp = yint;

move2 (xpp,ypp);

}
else

{
xp=xint; yp=yint;

}
}

float crossymin = (yp-ymin)*(ypp-ymin);

if (crossymin<tol)

{
yint = ymin+0.001;

xint= ((yint-ypp)*xp-(yint-yp)*xpp)/(yp-ypp);

if(ypp<=ymin)

{
xpp = xint; ypp = yint;

move2 (xpp,ypp);

}
else

{
xp=xint; yp=yint;

}
}

}

draw2 (xp,yp);

} // sousami

}

An important feature of the code is that, if a plotted line exits the plotting
window, it is chopped off and the marginal values are computed by linear
interpolation.

Code plot 2d simple

The following code contained in the file plot 2d simple.cc defines and
plots data points based on the two functions we have constructed:

220 Introduction to C++ Programming and Graphics

/*----------------

plot 2d simple

plot a line

-----------------*/

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw marker 2d.h"

#include "draw line 2d.h"

using namespace std;

int main()

{

//--- Define the data :

const int n=512;

float xd[n], yd[n];

for (int i=0; i<n; i++)

{
xd[i]=-0.3+4.0*(i-1.0)/n;

yd[i]=0.5+0.3*sin(35.0*xd[i])*exp(xd[i]);

}

//--- Set plotting limits:

float xmin=0.0; float xmax=1.0;

float ymin=0.0; float ymax=1.0;

// Set plotting margins:

float xmarg = 0.2*(xmax-xmin);

float ymarg = 0.2*(ymax-ymin);

//--- Launch the graphics:

prefposition (500,100);

prefsize (500,500);

char device[]="X11"; // initialize on the screen

vinit(device);

ortho2 (xmin-xmarg,xmax+xmarg,ymin-ymarg,ymax+ymarg);

color (YELLOW); // yellow background

clear();

//--- Draw markers at the data points:

7.5 A graph with axes 221

color (BLACK);

int marker = 3;

for(int i=0; i<n; i++)

{
if(xd[i]>xmin && xd[i]<xmax && yd[i]>ymin && yd[i]<ymax)

draw marker 2d (xd[i],yd[i],marker,xmin,xmax,ymin,ymax);

}

//--- Plot the data:

int Icheck=1;

draw line 2d (n,xd,yd,xmin,xmax,ymin,ymax,Icheck);

//--- Draw a box:

move2 (xmin,ymin);

draw2 (xmax,ymin);

draw2 (xmin,ymin);

//--- Wait until a key is pressed:

char kbd = char(getkey());

return 0;

}

The graphics output of the code is shown in Figure 7.4.1.

Problems

7.4.1. Modify the function draw marker 2d to include an option for drawing
(a) a solid circle, and (b) a filled triangle with a color of your choice.

7.4.2. Modify the code plot 2d simple.cc so that the data points are (a) gen-
erated in a function, or (b) read from a file.

7.4.3. Modify the code plot 2d simple.cc so that the graph is printed in a
graphics file.

7.5 A graph with axes

To plot scientific data, we require axes with tick marks, corresponding numerical
labels, and axis labels.

222 Introduction to C++ Programming and Graphics

Figure 7.4.1 Graphics display of code plot 2d simple showing a line with markers
at the data points.

Function draw 2d axes

Drawing and formatting axes is done through a sequence of operations
for defining and plotting ticks and underlying labels, as implemented in the
function draw 2d axes.cc:

/*----------------------

draw 2d axes.cc

Draw axes,

Label axes,

Put labels on the plot

----------------------- */

#include <iostream>

#include <iomanip>

#include <fstream>

#include "VOGLE/vogle c++.h"

using namespace std;

void draw axes 2d (float xmin, float xmax // x plotting limits

,float ymin, float ymax // y plotting limits

,int ntc x // number of ticks on the x axis

,int ntc y // number of ticks on the y axis

,int Ilabel ax // 1 to label axes; 0 for no labels

,int ax c // axis color

,int lb c // label color

,char label x[] // x-axis label

7.5 A graph with axes 223

,char label y[] // y-axis label

,char title1[] // first plot title

,char title2[] // second plot title

,char title3[] // third plot title

)

{

//--- Prepare:

float xrange = xmax-xmin;

float yrange = ymax-ymin;

float xmargin = 0.1*xrange;

float ymargin = 0.1*yrange;

float rtic x = xrange/ntc x; // x tick distance

float rtic y = yrange/ntc y; // y tick distance

float tch x = 0.1*xmargin; // x tick height

float tch y = 0.1*ymargin ; // y tick height

//--- Draw x and y axes:

color (ax c);

move2 (xmin,ymin);

draw2 (xmax,ymin);

move2 (xmin,ymin);

draw2 (xmin,ymax);

//--- Print axes labels at the end of the axes:

move2 (xmax+0.5*rtic x, ymin-0.1*ymargin);

drawstr (label x);

move2 (xmin-0.8*xmargin, ymax+0.3*ymargin);

drawstr (label y);

/*----------------------------

Prepare to draw axes ticks

Generate tick labels

Print them in file "xyunit"

Read them as characters into arrays: xunit, yunit

---------------------------------*/

if(Ilabel ax==1)

{
ofstream file1;

file1.open("xyunit");

224 Introduction to C++ Programming and Graphics

file1<< setiosflags(ios::fixed | ios::showpoint);

for (int i=0; i<=ntc x; i++){
float xprint = xmin + i*rtic x;

file1 << setprecision(3) << setw(6) << xprint << endl;}
for (int i=0; i<=ntc y; i++){
float yprint = ymin + i*rtic y;

file1 << setprecision(3) << setw(6) << yprint << endl;}
file1.close();

float textsz x = 0.3*xmargin; // text size

float textsz y = 0.3*ymargin; // text size

textsize (textsz x,textsz y);

}

ifstream file2;

file2.open("xyunit");

char xunit[6];

char yunit[6];

//--- Draw the x tick marks:

for (int i=0; i<=ntc x; i++)

{
float xgo = xmin+i*rtic x;

move2 (xgo, ymin);

rmove2 (0.0, tch y);

rdraw2 (0.0,-tch y);

if(Ilabel ax==1)

{
move2(xgo-0.4*rtic x, ymin-0.4*ymargin);

file2 >> xunit;

drawstr (xunit);

}
}

//--- Draw the y tick marks:

for (int i=0; i<=ntc y; i++)

{
float ygo = ymin+i*rtic y;

move2 (xmin, ygo);

rmove2 (tch x, 0.0);

rdraw2 (-tch x, 0.0);

if(label ax==1)

{
move2 (xmin-0.9*xmargin,ygo-0.1*ymargin);

file2 >> yunit;

drawstr (yunit);

7.5 A graph with axes 225

}
}

//--- Complete the axes box:

move2 (xmax,ymin);

draw2 (xmax,ymax);

draw2 (xmin,ymax);

//--- Print plot titles:

color (lb c);

xmargin = 0.2*xrange;

ymargin = 0.2*yrange;

//--- First plot title:

font("/tmp/hfonts/futura.l");

float textsz x = 0.4*xmargin; // text size

float textsz y = 0.4*ymargin; // text size

textsize (textsz x,textsz y);

move2 (xmin+0.3*xrange,ymax+0.6*ymargin);

drawstr(title1);

//--- Second plot title:

font("/tmp/hfonts/times.ib");

textsz x = 0.35*xmargin; // text size

textsz y = 0.35*ymargin; // text size

textsize (textsz x,textsz y);

move2 (xmin+0.3*xrange,ymax+0.4*ymargin);

drawstr(title2);

//--- Third plot title:

font("/tmp/hfonts/times.i");

textsz x = 0.30*xmargin; // text size

textsz y = 0.30*ymargin; // text size

textsize (textsz x,textsz y);

move2 (xmin+0.3*xrange,ymax+0.2*ymargin);

drawstr(title3);

}

Code plot 2d

The following program contained in the file plot 2d.cc defines and plots
data points:

226 Introduction to C++ Programming and Graphics

*------------------------

plot 2d

Plot a line with axes

-------------------------*/

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw marker 2d.h"

#include "draw line 2d.h"

#include "draw axes 2d.h"

using namespace std;

int main()

{

//--- Define the data:

const int n=512;

float xd[n], yd[n];

for (int i=0; i<n; i++)

{
xd[i]=-0.3+4.0*(i-1.0)/n;

yd[i]=0.5+0.3*sin(35.0*xd[i])*exp(xd[i]);

}

//--- Define the plotting parameters:

float xmin=0.0, xmax=1.0; // plotting limits

float ymin=0.0, ymax=1.0; // plotting limits

int ntc x =10; // number of ticks on the x axis

int ntc y =10; // number of ticks on the y axis

int Ilabel ax =1; // 1 to label axes; 0 for no labels

int ax c = BLACK; // axis color

int lb c = RED; // label color

char label x[] = "x-axis"; // x-axis label

char label y[] = "y-axis"; // y-axis label

char title1[] ="vogle graphics"; // first plot title

char title2[] ="Eric H Echidna"; // second plot title

char title3[] ="Beerware"; // third plot title

//--- Launch the graphics:

float xmarg = 0.2*(xmax-xmin); // plotting margin

float ymarg = 0.2*(ymax-ymin);

prefposition (500,100);

prefsize (500,500);

7.5 A graph with axes 227

char device[]="X11"; // initialize on the screen

vinit(device);

ortho2 (xmin-xmarg,xmax+xmarg,ymin-ymarg,ymax+ymarg);

color (WHITE);

clear();

//--- Draw markers:

color (BLACK);

int marker = 3;

for(int i=0; i<n; i++)

{
if(xd[i]>xmin && xd[i]<xmax

&& yd[i]>ymin && yd[i]<ymax)

draw marker 2d (xd[i], yd[i], marker

,xmin, xmax,ymin, ymax);

}

//--- Prepare the graph:

color (BLUE);

int Icheck=1;

draw line 2d (n,xd,yd,xmin,xmax,ymin,ymax,Icheck);

//--- Draw axes:

draw axes 2d

(xmin,xmax

,ymin,ymax

,ntc x,ntc y

,Ilabel ax // 1 to label axes; 0 for no labels

,ax c // axis color

,lb c // label color

,label x // x-axis label

,label y // y-axis label

,title1 // first title

,title2 // second title

,title3 // third title

);

//--- Wait to finish:

char kbd = char(getkey());

return 0;

}

228 Introduction to C++ Programming and Graphics

Figure 7.5.1 Graphics display produced by code plot 2d showing a line with markers
at the data points and complete axes.

The graphics output of the code is shown in Figure 7.5.1.

Preparing a postscript file

Now we would like to see a graph on the screen and, if approved, pro-
duce a postscript file that can be sent to a printer or included in a document.
Vogle allows us to do this efficiently by repeating the graph with “postscript”
as the output device and a specified file name as the recipient. The necessary
modifications are shown in the following code:

/*------------------------

plot 2d

Plot a function with axis

and generate a postscript file

-------------------------*/

#include<iostream>

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw marker 2d.h"

#include "draw line 2d.h"

#include "draw axes 2d.h"

using namespace std;

char kbd;

7.5 A graph with axes 229

int main()

{
float points[4][2];

//--- Define the data to be plotted:

...

//--- Define plotting parameters:

...

//--- Graphics:

float xmarg = 0.2*(xmax-xmin); // plotting margin

float ymarg = 0.2*(ymax-ymin);

int Icheck;

again:

prefposition (500,100);

prefsize (500,500);

vinit ("X11");

short Itry = 0;

short Iplot = 0;

repeat:

ortho2 (xmin-xmarg,xmax+xmarg,ymin-ymarg,ymax+ymarg);

color (YELLOW);

clear();

//--- Repaint the plotting area:

if(Iplot==4 || Iplot==6)

{
points[1][1] = xmin;

points[1][2] = ymin;

points[2][1] = xmax;

points[2][2] = ymin;

points[3][1] = xmax;

points[3][2] = ymax;

points[4][1] = xmin;

points[4][2] = ymax;

poly2 (4,points);

}

//--- draw markers

230 Introduction to C++ Programming and Graphics

...

//--- Prepare the graph:

...

//--- Draw axes:

...

//-----------------------------

if(Itry==1)

{
vexit();

goto again;

};
//-----------------------------

cout << "Press p to print a postscript file" << endl;

cout << " any other key to finish" << endl;

kbd = char(getkey());

if(kbd ==’p’)

{
char outfile[1];

cout << " Please enter the name of the postscript file " <<endl;

cin >> outfile;

cout << "Please enter:" << endl << endl;

cout <<" 1 for a black/white plot" << endl;

cout <<" 2 for a black/white plot in portrait" << endl;

cout <<" 3 for a color plot" << endl;

cout <<" 4 for a color plot with background color" << endl;

cout <<" 5 for a color plot in portrait" << endl;

cout <<" 6 for a color plot in portrait with background color" << endl;

short Iplot;

cin >> Iplot;

voutput (outfile);

if(Iplot==1) vnewdev("postscript");

if(Iplot==2) vnewdev("ppostscript");

if(Iplot==3) vnewdev("cps");

if(Iplot==4) vnewdev("cps");

if(Iplot==5) vnewdev("pcps");

if(Iplot==6) vnewdev("pcps");

Itry = 1;

goto repeat;

}

7.6 Graph animation 231

return 0;

}

The three dots indicate previously listed blocks of code.

When the graph is drawn on the screen, the program waits for a key to
be pressed while the cursor is on the graphics window. When the “q” key is
pressed, the program issues a prompt for postscript drawing options and file
name. If any other key is pressed, the execution quits.

Problems

7.5.1. Run code plot 2d to produce a postscript file containing the graph of a
function of your choice.

7.5.2. Modify code plot 2d to allow for multiple functions printed on the same
graph with different colors.

7.6 Graph animation

As a further application, we discuss a code contained in the file graph 2d anm.cc
that animates a specified time-dependent function:

/*------------------------

graph 2d anm.cc

Animate an evolving function

-------------------------*/

#include<iostream>

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw marker 2d.h"

#include "draw line 2d.h"

#include "draw axes 2d.h"

using namespace std;

char kbd;

int main()

{
float points[4][2];

//--- Define the data:

const int n=32;

232 Introduction to C++ Programming and Graphics

float xd[n], yd[n]; // data points

float t=0.; // time

float Dt=0.05; // time step

for (int i=0; i<n; i++)

{
xd[i]=(i-1.0)/n; // abscissas

}

//--- Plotting parameters:

float xmin=0.0, xmax=1.0; // plotting limits

float ymin=0.0, ymax=1.0;

int ntc x =10; // number of ticks on the x axis

int ntc y =10; // number of ticks on the y axis

int Ilabel ax =1; // 1 to label axes; 0 for no labels

int ax c = BLACK; // axis color

int lb c = RED; // plot label color

char label x[] = "x"; // x-axis label

char label y[] = "y"; // y-axis label

char title1[] =" "; // // first plot label

char title2[] =" "; // // second plot label

char title3[] =" ";// // third plot label

//--- Graphics:

float xmarg = 0.2*(xmax-xmin); // plotting margin

float ymarg = 0.2*(ymax-ymin);

int Icheck;

again:

prefposition (500,100);

prefsize (500,500);

vinit ("X11");

backbuffer();

short Itry = 0;

short Iplot = 0;

repeat:

ortho2 (xmin-xmarg,xmax+xmarg,ymin-ymarg,ymax+ymarg);

color (WHITE);

clear();

//--- Repaint the plotting area:

if(Iplot==4 || Iplot==6)

7.6 Graph animation 233

{
points[1][1] = xmin;

points[1][2] = ymin;

points[2][1] = xmax;

points[2][2] = ymin;

points[3][1] = xmax;

points[3][2] = ymax;

points[4][1] = xmin;

points[4][2] = ymax;

poly2 (4,points);

}

//--- Data:

for (int i=0; i<n; i++)

{
yd[i] = 0.5+ 0.2*sin(6*xd[i]-0.3*t);

}

//--- Markers:

color (BLACK);

int marker = 0;

for(int i=0; i<n; i++)

{
if(xd[i]>xmin && xd[i]<xmax

&& yd[i]>ymin && yd[i]<ymax)

draw marker 2d (xd[i], yd[i], marker

xmin, xmax,ymin, ymax);

}

//--- Prepare the graph:

color (BLUE);

Icheck=1;

draw line 2d (n,xd,yd,xmin,xmax,ymin,ymax,Icheck);

//--- Draw draw axes:

draw axes 2d

(xmin,xmax

,ymin,ymax

,ntc x,ntc y

,Ilabel ax // 1 to label axes; 0 for no labels

,ax c // axis color

,lb c // label color

,label x // x-axis label

234 Introduction to C++ Programming and Graphics

,label y // y-axis label

,title1 // first plot label

,title2 // second plot label

,title3 // third plot label

);

//-----------------------------

if(Itry==1)

{
vexit();

goto again;

};
//-----------------------------

swapbuffers();

//--- Check the keyboard:

kbd = char(checkkey());

if(kbd==’q’) exit(1); // quit

if(kbd==’s’)

{
cout << "Press p to print a postscript file" << endl;

cout << " any other key to finish" << endl;

kbd = char(getkey());

}

if(kbd ==’p’)

{
char outfile[1];

cout << " Please enter the name of the postscript file " <<endl;

cin >> outfile;

voutput (outfile);

cout << "Please enter:" << endl << endl;

cout <<" 1 for a black/white plot" << endl;

cout <<" 2 for a black/white plot in portrait" << endl;

cout <<" 3 for a color plot" << endl;

cout <<" 4 for a color plot with background color" << endl;

cout <<" 5 for a color plot in portrait" << endl;

cout <<" 6 for a color plot in portrait with background color" << endl;

short Iplot;

cin >> Iplot;

if(Iplot==1) vnewdev("postscript");

if(Iplot==2) vnewdev("ppostscript");

7.6 Graph animation 235

Figure 7.6.1 Snapshot of a traveling wave produced by the Vogle animation code
graph 2d anm.cc.

if(Iplot==3) vnewdev("cps");

if(Iplot==4) vnewdev("cps");

if(Iplot==5) vnewdev("pcps");

if(Iplot==6) vnewdev("pcps");

Itry = 1;

goto repeat;

}

t = t+Dt;

goto repeat;

//--- Done

return 0;

}

A snapshot of the animation is shown in Figure 7.6.1.

When the cursor is on the graphics window and the “q” key is pressed,
the application quits. When the “s” key is pressed, the application stops and
asks whether a postscript file should be printed.

236 Introduction to C++ Programming and Graphics

Problems

7.6.1. Modify the code graph 2d anm to display (a) a traveling square wave,
and (b) a traveling triangular wave.

7.6.2. Write a code that animates a rolling wheel containing seven rotating
spokes. The wheel should be rolling, not idly spinning.

7.7 Three-dimensional interactive graph

In the most ambitious project, we build a code that plots a group of three-
dimensional lines in the xyz space. The code will employ two ancillary func-
tions that use basic Vogle commands to move the cursor and draw straight
segments:

1. Function draw plot 3d prepares the three-dimensional graph.

2. Function plot 3d trans transforms the graph by rotating the axes and
zooming in and out. In addition, it offers an option for printing and
resetting the plotting parameters.

We discuss these two functions individually and then illustrate their use in a
plotting code.

Function draw plot 3d

The implementation of the function draw plot 3d is:

/*------------------------

draw plot 3d

Draw a three-dimensional plot with axes

-------------------------*/

#include<fstream>

#include<iostream>

#include<iomanip>

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "plot 3d globals.h"

using namespace std;

void draw plot 3d ()

{

//--- Prepare:

7.7 Three-dimensional interactive graph 237

float xrange = xmax-xmin;

float yrange = ymax-ymin;

float zrange = zmax-zmin;

float xmargin = 0.1*xrange;

float ymargin = 0.1*yrange;

float zmargin = 0.1*zrange;

ortho (xmin-0.50*xrange, xmax+0.50*xrange

,ymin-0.50*yrange, ymax+0.50*yrange

,zmin-0.50*zrange, zmax+0.50*zrange);

//--- Graphics:

color (bg c);

clear ();

lookat (vx,vy,vz,0.0,0.0,0.0,twist);

rotate (angx, ’x’);

rotate (angy, ’y’);

rotate (angz, ’z’);

scale (zoom,zoom,zoom);

/*--------------------

Draw axes and labels

--------------------*/

if(Iaxes==1)

{
color (ax c);

move (xmin,ymin,zmin);

draw (xmax,ymin,zmin);

move (xmin,ymin,zmin);

draw (xmin,ymax,zmin);

move (xmin,ymin,zmin);

draw (xmin,ymin,zmax);

//--- Print axes labels:

font ("/tmp/hfonts/futura.l");

textsize(0.9*xmargin,0.9*ymargin);

float tic x = xrange/ntc x; // x tick distance

float tic y = yrange/ntc y; // y tick distance

float tic z = yrange/ntc y; // z tick distance

move (xmax+0.5*tic x, ymin-0.1*ymargin,zmin);

drawstr(label x);

238 Introduction to C++ Programming and Graphics

move (xmin, ymax+0.3*ymargin,zmin-0.8*zmargin);

drawstr(label y);

move (xmin-0.8*xmargin, ymin, zmax+0.50*tic z);

drawstr(label z);

//--- Draw ticks:

if(Itick==1)

{

float tch x = 0.4*xmargin; // x tick height

float tch y = 0.4*ymargin; // y tick height

float tch z = 0.4*zmargin; // z tick height

//--- Produce tick labels:

ofstream file1("xyzunit");

file1<< setiosflags(ios::fixed | ios::showpoint);

const int ndig = 6;

const int nprc = 3;

for (int i=0; i<=ntc x; i++)

{
float xprint = xmin + i*tic x;

file1 << setprecision(nprc) << setw(ndig) << xprint << endl;

}
for (int i=0; i<=ntc y; i++)

{
float yprint = ymin + i*tic y;

file1 << setprecision(nprc) << setw(ndig) << yprint << endl;

}
for (int i=0; i<=ntc z; i++)

{
float zprint = zmin + i*tic z;

file1 << setprecision(nprc) << setw(ndig) << zprint << endl;

}
file1.close();

//--- Read the tick labels

ifstream file2("xyzunit");

char xunit[ndig];

char yunit[ndig];

char zunit[ndig];

float csizex=0.5*xmargin;

float csizey=0.5*ymargin;

7.7 Three-dimensional interactive graph 239

textsize(csizex,csizey);

// ..x axis ticks.../

for (int i=1; i<=ntc x+1; i++)

{
float xgo = xmin+(i-1.0)*tic x;

move (xgo, ymin, zmin);

rmove (0.0, tch x, 0.0); // ticks parallel to the y axis

rdraw (0.0,-tch x, 0.0);

rmove (0.0, 0.0, tch x); // ticks parallel to the z axis

rdraw (0.0, 0.0,-tch x);

file2 >> xunit;

color (lb c);

move (xgo-csizex, ymin-2.0*csizex, zmin);

if(xunit[0]==’-’)

{
move (xgo-2*csizex, ymin-2.0*csizex, zmin);

}

// ..y axis ticks.../

for (int i=1; i<=ntc y+1; i++)

{
float ygo = xmin+(i-1.0)*tic y;

move (xmin, ygo, zmin);

rmove (tch y, 0, 0); // ticks parallel to the x axis;

rdraw (-tch y, 0, 0);

rmove (0, 0, tch y); // ticks parallel to the z axis;

rdraw (0, 0,-tch y);

file2 >> xunit;

color (lb c);

move (xmin-ndig*csizex/2, ygo, zmin);

if(xunit[0]==’-’)

{
move (xmin-(ndig/2+1)*csizex, ygo, zmin);

}

// ..z axis ticks.../

for (int i=1; i<=ntc z+1; i++)

{
float zgo = zmin+(i-1.0)*tic z;

move (xmin, ymin, zgo);

rmove (tch z, 0.0, 0.0); // ticks parallel to the x axis;

rdraw (-tch z, 0.0, 0.0);

rmove (0.0, tch z, 0.0); // ticks parallel to the y axis;

rdraw (0.0,-tch z, 0.0);

240 Introduction to C++ Programming and Graphics

file2 >> zunit;

color (lb c);

move (xmin-3*csizex, ymin-1.5*ymargin, zgo);

drawstr(zunit);

color (ax c);

}

} // end of ticks

//--- Plot titles:

color (CYAN);

font ("/tmp/hfonts/futura.m");

textsize (0.8*xmargin,0.8*ymargin);

move (xmin+0.3*xrange,ymax+0.8*ymargin,zmin);

drawstr(title1);

textsize (0.6*xmargin,0.6*ymargin);

move (xmin+0.3*xrange,ymax+0.4*ymargin,zmin);

drawstr(title2);

textsize (0.5*xmargin,0.5*ymargin);

move (xmin+0.3*xrange,ymax+0.0*ymargin,zmin);

drawstr(title3);

} // end of axes

/*----------------

Draw nc curves

----------------*/

color (ln c);

for(int i=1;i<=nc;i++) // over curves

{
move (xd[i][1],yd[i][1],zd[i][1]);

for(int j=2;j<=np[i];j++)

{
draw (xd[i][j],yd[i][j],zd[i][j]);

}
} // over curves

if(Iswap==1) // for animation

{
swapbuffers();

}

//--- Done

return;

}

7.7 Three-dimensional interactive graph 241

Function plot 3d trans

The implementation of the function plot 3d trans is:

/*------------------------

plot 3d trans

transform a 3D plot produced

by draw plot 3d

-------------------------*/

#include<fstream>

#include<iostream>

#include<iomanip>

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw plot 3d.h"

#include "plot 3d globals.h"

using namespace std;

void plot 3d trans ()

{
char outfile[10];

float xaddr,yaddr;

int click;

//--- Initialize:

angx = angx init;

angy = angy init;

angz = angz init;

zoom = zoom init;

/*---------------------------------

loop over keys and buttons

until a key or button is pressed

---------------------------------*/

again:

//--- Check the keyboard:

char kbd = char(checkkey());

//--- If ’r’ is pressed, reset:

if(kbd==’r’)

{

242 Introduction to C++ Programming and Graphics

angx = angx init;

angy = angy init;

zoom = zoom init;

color (bg c);

clear ();

draw plot 3d();

}

//--- If ’p’ is pressed, print in a file:

if(kbd==’p’)

{
char outfile[1];

cout << " Please enter the name of the postscript file " <<endl;

cin >> outfile;

cout << "Please enter:" << endl << endl;

cout <<" 1 for a black/white plot" << endl;

cout <<" 2 for a black/white plot in portrait" << endl;

cout <<" 3 for a color plot" << endl;

cout <<" 4 for a color plot with background color" << endl;

cout <<" 5 for a color plot in portrait" << endl;

cout <<" 6 for a color plot in portrait with background color" << endl;

short Iplot;

cin >> Iplot;

voutput (outfile);

if(Iplot==1) vnewdev("postscript");

if(Iplot==2) vnewdev("ppostscript");

if(Iplot==3) vnewdev("cps");

if(Iplot==4) vnewdev("cps");

if(Iplot==5) vnewdev("pcps");

if(Iplot==6) vnewdev("pcps");

draw plot 3d(); // print in file

vnewdev ("X11"); // redraw on the screen

color (bg c);

clear ();

draw plot 3d();

//--- Interactive:

cout << "Press q to quit" << endl;

cout << " p to print a postscript file" << endl;

cout << " r to reset" << endl;

cout << "Place cursor at the center of the graphics window" << endl;

cout << "and then click and move the:" << endl;

cout << " left-mouse button to rotate left-right" << endl;

7.7 Three-dimensional interactive graph 243

cout << " right-mouse button to rotate up-down" << endl;

cout << " both buttons to zoom" << endl;

}

//--- If ’q’ is pressed, quit:

if(kbd==’q’)

{
vexit();

return;

}

//--- Check the mouse:

click = slocator (&xaddr, &yaddr);

//--- Not pressed:

if(click==0)

{
goto again;

}

//--- Ignore if cursor lies outside the plotting window

if(xaddr<-1 || xaddr > 1||yaddr<-1 || yaddr > 1)

goto again;

//--- Rotate if left button is pressed:

if(click==1)

{
angx = angx init+200.0*yaddr;

color(bg c);

clear();

draw plot 3d();

}

//-- Rotate if right button is pressed:

if(click==4)

{
angy = angy init+200.0*xaddr;

color(bg c);

clear();

draw plot 3d();

}

244 Introduction to C++ Programming and Graphics

//--- Zoom if middle button is pressed:

if(click==2)

{
zoom = zoom init*(xaddr+1.0);

color(bg c);

clear();

draw plot 3d ();

}

goto again;

//--- Done

return;

}

Code plot 3d

The following main program contained in the file plot 3d.cc defines and
plots data points based on the two functions we have constructed:

/*------------------------

plot 3d

interactive 3-D plot

-------------------------*/

#include<iostream>

#include<cmath>

#include "VOGLE/vogle c++.h"

#include "draw plot 3d.h"

#include "plot 3d trans.h"

using namespace std;

//--- Global variables:

const float pi=3.1415926;

float xmin=0, xmax=1;

float ymin=0, ymax=1;

float zmin=0, zmax=1;

float vx=0.1, vy=0.1, vz=0.5*zmax;

float twist=0;

float angx=0; // rotation angle

float angy=0; // rotation angle

float angz=0; // rotation angle

7.7 Three-dimensional interactive graph 245

float zoom=1.0; // zoom

float angx init = angx;

float angy init = angy;

float angz init = angz;

float zoom init = zoom;

int ntc x=4; // number of ticks on the x axis

int ntc y=4; // number of ticks on the y axis

int ntc z=4; // number of ticks on the z axis

int bg c=WHITE; // background color

int ax c=RED; // axis color

int lb c=GREEN; // label color

int ln c=BLUE; // line color

int Iswap=1;

char label x[]="x"; // x-axis label

char label y[]="y"; // y-axis label

char label z[]="z"; // y-axis label

char title1[12]="vogle"; // first title

char title2[12]="plot 3d"; // second title

char title3[12]="beerware"; // third title

int Iaxes; // draw axes?

int Itick; // ticks on axes?

int Itry; // repeat index for animation

int np[21];

float xd[21][128];

float yd[21][128];

float zd[21][128];

int nc=2; // number of curves

//------------main----------------

int main()

{

//--- Preferences:

Iaxes = 1; // draw axes

Itick = 1; // draw ticks

int Itry = 1; // for animation

//--- Initialize the device:

char device[] = "X11";

prefposition (500,100);

prefsize (500,500);

vinit (device);

if(backbuffer()==0)

{
vexit();

246 Introduction to C++ Programming and Graphics

cout << "Device cannot support double-buffering" << endl;

exit(1);

}

//--- Generate data:

np[1] = 33;

np[2] = 49;

for(int i=1;i<=nc;i++)

{
for(int j=1;j<=np[i];j++)

{
float phase = (j-1)*2*pi/(np[i]-1);

if(i==1)

{
xd[i][j]=0.5+0.6*cos(phase)*sin(phase);

yd[i][j]=0.5+0.2*cos(phase);

zd[i][j]=0.2*sin(phase);

}
else if(i==2)

{
xd[i][j]=0.3*cos(phase);

yd[i][j]=0.4+0.2*cos(phase)*cos(phase);

zd[i][j]=0.3*sin(phase);

}
}
}

//--- Plot:

draw plot 3d();

plot 3d trans();

//--- Interactive:

cout << "Press q to quit" << endl;

cout << " p to print a postscript file" << endl;

cout << " r to reset" << endl;

cout << "Place cursor at the center of the graphics window" << endl;

cout << "and then click and move the:" << endl;

cout << " left-mouse button to rotate left-right" << endl;

cout << " right-mouse button to rotate up-down" << endl;

cout << " both buttons to zoom" << endl;

//--- Wait for the keyboard:

char kbd = char(getkey());

7.7 Three-dimensional interactive graph 247

vexit();

return 0;

}

The plotting parameters are passed to the functions draw plot 3d.cc and plot
3d trans.cc as global variables through the header file draw plot 3d
globals.h:

#ifndef DRAW PLOT 3D GLOBALS H

#define DRAW PLOT 3D GLOBALS H

extern float xmin, xmax;

extern float ymin, ymax;

extern float zmin, zmax;

extern float vx, vy, vz;

extern float twist;

extern float angx; // rotation angle

extern float angy; // rotation angle

extern float angz; // rotation angle

extern float zoom; // zoom

extern float angx init;

extern float angy init;

extern float angz init;

extern float zoom init;

extern int ntc x; // number of ticks on the x axis

extern int ntc y; // number of ticks on the y axis

extern int ntc z; // number of ticks on the y axis

extern int bg c; // background color

extern int ax c; // axis color

extern int lb c; // label color

extern int ln c; // line color

extern int Iswap;

extern char label x[]; // x-axis label

extern char label y[]; // y-axis label

extern char label z[]; // y-axis label

extern char title1[]; // first title

extern char title2[]; // second title

extern char title3[]; // third title

extern int Iaxes; // draw axes?

extern int Itick; // ticks on axes?

extern int Itry; // repeat index for animation

extern int nc;

extern int np[];

extern float xd[][128];

extern float yd[][128];

extern float zd[][128];

#endif

248 Introduction to C++ Programming and Graphics

Figure 7.7.1 Graphics display of code plot 3d.

Since these variables are declared as external, their values are supplied from
another code upon linking – in this case, from the main program. If these
variables were defined and evaluated in the header file, multiple definitions
would occur upon linking resulting in an exception, as discussed in Section 4.7.

The graphics output of the code is shown in Figure 7.7.1.

Problems

7.7.1. Run the code plot 3d to draw the wireframe of a sphere defined by
azimuthal and meridional circles.

7.7.2. Modify the code plot 3d to animate the motion of a three-dimensional
line.

7.8 Three-dimensional interactive object drawing

By a straightforward modification of the functions and main program discussed
in Section 7.7 we are able to produce a code that draws an object in three di-

7.8 Three-dimensional interactive object drawing 249

mensions. The object itself is defined by a collection of independently generated
triangular elements, each defined by three nodes.

Function draw obj 3d is identical to function draw plot 3d, except that
the drawing module reads:

/*----------------

Draw nc elements

----------------*/

int Ibcface = 1;

int Iclock = 0;

backface(Ibcface);

backfacedir(Iclock);

const int npoints = 4;

float points[npoints-1][3];

for(int j=1;j<=nc;j++)

{
points[0][0] = xd[j][1];

points[0][1] = yd[j][1];

points[0][2] = zd[j][1];

points[1][0] = xd[j][2];

points[1][1] = yd[j][2];

points[1][2] = zd[j][2];

points[2][0] = xd[j][3];

points[2][1] = yd[j][3];

points[2][2] = zd[j][3];

points[3][0] = xd[j][1];

points[3][1] = yd[j][1];

points[3][2] = zd[j][1];

color (CYAN); // paint the elements

bool fill = true;

polyfill (fill);

poly (npoints,points);

color (ln c); // draw the element contours

fill = false;

polyfill (fill);

poly (npoints,points);

}

Function obj 3d trans is a straightforward modification of function
obj 3d trans designed to handle element instead of line data.

250 Introduction to C++ Programming and Graphics

The main program obj 3d is identical to program plot 3d, except that
the data definition module reads:

int vertices;

ifstream file9("obj 3d.inp");

nc = 0; // count the number of elements

another:

file9 >> vertices; // number of vertices

if(vertices==0) {goto done;} // end of triangles

nc = nc+1;

np[nc]==vertices;

for(int i=1; i<=vertices;i++)

{
file9 >> xd[nc][i] >> yd[nc][i] >> zd[nc][i];

}

goto another; // read again

done: // done reading

file9.close();

cout << nc;

The triangle vertices are recorded in the file obj 3d.inp in the following
format:

3

0.00000 0.00000 0.62573

0.08762 0.00000 0.62272

0.00000 0.17524 0.62272

3

0.08762 0.00000 0.62272

...

3

0.48196 -1.15671 -0.33737

0.57835 -0.96392 -0.33737

0.57174 -1.14349 -0.26681

0

where the three dots denote further element blocks.

The graphics output of the code is shown in Figure 7.8.1.

7.8 Three-dimensional interactive object drawing 251

Figure 7.8.1 Graphics display of code obj 3d showing an object constructed of
surface patches.

Problems

7.8.1. Run the code obj 3d to draw (a) a cube, and (b) a four-faced pyramid.

7.8.2. Modify the code obj 3d and supporting functions to draw an object
defined by quadrilateral elements.

Graphics Programming
with GLUT, GLUI,
and GTK+

8
In Chapter 7, we discussed the fundamentals of graphics programming based
on the Vogle graphics library. In this chapter, we discuss further concepts of
graphics programming based on the commercial-grade Glut, Glui, and Gtk+

utility toolboxes. All three are freely available for a variety of platforms:

• Glut is built on the OpenGL graphics library, which is the industry
standard for a broad range of free software and commercial applications.

• Glui is built on Glut to provide a Graphical User Interface (GUI)
equipped with controls such as buttons, check-boxes, and radio buttons.

• Gtk+ is a popular widget toolbox.

Once we have mastered the functions implemented in these libraries, we can
produce professional graphics displays and applications using C++ code that
is portable virtually across any computer platform.

8.1 GLUT

The newest edition of Glut is implemented in the FreeGlut library, which
includes the Mesa library. The latter is the free implementation of OpenGL.
An excellent manual of the Glut functions and their usage can be found at
several Internet sites including:

http://pyopengl.sourceforge.net/documentation/manual/reference-GLUT

http://www.opengl.org/documentation/specs/glut

To compile a C++ program named phoebe.cc and link it with the Glut

library in Unix, we use the makefile:

8.1 Glut 253

LIB = -I/usr/include/GL -I/usr/include/GL/freeglut -lX11 -lglut

phoebe: phoebe.cc

c++ -o phoebe phoebe.cc $(LIB)

The empty spaces in the third line must be generated by pressing the Tab key.

The first line defines the variable LIB as the union of the header files of
(a) the OpenGL and freeglut libraries located in the system include directories,
and (b) the X11 and freeglut libraries. The compiler option -Isomething adds
the directory something to the top of the list of search directories.

To compile the program in Unix, we navigate to the working directory
and issue the command:

make phoebe

To run the executable, we type:

./phoebe

Color and transparency

Color is defined as a mixture of fundamental components that can be
separated by a prism. Color in Glut is determined by the quadruplet of para-
meters:

Red Blue Green Alpha

(RBGA), where “Alpha” determines the opacity. Each parameter varies be-
tween 0 and 1; Alpha=0 corresponds to transparent, and Alpha=1 corresponds
to opaque.

A blank window

The following C++ code contained in the file window.cc consists of the
main program and the user-defined function blank. The modest purpose of this
code is to generate the empty graphics window shown in Figure 8.1.1(a):

#include <freeglut.h>

using namespace std;

void blank();

int main(int argc, char **argv)

{
glutInit(&argc, argv);

254 Introduction to C++ Programming and Graphics

glutCreateWindow("GLUT window");

glClearColor(0.8,0.5,0.2,1.0);

glutDisplayFunc(blank);

glutMainLoop();

return 0;

}

//-- function blank

void blank()

{
glClear(GL COLOR BUFFER BIT);

}

The code makes several Glut (glut) and OpenGL (gl) calls according to a very
specific protocol:

• The first command in the main program calls the Glut function:

glutInit(int &argc, char **argv);

This function parses the window-specific parameters transmitted to the
X11 server. Note that the first argument is the integer pointer, &argc.

• The last command in the main program calls the function:

glutMainLoop();

which launches the graphics display in an infinite loop that can be inter-
rupted only by certain events.

In OpenGL and GLUT programming, we first register the callbacks (graph-
ics functions), then define the graphics object, and finally launch the
graphics display by entering the main loop. If we do not enter the main
loop, nothing will happen.

• The second command in the main program generates a graphics window
and defines the title.

• The third command in the main program sets the background color painted
when the window is cleared in the default RBGA mode.

• The fourth command in the main program calls the function:

glutDisplayFunc(char function name);

This function launches the user-defined function stated in the argument.

8.1 Glut 255

(a) (b)

(c) (d)

(e) (f)

Figure 8.1.1 Glut productions: (a) An empty window, (b) a teapot, (c) a triangle,
(d) a disk, (e) a cube, and (f) a snowman.

256 Introduction to C++ Programming and Graphics

In this case, the invoked function blank clears the screen to the color set
by the third command in the main program.

The blank-screen code will be our basic template for developing further appli-
cations.

Teapot

The following C++ code contained in the file glut shapes.cc consists of
the main program and the user-defined function showme. The code opens a
window and draws the wire-frame image of a teapot:

#include <freeglut.h>

using namespace std;

void disp(void);

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT SINGLE | GLUT RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glOrtho(-1.2, 1.2, -1.2, 1.2, -1.2, 1.2);

glutCreateWindow("Teapot");

glutDisplayFunc(showme);

glClearColor(0.2,0.5,0.2,0.2);

glutMainLoop();

return 0;

}

//--- showme

void showme(void)

{
glClear(GL COLOR BUFFER BIT); // clear the screen

glutWireTeapot(0.6);

}

The graphics output of the code on the desktop is shown in Figure 8.1.1(b).
Three new Glut functions have been introduced to set the display mode and
specify the location and size of the graphics window:

glutInitDisplayMode
glutInitWindowPosition
glutInitWindowSize

In addition, the OpenGL function glOrtho was invoked to set the lower and

8.1 Glut 257

GLUT RGBA Select an RGBA mode window; default if neither
GLUT RGBA nor GLUT INDEX are specified.

GLUT RGB Alias for GLUT RGBA.
GLUT INDEX Color-index-mode window;

overrides GLUT RGBA.
GLUT SINGLE Single buffered window; default if neither

GLUT DOUBLE or GLUT SINGLE is specified.
GLUT DOUBLE Double buffered window;

overrides GLUT SINGLE.
GLUT ACCUM Accumulation buffer.
GLUT ALPHA Alpha component to the color buffer(s).
GLUT DEPTH Depth buffer.
GLUT STENCIL Stencil buffer.
GLUT MULTISAMPLE Multisampling support.
GLUT STEREO Stereo window.
GLUT LUMINANCE “Luminance” color model.

Table 8.1.1 Directives of the the glutInitDisplayMode function.

upper limits of the x, y, and z axes.

• The GLUT DEPTH directive of the glutInitDisplayMode function requests
a color depth buffer, GLUT SINGLE requests a single buffer, and GLUT RGBA
requests the RGBA color coding system. A list of possible directives is
given in table 8.1.1.

• The first argument of the glutInitDisplayPosition function is the num-
ber of pixels from the left of the screen. The default value is -1, signifying
that the window manager is free to choose where the window will appear.
The second argument of the function is the number of pixels measured
from the top of the screen.

• The first and second arguments of the glutInitWindowSize function are
the window width and height, both measured in pixel units.

Graphics files

Obtaining a file or hard copy of the graphics window or display is easier
said than done. Although some conversion software is available, the quick
way out is to save a screen shot and obtain the desired image using an image
manipulation application such as the gimp. The images shown in this chapter
were extracted in this manner and then saved in the encapsulated postscript
(eps) format.

258 Introduction to C++ Programming and Graphics

Triangle

The following alternative user-defined function produces the triangle
shown in Figure 8.1.1(c):

void showme(void)

{
glClear(GL COLOR BUFFER BIT);

glBegin(GL TRIANGLES);

glVertex2f(-0.9,-0.5);

glVertex2f(0.3,-1.0);

glVertex2f(0.0, 1.0);

glEnd();

glFlush();

}

Note that the triangle is drawn using OpenGL functions alone. Initially, the
triangle is put into the memory buffer. The glFlush function flushes the buffer
and forces stored objects to be drawn.

OpenGL function names

Many OpenGL functions have the general name:

glNameNm(...)

where N is 2 or 3 to indicate the number of function arguments, and m is f for
float, d for double, s for signed short integer, us for unsigned short integer, i
for signed integer, ui for unsigned integer, b for character, and ub for unsigned
character.

Thus, the 2 in the name of the glVertex2f indicates two arguments, and
the f indicates that the arguments will be floating-point numbers registered in
single precision.

glBegin(TYPE) and glEnd()

The glBegin(TYPE) and glEnd() functions mark the beginning and end
of a set of N vertices whose interpretation depends on TYPE. In the case of a
triangle, TYPE is GL TRIANGLES. A list of possible types follows:

GL POINTS

Each vertex is a single point.

8.1 Glut 259

GL POLYGON

Draws a convex N -sided polygon defined by the vertices.

GL LINES

N must be even. Each pair of vertices defines a line segment.

GL LINE LOOP

Draws a closed polygonal line passing through the N vertices.

GL TRIANGLES

Each consecutive triplet of vertices defines a triangle, for a total of T =
V/3 triangles, where V is the number of vertices; V must be a multiple
of three.

GL TRIANGLE STRIP

Draws a connected group of N − 2 triangles. A triangle is defined by any
three successive vertices.

GL TRIANGLE FAN

Draws a connected group of N − 2 triangles. A triangle is defined by the
first vertex and consecutive pairs of subsequent vertices.

GL QUADS

Each consecutive quadruplet of vertices defines a quadrilateral, for a total
of Q = V/4 elements, where V is the number of vertices; V must be a
multiple of four.

GL QUAD STRIP

Draw a connected group of Q = V/2 − 1 quadrilaterals, where V is the
number of vertices; V must be even. A quadrilateral is defined by any
two successive vertex pairs. For example, when V = 4, one quadrilateral
is drawn.

Functions defining vertices include, but are not limited to:

glVertex2f glVertex2d
glVertex3f glVertex3d

260 Introduction to C++ Programming and Graphics

As an example, the following function draws the solid disk shown in
Figure 8.1.1(d):

void disk()

{
int N=64;

float Dthet =2.0*3.1415926/N;

float centerx=0.0, centery=0.0;

float radius=1.0;

glClear(GL COLOR BUFFER BIT);

glBegin(GL TRIANGLE FAN);

glColor3f(0.8,0.5,0.2);

glVertex2f(centerx,centery);

for (int i=0; i<=N; i++)

{
float angle = i*Dtheta;

glVertex2f(cos(angle)*radius,sin(angle)*radius);

}
glEnd();

glFlush();

}

The disk is defined by a group of N triangles with one common vertex at the
disk center.

Cube

Three-dimensional graphics can be drawn in similar ways. The following
function paints the cube shown in Figure 8.1.1(e):

void cube(void)

{

glClear(GL COLOR BUFFER BIT);

/* Introduce a transformation matrix.

All vertices will be multiplied by this matrix */

glLoadIdentity(); // introduce the identity matrix

glOrtho(-8.0, 8.0, -8.0, 8.0, -8.0, 8.0); // set the axes

glTranslatef(-0.5, 0.2, 0.1); // translate the identity matrix

glRotatef(-50, 1.0, 0.0, 0.0); // rotate by 50 deg about the x axis

glRotatef(50, 0.0, 1.0, 0.0); // rotate by 50 deg about the y axis

8.1 Glut 261

glRotatef(30, 0.0, 0.0, 1.0); // rotate by 30 deg about the z axis

//--- Paint three faces:

glColor3f(1.0, 0.0, 1.0);

glBegin(GL QUAD STRIP);

glVertex3d(3, 3, -3);

glVertex3d(3, -3, -3);

glVertex3d(-3, 3, -3);

glVertex3d(-3, -3, -3);

glVertex3d(-3, 3, 3);

glVertex3d(-3, -3, 3);

glVertex3d(3, 3, 3);

glVertex3d(3, -3, 3);

glEnd();

glColor3f(1.0, 1.0, 0.0); // Paint the individual faces

glBegin(GL QUADS);

glVertex3d(-3, 3, 3);

glVertex3d(-3, -3, 3);

glVertex3d(3, -3, 3);

glVertex3d(3, 3, 3);

glEnd();

glColor3f(0.0, 0.0, 1.0);

glBegin(GL QUADS);

glVertex3d(-3, -3, -3);

glVertex3d(3, -3, -3);

glVertex3d(3, -3, 3);

glVertex3d(-3, -3, 3);

glEnd();

glColor3f(0.0, 1.0, 1.0);

glBegin(GL QUADS);

glVertex3d(-3, 3, -3);

glVertex3d(3, 3, -3);

glVertex3d(3, 3, 3);

glVertex3d(-3, 3, 3);

glEnd();

glColor3f(0.2, 1.0, 0.0);

glBegin(GL QUADS);

glVertex3d(3, 3, -3);

glVertex3d(3, -3, -3);

glVertex3d(-3,-3, -3);

glVertex3d(-3, 3, -3);

glEnd();

glFlush();

}

The faces of the cube were painted with different colors using the glColor3f
function.

262 Introduction to C++ Programming and Graphics

Transformations

The cube drawing code provides us with the opportunity to discuss trans-
formations. Every point in space is represented by a position vector encapsu-
lating the x, y, and z coordinates in a fixed (world or laboratory) frame. To
implement translation, we call the function:

glTranslatef(Dx, Dy, Dz)

where the three arguments are the x, y, and z displacements.

Multiplying a position vector by a 3 × 3 transformation matrix gives a
new position vector. In the cube code, the transformation matrix is introduced
as the 3 × 3 identity matrix:

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ .

Multiplying a position vector by the identity matrix leaves the vector un-
changed. To implement rotation around the axis defined by the direction cosines
(ax, ay, az), we call the function:

glRotatef(degrees, ax, ay, az)

For example,
glRotatef(48, 0, 0, 1);

performs rotation by 48◦ around the z axis.

Prefabricated shapes

Glut functions that display prefabricated shapes are shown in Table
8.1.2. In practice, these functions are used to construct composite objects from
elementary geometries.

The following function produces the snowman wearing shades displayed
in Figure 8.1.1(f):

void snowman(void)

{
glClear(GL COLOR BUFFER BIT);

//--- Introduce a transformation matrix:

glLoadIdentity();

8.1 Glut 263

glutSolidSphere (double radius, int slices, int stacks)
glutWireSphere (double radius, int slices, int stacks)

glutSolidCone (double base, double height, int slices, int stacks)
glutWireCone (double base, double height, int slices, int stacks)

glutSolidCube (double size)
glutWireCube (double size)

glutSolidTorus (double innerRadius, double outerRadius,
int nsides, int rings)

glutWireTorus (double innerRadius, double outerRadius,
int nsides, int rings)

glutSolidDodecahedron()
glutWireDodecahedron()

glutSolidOctahedron()
glutWireOctahedron()

glutSolidTetrahedron()
glutWireTetrahedron()

glutSolidIcosahedron()
glutWireIcosahedron()

glutSolidTeapot (double size)
glutWireTeapot (double size)

Table 8.1.2 Glut functions implementing prefabricated shapes.

//--- Body:

glColor3f(1.0f, 1.0f, 1.0f);

glutSolidSphere(0.5,20,20);

//--- Head:

glTranslatef(0.0,0.75,0.0);

glutSolidSphere(0.25,20,20);

//--- Eyes:

glPushMatrix();

264 Introduction to C++ Programming and Graphics

glColor3f(0.0f,0.0f,0.0f);

glTranslatef(0.1, 0.10, 0.18);

glutSolidSphere(0.05,10,10);

glTranslatef(-0.2, 0.0, 0.0);

glutSolidSphere(0.05,10,10);

glPopMatrix();

//--- Nose:

glColor3f(1.0, 0.5 , 0.5);

glRotatef(0.0, 1.0, 0.0, 0.0);

glutSolidCone(0.08, 0.5, 10,2);

glFlush();

}

A transformation matrix can be temporary of permanent. In the first
case, the old transformation matrix can be saved to be reinstated at a later time.
The glPushMatrix function saves the current settings, and the glPopMatrix
function reinstates the settings. The snowman code shows that these functions
simplify the geometrical construction by allowing us to work in temporary coor-
dinates that are properly translated or rotated with respect to fixed coordinates.
When we are done, we revert to the original world coordinates.

Printing text on the screen

The following function contained in the file the end.cc prints a character
array on the screen:

void write()

{
glClear(GL COLOR BUFFER BIT);

char protasi[] = "The Beginning";

int x=35, y=50;

int len, i;

glRasterPos2i(x, y);

len = (int) strlen(protasi);

for (i=0; i<len; i++)

{
glutBitmapCharacter(GLUT BITMAP HELVETICA 18, protasi[i]);

}

glFlush();

}

8.1 Glut 265

The graphics display is shown in Figure 8.1.2(a). In this code, we have intro-
duced the glRasterPos2i function to move the pen to a specified position, and
the glutBitmapCharacter function to draw a character on the screen using a
specified font.

The following function also contained in the file the end.cc prints a char-
acter array using a different method:

void write1()

{
glClear(GL COLOR BUFFER BIT);

char * ps = "The End";

int x = 35, y=50;

while(*ps)

{
glRasterPos2i(x,y);

glutBitmapCharacter(GLUT BITMAP 8 BY 13,*ps);

x = x + 4;

ps = ps+1;

}

glFlush();

}

The graphics display is shown in Figure 8.1.2(b). In the second method, the
individual characters of the array are identified by the pointer ps whose value is
sequentially increased by one unit until the end of the array has been reached.

Available fonts include the following:

GLUT_BITMAP_8_BY_13
GLUT_BITMAP_9_BY_15
GLUT_BITMAP_HELVETICA_10
GLUT_BITMAP_HELVETICA_12
GLUT_BITMAP_HELVETICA_18
GLUT_BITMAP_TIMES_ROMAN_10
GLUT_BITMAP_HELVETICA_18
GLUT_BITMAP_TIMES_ROMAN_24

Spectacular designs

OpenGL allows us to manipulate the color with spectacular results seen
in professional designs. The following function generates the design shown in
Figure 8.1.3:

void spectacular()

{

266 Introduction to C++ Programming and Graphics

int N=4;

float Dtheta = 2*3.1415926/N;

float centerx = 0.0, centery = 0.0;

float radius1 = 0.5;

float radius2 = 1.0;

glClear(GL COLOR BUFFER BIT);

glBegin(GL QUADS);

for (int i=1; i<= N; i++)

{
float angle1 = (i-1)*Dtheta;

float angle2 = i*Dtheta;

if(i==1)

{
centerx = 0.1;

centery = 0.1;

}
else if(i==2)

{
centerx = -0.1;

centery = 0.1;

}
else if(i==3)

{
centerx = -0.1;

centery = -0.1;

}
else

{
centerx = 0.1;

centery = -0.1;

}
glColor3f(0.2,0.5,0.2);

glVertex2f(centerx+cos(angle1)*radius1 ,centery+sin(angle1)*radius1);

glColor3f(0.8,0.5,0.2);

glVertex2f(centerx+cos(angle1)*radius2 ,centery+sin(angle1)*radius2);

glColor3f(0.8,0.5,0.2);

glVertex2f(centerx+cos(angle2)*radius2 ,centery+sin(angle2)*radius2);

glColor3f(0.2,0.5,0.2);

glVertex2f(centerx+cos(angle2)*radius1 ,centery+sin(angle2)*radius1);

}
glEnd();

glFlush();

}

Note that OpenGL allows us to set the vertex color, which is then automatically
interpolated over the surface of a quadrilateral.

8.1 Glut 267

Problems

8.1.1. Program Glut to open a blank window in a reddish color.

8.1.2. Program Glut to draw a red square on a yellow background.

(a) (b)

Figure 8.1.2 String of characters printed on a Glut window using two methods.

Figure 8.1.3 A spectacular color display generated by Glut, printed here in gray
scale.

268 Introduction to C++ Programming and Graphics

8.1.3. Write a Glut function that displays a four-sided pyramid.

8.1.4. Write a code that displays a bicycle.

8.1.5. Write a code that displays two lines of text.

8.1.6. Write a code that generates a spectacular color display of your choice.

8.2 Graphics events

Once the main loop has been entered, Glut keeps track of the x − y position
of the cursor on the screen, the mouse buttons, and the keyboard keys. When
the window has been selected and a key or a mouse button is pressed, an event
is registered.

Monitoring the keyboard

Consider the following slight variation of the teapot preamble and main
code:

#include <iostream>
#include <freeglut.h>
using namespace std;

void showme(void);

void quit(unsigned char, int, int);

int win;

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT SINGLE | GLUT RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(620,620);

win=glutCreateWindow("Teapot");

glutDisplayFunc(disp);

glutKeyboardFunc(quit);

glClearColor(0.2,0.5,0.2,0.2);

glutMainLoop();

return 0;

}

The integer “win” is the window identification number defined in the main code.
The user-defined function quit reads:

8.2 Graphics events 269

void quit(unsigned char key, int x, int y)

{
cout << "Key: " << key << " pressed" << endl;

cout << "Cursor position: " << x << " " << y << endl;

if(key == ’q’)

{
glutDestroyWindow(win);

exit(0);

}
}

When a key is pressed, an event is registered and the function quit is executed.
When the “q” key is pressed, the program stops as Glut destroys the window.

Idle functions

What happens between events? We can have other tasks executed in the
meanwhile. Consider the following main code:

#include <iostream>

#include <freeglut.h>

using namespace std;

void keyboard(unsigned char, int, int);

void mouse(int, int, int, int);

void add(void);

void showme(void);

int a=1; // global variable

//---- main:

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT SINGLE | GLUT RGBA);

glutCreateWindow("Prime");

glutDisplayFunc(showme);

glutIdleFunc(add);

glutKeyboardFunc(keyboard);

glutMouseFunc(mouse);

glutMainLoop();

return 0;

}

When the window is selected and a key pressed, the function keyboard is exe-
cuted; when the mouse is clicked, the function mouse is executed; otherwise the
function add keeps running. The implementation of these functions may be:

270 Introduction to C++ Programming and Graphics

//--- keyboard:

void keyboard(unsigned char key, int x, int y)

{
cout <<"Please enter a number:"<<endl;

cin >> a;

//--- mouse:

void mouse(int button, int state, int x, int y)

{
a=-1000000;

}

//--- add:

void add(void)

{
a=a+1;

cout << a << endl;

}

Idle functions find important applications in window resizing and animation.

Event callbacks

Following is a summary of callbacks triggered by events:

void glutDisplayFunc(void (*func)(void));

This callback specifies the function to be executed when the window is
shown for the first time, popped up, or otherwise redrawn.

void glutPostRedisplay(void);

This callback prompts the execution of the function defined by
the glutPostDisplayFunc callback at the first available opportunity, sig-
naling a need for redraw.

void glutIdleFunc(void (*func)(void));

This callback specifies the function to be executed between events and
finds important applications in animation.

void glutMouseFunc(void (*func)(int btn, int state, int x, int y));

8.2 Graphics events 271

This callback specifies the function to be executed when a mouse button
is clicked:

• If btn=GLUT LEFT BUTTON, the left button has been clicked.

• If btn=GLUT RIGHT BUTTON, the right button has been clicked.

• If btn=GLUT MIDDLE BUTTON, the middle button has been clicked.

• If state=GLUT UP, the button has been pressed.

• If state=GLUT DOWN, the button has been released.

• The variables x and y are the mouse coordinates.

void glutKeyboardFunc(void (*func)(unsigned char key,int x, int y));

This callback specifies the function to be executed when a key is pressed.
The variables x and y are the mouse coordinates.

void glutMotionFunc(void (*func)(int x, int y));

This callback specifies the function to be executed when the mouse is
moved while a button is pressed. The variables x and y are the mouse
coordinates.

void glutReshapeFunc(void (*func)(int width, int height));

This callback specifies the function to be executed when the window is
being moved or resized. The arguments are the redrawn window width
and height.

void glutTimerFunc(unsigned int msecs, void (*func)(int value), value);

This callback prompts the execution of the function stated in the second
argument, called the “timer callback,” after a maximum delay of msecs
milliseconds.

The parameter value of the timer callback is the same as that in the
third argument of the glutTimerFunc callback. It is possible to register
multiple timer callbacks. Although a callback cannot be unregistered, it
can be deactivated using the value parameter.

Timer callback

The following code implemented in the file ascii.cc generates a window
and prints all ASCII characters in animation using a time callback:

272 Introduction to C++ Programming and Graphics

#include <freeglut.h>

using namespace std;

void blank();

void print(int);

int delay=100; // in milliseconds

//--- main:

int main(int argc, char **argv)

{
int code=-1;

glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

glutCreateWindow("ASCII");

glOrtho(0, 100, 0, 100, 0, 100);

glClearColor(0.5,0.0,0.8,1.0);

glutDisplayFunc(blank);

glutTimerFunc(delay, print, code);

glutMainLoop();

return 0;

}

//--- Print:

void print (int code)

{
glClear(GL COLOR BUFFER BIT);

char a = code++;

glRasterPos2i(50, 50);

glutBitmapCharacter(GLUT BITMAP 8 BY 13, a);

glFlush();

glutTimerFunc(delay, print, code);

delay=delay+1;

}

//--- Blank screen:

void blank()

{
glClear(GL COLOR BUFFER BIT);

}

Note that the glutTimerFunc function calls the user-defined function print,
which in turn calls glutTimerFunc in an infinite loop. In this case, print also
changes the delay.

8.2 Graphics events 273

Animation

To perform animation, we use two memory spaces holding the graphics,
one called the back buffer and the second called the primary or active buffer.
The computer displays the content of the primary buffer, then the two buffers
are swapped in a process dubbed double buffering.

The following code animates the rotation of a circle drawn by a user-
defined function:

#include <math.h>

#include <freeglut.h>

using namespace std;

const float radius = 1.0;

const int N=180;

const float Dtheta = 2*3.1415926/N;

const float radius = 1.0;

float angle=0.0;

void render scene(void);

void drawCircle();

//--- main:

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT DOUBLE | GLUT RGBA);

glutInitWindowPosition(010,020);

glutInitWindowSize(256,256);

glutCreateWindow("GLUT Animation");

glutIdleFunc(render scene);

glutMainLoop();

return 0;

}

//--- Render the scene:

void render scene(void)

{
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

glPushMatrix();

glRotatef(angle,0.0,1.0,0.0);

drawCircle(radius);

glPopMatrix();

glutSwapBuffers();

angle=angle+0.1;

274 Introduction to C++ Programming and Graphics

}

//--- Draw a circle:

void drawCircle()

{
glBegin(GL LINE LOOP);

for (int i=0; i <= N; i++)

{
float angle = i*Dtheta;

glVertex2f(cos(angle)*radius,sin(angle)*radius);

}
glEnd();

}

In this method, animation is performed using the glutIdleFunc callback. The
code features the following implementations:

• Double buffering is ensured by including GLUT DOUBLE in the argument of
glutInitDisplayMode.

• It is mandatory to clear the depth buffer, otherwise the rendering will fail.

• The glutSwapBuffers function swaps the buffers.

A snapshot of the animation is shown in Figure 8.2.1(a).

(a) (b)

Figure 8.2.1 Snapshot of (a) a rotating circle, and (b) a bouncing disk.

8.2 Graphics events 275

To control the animation frequency, we use the glutTimerFunc callback.
The following code contained in the file bounce.cc animates a bouncing disk:

#include <iostream>

#include <cmath>

#include <freeglut.h>

using namespace std;

void animate(int);

void disk();

void quit(unsigned char, int, int);

//--- Global variables:

int delay=10, N=64;

float Dtheta = 2*3.1415926/N;

float centerx = 0.0, centery = 0.0, radius = 0.1;

float Dx = 0.02, Dy=0.01;

int win;

//---------- main

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT DOUBLE | GLUT RGBA);

glutInitWindowPosition(500,100);

glutInitWindowSize(320,320);

win = glutCreateWindow("Bouncing disk");

glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

glClearColor(0.5,0.0,0.8,1.0);

glutKeyboardFunc(quit);

glutTimerFunc(delay, animate, 0);

glutMainLoop();

return 0;

}

//---------- animate

void animate(int code)

{
disk();

glutTimerFunc(delay, animate, 0);

glutSwapBuffers();

}

//-------- disk

276 Introduction to C++ Programming and Graphics

void disk()

{
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

glColor3f(0.8,0.5,0.2);

centerx = centerx+Dx;

centery = centery+Dy;

if(centerx+radius > 1.0) Dx = - Dx;

if(centerx-radius < -1.0) Dx = - Dx;

if(centery+radius > 1.0) Dy = - Dy;

if(centery-radius <-1.0) Dy = - Dy;

glBegin(GL TRIANGLE FAN);

glVertex2f(centerx, centery);

for (int i=0; i <= N; i++)

{
float angle = i*Dtheta;

glVertex2f(centerx+cos(angle)*radius,

centery+sin(angle)*radius);

}
glEnd();

}

//--------- quit

void quit(unsigned char key, int x, int y)

{
if(key == ’q’)

{
cout << "Closing window " << endl;

glutDestroyWindow(win);

exit(0);

}
}

A snapshot of the animation is shown in Figure 8.2.1(b).

Rescaling

If we resize the graphics window, the displayed image will be distorted:
a circle will become an ellipse and a person will instantaneously lose or gain
weight. To prevent this, we run the glutRshapeFunc callback in the double
buffer mode.

The following code contained in the file pac man.cc draws the image of
a Pac-Man whose shape remains unaltered when the window is resized:

8.2 Graphics events 277

#include <iostream>

#include <cmath>

#include <freeglut.h>

using namespace std;

void pac man(void);

void resize(int, int);

void quit(unsigned char, int, int);

int win;

const float pi = 3.14159265358;

int N=64; // for Pac-Man

float Dtheta = 1.5*pi/N; // for Pac-Man

/*---------- main---------------------*/

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT DOUBLE | GLUT RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

win=glutCreateWindow("GLUT shapes");

glOrtho(-1.2, 1.2, -1.2, 1.2, -1.2, 1.2);

glutDisplayFunc(pac man);

glutIdleFunc(pac man);

glutReshapeFunc(resize);

glutKeyboardFunc(quit);

glutMainLoop();

return 0;

}

/*---------- Pac-Man ---------------------*/

void pac man()

{
glClear(GL COLOR BUFFER BIT);

glBegin(GL TRIANGLE FAN);

glColor3f(0.1,0.9,0.0);

glVertex2f(0,0);

for (int i=0; i <= N; i++)

{
float angle = i*Dtheta+0.5*pi;

glVertex2f(cos(angle),sin(angle));

}
glEnd();

glutSwapBuffers();

}

278 Introduction to C++ Programming and Graphics

/*---------- resize ---------------------*/

void resize(int w, int h)

{

//--- Prevent dividing by zero:

if(h==0) h=1;

float ratio = 1.0* w / h;

//--- Reset the coordinate system before modifying

glMatrixMode(GL PROJECTION);

glLoadIdentity();

//--- Viewport is the entire window:

glViewport(0, 0, w, h);

//--- Set the correct perspective.

gluPerspective(45,ratio,1,1000);

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

gluLookAt(0.0,0.0,5.0,0.0,0.0,-1.0,0.0,1.0,0.0);

}

/*---------- quit ---------------------*/

void quit(unsigned char key, int x, int y)

{
cout << "Pressed key:" << key << endl;

cout << "Cursor position:" << x << " " << y << endl;

if(key == ’q’)

{
cout << "Closing window " << endl;

glutDestroyWindow(win);

exit(0);

}
}

Figure 8.2.2. shows the images of a Pac-Man in two windows. The first image
is drawn in the primary window generated by the code, while the second image
is drawn after the window has been resized using the window handles. The
resize function involves a sequence of carefully designed OpenGL calls.

8.3 Drop-down menus 279

(a) (b)

Figure 8.2.2 The same Pac-Man in the original and resized window.

Problems

8.2.1. Write a Glut program to animate (a) a spinning, and (b) a rolling disk.

8.2.2. Write a Glut program to animate the snowman with his head period-
ically turning left and right.

8.3 Drop-down menus

Programming drop-down menus can be a lot of fun. The sequence of callbacks
must be designed carefully according to the OpenGL protocol.

The following code implemented in the file menu.cc generates a graphics
window and produces a drop-down menu with a sub-menu that offers options for
clearing the screen, drawing a teapot or a triangle, and quitting the application:

#include <freeglut.h>

using namespace std;

void showme(void);

void showmenu(void);

void menu(int);

int win;

int menuid;

int submenuid;

int draw flag=2;

280 Introduction to C++ Programming and Graphics

//--- main:

int main(int argc, char **argv)

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT DEPTH | GLUT SINGLE | GLUT RGBA);

glutInitWindowPosition(100,100);

glutInitWindowSize(320,320);

win=glutCreateWindow("Goulis");

glClearColor(0.2,0.5,0.2,0.2);

glutDisplayFunc(showme); // initial display

showmenu();

glutDisplayFunc(showme);

glutMainLoop();

return 0;

}

//--- showme:

void showme(void)

{
glClear(GL COLOR BUFFER BIT);

if(draw flag==1){
glutPostRedisplay();}

else if(draw flag==2){
glutWireTeapot(0.5);}

else if(draw flag==3){
glBegin(GL TRIANGLES);

glVertex3f(-0.9,-0.5,0.0);

glVertex3f(0.3,-1.0,0.0);

glVertex3f(0.0, 1.0,0.0);

glEnd();}
glFlush();

}

//--- showmenu:

void showmenu(void)

{
submenuid=glutCreateMenu(menu); // Create a sub-menu

glutAddMenuEntry("teapot", 2); // Add sub menu entries

glutAddMenuEntry("triangle", 3); // Create an entry

menuid=glutCreateMenu(menu); // Create the menu

glutAddMenuEntry("Clear", 1); // Create an entry

glutAddSubMenu("Draw", submenuid); // Create an entry

8.4 GUI programming with Glui 281

glutAddMenuEntry("Quit", 0); // Create an entry

glutAttachMenu(GLUT LEFT BUTTON);// respond to the left mouse button

glutAttachMenu(GLUT RIGHT BUTTON);// respond to the right mouse button

}

//--- menu:

void menu(int value)

{
glClear(GL COLOR BUFFER BIT);

if(value == 0)

{
glutDestroyWindow(win);

exit(0);

}
else

{
draw flag=value;

}
}

Figure 8.3.1 shows the produced graphics window, including a drop-down
menu generated by the user-defined function showmenu, which calls in turn
the user-defined function menu. Each of these functions makes OpenGL and
Glut calls. The glutCreateMenu(menu) call returns to the menu function an
integer mapping the menu items determined by the glutAddMenuEntry calls.

Problems

8.3.1. Modify the glut menu.cc code to show the triangle at the initial display.

8.3.2. Modify the glut menu.cc code to include the drawing of a rectangle as
a third option.

8.3.3. Modify the glut menu.cc code to incorporate a second sub-menu orig-
inating from the triangle that offers the option for a red or yellow color.

8.4 GUI programming with GLUI

We have learned how to program graphics based on the Glut library using
OpenGL functions. To build a professional application incorporating a graph-
ical user interface (GUI), we need further toolboxes offering widgets. The dic-
tionary defines a widget as a contraption, a contrivance, a gadget, or a gizmo.
In software engineering, widgets are programmed as objects of a drawing class.

282 Introduction to C++ Programming and Graphics

Figure 8.3.1 A drop-down menu generated by GLUT. Clicking on an option changes
the display.

Glui is a Glut-based user interface library providing buttons, check-
boxes, radio buttons, spinners, and other controls to OpenGL applications (see:
http://glui.sourceforge.net). The calls are window-system independent,
relying on Glut to handle all system-dependent processes such as window and
mouse management. The Glui distribution includes an informative user man-
ual accompanied by a tutorial.

The library can be compiled readily using the makefile provided in the
distribution to produce the library archive lubglui.a. We will assume that this
file has been copied into the subdirectory lib of the working directory, while
the header file glui.h has been copied into the subdirectory include of the work-
ing directory. More generally, the library and its header files can be put in
appropriate system directories for use by others.

To compile a C++ program named goulis.cc and link it with GLUT, we
use the Unix makefile:

LIB = -I/usr/include/GL -I/usr/include/GL/freeglut -I./include \

-lX11 -lglut lib/libglui.a

goulis: goulis.cc

c++ -o goulis goulis.cc $(LIB)

where the backslash is a line continuation mark. Note that three libraries must
be linked with the C++ code.

A simple GLUI code contained in the file prime.cc is listed below:

8.5 GUI programming with Gtk+ 283

Figure 8.4.1 A GUI produced by Glui. Data can be entered in the checkbox.

#include "glui.h"

using namespace std;

int prime;

int main(int argc, char* argv[])

{
glutInit(&argc, argv);

glutInitDisplayMode(GLUT RGB | GLUT DOUBLE | GLUT DEPTH);

glutInitWindowPosition(50,50);

glutInitWindowSize(300,300);

GLUI *glui = GLUI Master.create glui("GLUI");

new GLUI Checkbox(glui,"Next",&prime);

(new GLUI Spinner(glui,"Prime number:",&prime))

->set int limits(10, 60);

glutMainLoop();

return 0;

}

Three Glui functions are called by this program. Running the code produces
the graphics display shown in Figure 8.4.1.

Glui programming requires familiarization with the library nomenclature
and protocols, which are explained in detail in the Glui manual.

Problem

8.4.1. Adapt to C++ and run a Glui code of your choice from the Glui dis-
tribution.

8.5 GUI programming with GTK+

A powerful widget library is implemented in the Gtk+ toolkit included in
several Linux distributions (see http://www.gtk.org). Gtk+ was originally
developed for the gnu image manipulation program GIMP; accordingly, it is
known as “the GIMP toolkit.”

284 Introduction to C++ Programming and Graphics

To develop an application, we must link the source code with the Gtk+

header and object files, which is easier said than done. Fortunately, a fabulous
application is available to help us through the linking process.

pkg-config is a public domain multi-platform application useful for com-
piling comprehensive codes that require a multitude of system libraries (see
http://pkgconfig.freedesktop.org/wiki). The application inserts appro-
priate compiler options in the compilation line, thereby saving us from the
painstaking task of manually citing all necessary header files and associated
libraries.

For example, to compile the program horses.cc, we issue in a single line
the command:

c++ -o horses horses.cc ‘pkg-config --cflags gtk+-2.0‘ \

‘pkg-config --libs gtk+-2.0‘

where the backslash in the first line is a line-continuation mark.

• The first directive ‘pkg-config –cflags gtk+-2.0’ runs pkg-config to list
the header files of the gtk+-2.0 library.

• The second directive ‘pkg-config –libs gtk+-2.0’ runs pkg-config to list
the implementations of the gtk+-2.0 library.

• The executable pkg-config itself is located in a system directory.

To install pkg-config on a Linux system, we download it from the In-
ternet site http://pkgconfig.freedesktop.org/wiki, and follow the instruc-
tions, which prescribe issuing the command ./configure, followed by the com-
mand make install. The latter executes the install protocol described in the
makefile. A great deal of gratitude is due to the authors of this truly useful
application. configure is a shell script, that is, a program written in one of
the Unix interpreted languages associated with a Unix shell, as discussed in
Appendix A.

The following C++ code contained in the file horses.cc generates a win-
dow, displays a button, and prints the names of two horses on the button.
When the button is clicked, the window disappears.

#include <gtk/gtk.h>

using namespace std;

int main(int argc, char *argv[])

{
GtkWidget *window;

GtkWidget *button;

8.5 GUI programming with Gtk+ 285

Figure 8.5.1 A window produced by the graphics toolkit GTK+. When the button
is clicked, the window disappears.

gtk init (&argc, &argv);

window = gtk window new (GTK WINDOW TOPLEVEL);

gtk container set border width (GTK CONTAINER (window), 100);

button = gtk button new with label ("Two horses: Jeremy and Zebediah");

gtk container add (GTK CONTAINER (window), button);

g signal connect swapped (G OBJECT (button), "clicked",

G CALLBACK (gtk widget destroy),

G OBJECT (window));

gtk widget show (button);

gtk widget show (window);

gtk main ();

return 0;

}

GtkWidget in the fifth and sixth lines is the class type for the Gtk+ widgets.
Running the code produces the window shown in Figure 8.5.1.

Note the similarities with the Glut drawing code. Most of the Gtk+

commands are self-explanatory. The first and last commands call the functions:

gtk init(&argc, &argv)

This function parses the window-specific parameters transmitted to the
foundation graphics library or server.

gtk main()

This function launches the graphics display in an infinite loop that can
be interrupted only by certain events.

In Gtk+ programming, we first register the callbacks (widgets) and then start

286 Introduction to C++ Programming and Graphics

the graphics display by entering the main loop. If we do not enter the main
loop, nothing will happen.

Now, we want not only the window to close, but also the application to
quit when we click the button. This is done by introducing the function:

static void destroy(GtkWidget *widget, gpointer data)

{
gtk main quit ();

}

and adding the callback:

g signal connect (G OBJECT (window), "destroy",

G CALLBACK (destroy), NULL);

immediately before the g signal connect swapped callback. In this way, we
associate the “destroy” with a signal handler event that occurs when the com-
mand gtk widget destroy() is executed.

Programming in Gtk+ requires familiarization with the application pro-
tocols. Once the widgets have been mastered, the development of GUIs is
tedious yet straightforward. A user interface designer with an integrated de-
velopment environment (IDE) is available for rapid application development
(RAD) (see http://glade.gnome.org).

Problems

8.5.1. Modify the horses.cc code so that the window closes and the applica-
tion quits when the “q” button is pressed.

8.5.2. Adapt to C++ and run a Gtk+ code of your choice from the Gtk+ dis-
tribution.

Using Matlab 9
Matlab is a software product for interactive numerics and graphics applica-
tions produced by The Mathworks corporation. Matlab was initially devel-
oped as a virtual laboratory for matrix calculus and linear algebra. Today,
Matlab can be described both as a programming language and as a computing
environment.

As a programming language, Matlab is roughly equivalent, in some ways
superior and in some ways inferior to traditional upper-level languages such as
Fortran 77, C, or C++.

As a computing environment, Matlab is able to run indefinitely in its
own workspace. Thus, a session defined by the values of all initialized vari-
ables and graphical objects can be saved and reinstated at a later time. In
this sense, Matlab is an operating system running inside the operating system
empowering the computer. Symbolic algebraic manipulation is available through
an add-on library (toolbox) that uses a kernel borrowed from the all-purpose
mathematical softoware product Maple.

An attractive feature of Matlab is the availability of a broad range of
utility commands, intrinsic functions, and computational toolboxes, especially
graphics. A simplifying feature of Matlab is that the dimensions of vectors
and matrices used in the calculations are automatically assigned and can be
changed in the course of a session, thereby circumventing the need for variable
declaration and memory allocation.

Appendix F explains the basic syntax and grammar of the language
and outlines the use of Matlab functions. Documentation is available at:
http://www.mathworks.com/access/helpdesk/help/techdoc/. Tutorials on
general and special topics can be found on the Internet, and links are provided
at this book’s Internet site.

Matlab must be purchased and installed with a proper license. Inex-
pensive licenses are available for students and educators through educational
editions. On Linux, the educational version of Matlab is installed as a stand-
alone application. On Windows, the installation CD-ROM must be present in
the drive at all times.

288 Introduction to C++ Programming and Graphics

In this chapter, we explain how Matlab can be called from C++ code
for the purpose of using the Matlab mathematical functions and generating
graphics. The converse, calling C++ functions from a Matlab code, is also
possible, though of limited interest to the C++ programmer.

9.1 Invoking Matlab

To invoke Matlab in Windows, we double-click on the Matlab icon. This
runs a starter program, currently a disk operating system (DOS) batch script,
that launches the main Matlab executable. Alternatively, we can start Mat-

lab from a DOS command line by a procedure similar to that discussed next
for Unix.

To invoke Matlab in Unix, we run the Unix script matlab by issuing
the command:

matlab

Assuming that the script is in the execution path, this will launch Matlab ex-
ecutable in some graphical used interface (GUI) or command line mode. To
suppress the memory consuming GUI, we issue either the command:

matlab -nodesktop

or the command:

matlab -nojvm

where jvm is an acronym for java virtual machine. Starting Matlab by issuing
the command:

matlab -nodesktop -nosplash

suppresses both the GUI and the splash screen during start-up.

In Unix, Matlab can be launched with a number of options. To obtain
a list accompanied by explanations, we request help by issuing the command:

matlab -help

Matlab uses a number of shared libraries, parameters, and environmen-
tal variables. To obtain a list, we issue the command:

matlab -n

9.2 The Matlab engine library 289

9.2 The Matlab engine library

The Matlab engine library contains a collection of functions in the form
of an application program interface (API). For an official description, visit:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab external.

The engine interface allows us to start Matlab from a C++ program,
establish a Matlab workspace, transfer data to the workspace, carry out cal-
culations in the workspace, and transfer the results back to the C++ domain.
Technically, the engine functions communicate with the C++ functions by a
separate process using pipes in Unix, and through a component object model
(COM) interface in Windows.

Dependencies and linking

To use Matlab, the C++ code must be compiled and linked with a
number of libraries, header files, and data files implementing the engine interface
to produce a stand-alone binary executable. The Matlab libraries

libeng.xx libmx.xx libut.xx

are required, where the suffix xx is so (shared object) in Unix, dll (dynamic
link library) in Windows, and dylib (dynamic library) on Apple computers.

The libeng library requires (depends on) additional third-party libraries
that support Unicode character encoding and data compression. While the
ASCII code covers the letters of only the English alphabet, the Unicode includes
text and symbols of writing systems from all over the world. The associated
library files must reside in the directory hosting libmx and libut.

To ensure proper linking in Windows, we download the Dependency
Walker utility from: http://www.dependencywalker.com, and then drag and
drop the file matlabroot/bin/win32/libeng.dll into the Depends window. On
newer systems, we drop the file matlabroot/bin/win64/libeng.dll.

Assume that Matlab has been installed in the /usr/local/matlab Unix
directory. To obtain a list of the required libraries, we navigate to the directory
/usr/local/matlab/bin/glnx86 and issue the command:

ldd -d libeng.so

The option -d requests a list of dependencies.

290 Introduction to C++ Programming and Graphics

Compilation makefile

A Linux makefile that compiles the C++ file sapouni.cc and produces
the executable sapouni reads:

LIB1 = -leng -lmx -lut -licuuc -licuio

LIB2 = -lmat -licudata -licui18n -lMTwister

LIB3 = -I/usr/local/matlab/extern/include

LIB4 = -L/usr/local/matlab/bin/glnx86

mexec: mexec.cc

c++ -o sapouni sapouni.cc $(LIB1) $(LIB2) $(LIB3) $(LIB4)

The first four lines define libraries and header files participating in the exe-
cutable. We see that nine libraries must be linked with the C++ object of our
code, accompanied by corresponding header files. To produce the executable,
we issue the command

make mexec

Library path

A system environmental variable permeates all processes to define the
values of important system parameters. Examples are the executable search
path, the choice of a display device, and a printer’s name or address. The envi-
ronmental variable LD LIBRARY PATH tells the linker where to find libraries
not found in standard system directories.

For the compiled program sapouni to run, the environmental variable
LD LIBRARY PATH must be set properly. Assume that Matlab has been in-
stalled in the directory /usr/local/matlab. In the Unix tcsh shell, we issue
the command:

setenv LD LIBRARY PATH ’/usr/local/matlab/bin/glnx86’

In the Unix bash shell, we issue the command:

export LD LIBRARY PATH=’/usr/local/matlab/bin/glnx86’

In other systems, this variable can be set through a graphical user interface.

9.3 The Matlab engine functions

C++ communicates with Matlab through a small number of engine functions.
A Matlab session invoked from C++ is identified by a pointer declared as

Engine * ep;

9.3 The Matlab engine functions 291

where ep is a chosen pointer name. This declaration illustrates that Engine is
a defined class.

Starting a Matlab session

To start a Matlab session identified by the pointer ep, we state:

ep = engOpen("matlab");

The launching command matlab can be replaced by any other string that
invokes Matlab with options. For example, to suppress the graphical user
interface, we use:

ep = engOpen("matlab -nodesktop");

Equivalently, we can state:

char mstart[] = "matlab";

ep = engOpen(mstart);

In a third method, we explicitly use a pointer:

string invoke[] = "matlab";

char * pnt = invoke;

ep = engOpen(pnt);

Terminating a Matlab session

To terminate the Matlab session, we issue the statement:

engClose(ep);

The function engClose returns an integer.

Establishing a buffer

C++ has access to a character buffer that records the standard output
of Matlab, that is, it records output that ordinarily appears on the screen.

To establish this buffer, we select its size, declare a dedicated character
string, and attach the character string to the Matlab session by issuing the
commands:

const int Bufsize = 256;

char Bufname[];

292 Introduction to C++ Programming and Graphics

engOutputBuffer (ep, Bufname, Bufsize);

where Bufsize and Bugname are given names. The function engOutputBuffer
returns an integer.

Executing a Matlab command

We can execute (evaluate) a Matlab command directly by invoking the
function:

engEvalString (ep, "matlab command");

or indirectly by issuing the commands:

char mcom[] = "matlab command";

engEvalString (ep, mcom);

The function engEvalString returns an integer.

Putting variables into the Matlab workspace

We can transfer a variable from the C++ domain to the engine workspace
by invoking the function:

engPutVariable (Engine *ep, const char *string, const mxArray * string);

as discussed in Section 9.4. The function engPutVariable returns an integer.

Retrieving variables from the Matlab workspace

We can transfer a variable from the Matlab workspace to the C++
domain by invoking the function:

mxArray * engGetVariable (Engine *ep, const char *string);

as discussed in Section 9.5.

Running a Matlab session

In the simplest application, we start Matlab from a C++ program and
carry out various computations in the Matlab workspace. The commands
are transferred from the C++ domain to the Matlab workspace, and the
Matlab response becomes available through a buffer in the form of a long
character string. Thus, direct data exchange does not take place.

9.3 The Matlab engine functions 293

The following C++ code contained in the file mexec.cc asks for Mat-

lab commands, which are then processed by Matlab. The result is put in a
memory buffer and displayed on the screen, and the session terminates when a
zero (0) is entered instead of a command:

#include <iostream>

#include "engine.h"

using namespace std;

int main()

{
//--- Start a matlab engine session:

Engine * skilaki;

skilaki = engOpen("matlab -nodesktop -nosplash");

//--- Define a character buffer:

const int BUFSIZE=256;

char buffer[BUFSIZE];

engOutputBuffer(skilaki, buffer, BUFSIZE);

/*--- Define a character array to host a matlab command:

Initialize the first character to 1 */

char matcom[50];

matcom[0]=1;

cout << "Please enter matlab commands: 0 to quit:"<< endl;

//--- Keep asking for commands until 0 is entered:

while(matcom[0]!= ’0’)

{
cin >> matcom;

//--- Transfer the command to the matlab workspace:

engEvalString(skilaki, matcom);

//--- Display the matlab response:

cout << buffer;

}

//--- End the session:

engClose(skilaki);

return 0;

}

294 Introduction to C++ Programming and Graphics

Note that we have included the engine.h header file. A typical session is listed
below:

a=4

>>

a =

4

b=9

>>

b =

9

c=a+b

>>

c =

13

0

>>

ans =

0

where >> is the Matlab line prompt.

In retrospect, this code accomplishes little. This session could have been
established by calling Matlab directly rather than through the C++ code.

Problems

9.3.1. Use the code mexec.cc to compute and print (a) the square root of a
number, and (b) the product of two matrices defined in Matlab.

9.3.2. Investigate the significance of the buffer size.

9.4 Transferring data to the Matlab domain

In practice, we want to generate data in the C++ domain and ask Matlab to
lend us computational and graphics services.

Consider the array x[M][N] consisting of floating point numbers regis-
tered in double precision. To transfer this array into Matlab, we work in three
stages:

• First, we introduce an mxArray, with M rows and N columns, where
the prefix mx stands for Matlab executable. This is done using the
command:

mxArray * arrayname = mxCreateDoubleMatrix (M, N, mxTYPE);

9.4 Transferring data to the Matlab domain 295

where the literal mxTYPE can be mxREAL for an array with real elements
or mxCOMPLEX for an array with complex elements consisting of a real and
an imaginary part.

• Second, we evaluate the mxArray using the command:

memcpy(mxGetPr(arrayname), xp, sizeof(x));

where xp is a pointer to the C++ array x.

• Third, we transfer the mxArray into the Matlab-workspace using an
engine function:

engPutVariable(ep, "name", arrayname);

where ep is the declared engine session pointer name, and name is the
name of the array in the Matlab domain.

The following code contained in the file mtrans.cc defines a numerical
variable, introduces its pointer, transfers the variable in the Matlab domain,
and prints the variable:

#include <iostream>

#include "engine.h"

using namespace std;

int main()

{
double a = 5.0;

double * ap = &a;

//--- Start a session:

Engine * lva = engOpen("matlab12 -nojvm -nosplash");

//--- Define a character buffer:

const int BUFSIZE=256;

char buffer[BUFSIZE];

engOutputBuffer(lva, buffer, BUFSIZE);

/*--- Reserve the array ‘‘mxa’’

Copy into memory

Transfer the data */

mxArray * mxa = mxCreateDoubleMatrix(1, 1, mxREAL);

memcpy(mxGetPr(mxa), ap, sizeof(a));

engPutVariable(lva, "b", mxa);

296 Introduction to C++ Programming and Graphics

//--- Matlab session:

engEvalString(lva, "b");

cout << buffer; // transfer back the matlab response

//--- End the session:

engClose(lva);

return 0;

}

The output of the code is:

>>

b =

5

Two-dimensional graph

The following code contained in the file mplot2d.cc generates data and
prepares a two-dimensional plot using Matlab graphics functions:

#include <iostream>

#include "engine.h"

using namespace std;

int main()

{

//--- Define data:

const short sdata = 5;

double x[sdata] = {0.0, 0.1, 0.5, 0.8, 0.9};
double y[sdata] = {0.0, 0.2, 0.3, 0.4, 0.42};

//--- Start a Matlab session:

Engine * iams = engOpen("matlab -nojvm");

/*--- Reserve the array ‘‘hronos’’

Copy into memory

Transfer the data */

mxArray * hronos = mxCreateDoubleMatrix(1, sdata, mxREAL);

memcpy((void *)mxGetPr(hronos), (void *)x, sizeof(x));

9.4 Transferring data to the Matlab domain 297

engPutVariable(iams, "hrn", hronos);

/*--- Reserve the array ‘‘position’’

Copy into memory

Transfer the data */

mxArray * position = mxCreateDoubleMatrix(1, sdata, mxREAL);

memcpy((void *)mxGetPr(position), (void *)y, sizeof(y));

engPutVariable(iams, "pos", position);

/*--- Reserve the array ‘‘distance’’

Evaluate in the Matlab domain */

mxArray * distance = mxCreateDoubleMatrix(1, sdata, mxREAL);

engEvalString(iams, "distance = 0.5*hrn.^2;");

/*--- Run a Matlab session:

engEvalString(iams, "plot(hrn,pos,’o-’);");

engEvalString(iams, "hold on;");

engEvalString(iams, "plot(hrn,distance,’rs:’);");

engEvalString(iams, "ylabel(’metrisis’,’fontsize’,15)");

engEvalString(iams, "xlabel(’hronos’,’fontsize’,15)");

engEvalString(iams, "set(gca,’fontsize’,15)");

/*--- End the session:

cout << "Hit return to finish" << endl;

fgetc(stdin);

return 0;

}

Figure 9.4.1 shows the generated graphics display. The graph can be saved in
a graphics file under various formats using menu options given in the graphics
window.

Three-dimensional graph

The following code contained in the file mplot3d.cc produces a vector
containing nodes along the x axis, and a second vector containing nodes along
the y axis. The code then defines a two-dimensional Cartesian grid based on
the x and y nodes, evaluates a function at the nodes, and finally prepares a
three-dimensional plot:

298 Introduction to C++ Programming and Graphics

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

m
et

ris
is

hronos

Figure 9.4.1 A two-dimensional plot generated by Matlab through C++ code.

#include <iostream>

#include <cmath>

#include "engine.h"

using namespace std;

int main()

{

//--- Define the nodes:

const short Nx = 33; // size of the data vector

const short Ny = 17; // size of the data vector

double x[Nx+1], y[Ny+1];

double z[Nx+1][Ny+1];

//--- x grid lines:

for (int i=0; i<=Nx; i++)

{
x[i]= (i-1.0+1.0)/Nx;

}

//--- y grid lines:

for (int j=0; j<=Ny; j++)

{
y[j]= (j-1.0+1.0)/Ny;

}

9.4 Transferring data to the Matlab domain 299

//--- z data:

for (int i=0; i<=Nx; i++)

{
for (int j=0; j<=Ny; j++)

{
z[i][j]=cos(2*3.14159*(x[i]+y[j]))*exp(-3.0*x[i]);

}
}

//--- Start a Matlab session:

Engine * gataki = engOpen("matlab12 -nodesktop");

engOutputBuffer(gataki, buffer, BUFSIZE);

/*--- Reserve the vector ‘‘xx’’

Copy into memory

Transfer the data */

mxArray * xx = mxCreateDoubleMatrix(1, Nx+1, mxREAL);

memcpy((void *)mxGetPr(xx), (void *)x, sizeof(x));

engPutVariable(gataki, "xplot", xx);

/*--- Reserve the vector ‘‘yy’’

Copy into memory

Transfer the data */

mxArray * yy = mxCreateDoubleMatrix(1, Ny+1, mxREAL);

memcpy((void *)mxGetPr(yy), (void *)y, sizeof(y));

engPutVariable(gataki, "yplot", yy);

/*--- Reserve the matrix ‘‘zz’’

Copy into memory

Transfer the data */

mxArray * zz = mxCreateDoubleMatrix(Ny+1, Nx+1, mxREAL);

memcpy((void *)mxGetPr(zz), (void *)z, sizeof(z));

engPutVariable(gataki, "zplot", zz);

//--- Matlab session:

engEvalString(gataki, "mesh(xplot,yplot,zplot);");

engEvalString(gataki, "hold on;");

engEvalString(gataki, "xlabel(’x’,’fontsize’,15)");

engEvalString(gataki, "ylabel(’y’,’fontsize’,15)");

engEvalString(gataki, "zlabel(’z’,’fontsize’,15)");

engEvalString(gataki, "set(gca,’fontsize’,15)");

300 Introduction to C++ Programming and Graphics

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

xy

z

Figure 9.4.2 A three-dimensional plot generated by Matlab through C++ code.

//--- End the session:

cout << "Hit return to continue\n";

fgetc(stdin);

return 0;

}

Figure 9.4.2. shows the generated graphics display.

It is important to note that the C++ data matrix z[Nx+1][Ny+1] is
passed to Matlab as an (Ny + 1) × (Nx + 1) matrix using the statement:

mxArray * zz = mxCreateDoubleMatrix(Ny+1, Nx+1, mxREAL);

This is because Matlab stores the elements of a matrix by columns, whereas
C++ stores the elements of a matrix in rows.

Drawing a sphere

As a further application, we now discuss a code contained in the file
msphere.cc that generates a sphere by plotting surface patches defined by az-
imuthal and meridional divisions:

9.4 Transferring data to the Matlab domain 301

#include <iostream>

#include <cmath>

#include "engine.h"

using namespace std;

//=======================================

int main()

{

//--- Data:

double pi=3.14159265358;

const short Nt=16; // azimuthal divisions

const short Np=32; // meridional divisions

double x[Nt+1][Np+1], y[Nt+1][Np+1], z[Nt+1][Np+1];

double theta,ct,st,phi,cp,sp;

//--- Nodes:

double Dt = pi/Nt;

double Dp = 2*pi/Np;

for (int i=0; i<=Nt; i++)

{
theta = Dt*i;

ct = cos(theta);

st = sin(theta);

for (int j=0; j<=Np; j++)

{
phi = Dp*j;

cp = cos(phi);

sp = sin(phi);

x[i][j]= ct;

y[i][j]= st*cp;

z[i][j]= st*sp;

}
}

//--- Matlab: gataki is the matlab session name

Engine * gataki = engOpen("matlab14 -nosplash -nodesktop");

//--- Establish a buffer:

const int BUFSIZE=256;

302 Introduction to C++ Programming and Graphics

char buffer[BUFSIZE];

engOutputBuffer(gataki, buffer, BUFSIZE);

/* Matlab commands: reserve the vector ‘‘xx’’

copy into memory

import the data */

mxArray * xx = mxCreateDoubleMatrix(Np+1, Nt+1, mxREAL);

memcpy((void *)mxGetPr(xx), (void *)x, sizeof(x));

engPutVariable(gataki, "xplot", xx);

/* Matlab commands: reserve the vector ‘‘yy’’

copy into memory

import the data */

mxArray * yy = mxCreateDoubleMatrix(Np+1, Nt+1, mxREAL);

memcpy((void *)mxGetPr(yy), (void *)y, sizeof(y));

engPutVariable(gataki, "yplot", yy);

/* Matlab commands: reserve the matrix‘‘zz’’

copy into memory

import the data */

mxArray * zz = mxCreateDoubleMatrix(Np+1, Nt+1, mxREAL);

memcpy((void *)mxGetPr(zz), (void *)z, sizeof(z));

engPutVariable(gataki, "zplot", zz);

//--- Matlab session:

engEvalString(gataki, "Nt=16;");

engEvalString(gataki, "Np=32;");

engEvalString(gataki, "xplot=xplot’;yplot=yplot’;zplot=zplot’;");

engEvalString(gataki, "hold on");

engEvalString(gataki, "for i=1:Nt; for j=1:Np;

xp(1)=xplot(i,j);yp(1)=yplot(i,j);zp(1)=zplot(i,j);

xp(2)=xplot(i+1,j);yp(2)=yplot(i+1,j);zp(2)=zplot(i+1,j);

xp(3)=xplot(i+1,j+1);yp(3)=yplot(i+1,j+1);zp(3)=zplot(i+1,j+1);

xp(4)=xplot(i,j+1);yp(4)=yplot(i,j+1); zp(4)=zplot(i,j+1);

xp(5)=xplot(i,j); yp(5)=yplot(i,j); zp(5)=zplot(i,j);

patch(xp,yp,zp,zp); end; end");

engEvalString(gataki, "axis equal;");

engEvalString(gataki, "xlabel(’x’,’fontsize’,15)");

engEvalString(gataki, "ylabel(’y’,’fontsize’,15)");

engEvalString(gataki, "zlabel(’z’,’fontsize’,15)");

engEvalString(gataki, "set(gca,’fontsize’,15)");

9.4 Transferring data to the Matlab domain 303

−1
−0.5

0
0.5

1 −1

0

1−1

−0.5

0

0.5

1

y
x

z

Figure 9.4.3 Drawing of a sphere generated by Matlab through C++ code.

//--- Finish the session:

cout << "Hit return to continue\n";

fgetc(stdin);

return 0;

}

Figure 9.4.3 shows the generated graphics display.

Note that the C++ data matrix z[Nt+1][Np+1] is passed to Matlab as
an (Np + 1) × (Nt + 1) matrix using the statement:

mxArray * zz = mxCreateDoubleMatrix(Np+1, Nt+1, mxREAL);

Animation of a bouncing circle

The following code contained in the file animation.cc animates the motion
of a bouncing circle inside a square box. When the center of the circle hits one
of the boundaries, the motion is reflected by switching the sign of the horizontal
or vertical velocity.

304 Introduction to C++ Programming and Graphics

The circle is described by a collection of N + 1 marker points tracing
its perimeter, where the last point is the periodic image of the first point. The
coordinates of the marker points are stored in the vectors x and y. The motion is
computed in the C++ domain and then transferred to the Matlab workspace
for visualization:

#include <iostream>

#include <cmath>

#include "engine.h"

using namespace std;

int main()

{

//--- Data:

const double pi=3.14159265358;

const short N=32;

double centerx = 0.0;

double centery = 0.0;

double step = 2*pi/N;

double x[N+1], y[N+1];

for (int i=0; i<=N; i++)

{
double arg = i*step;

x[i]= cos(arg)+centerx;

y[i]= sin(arg)+centery;

}

//--- Start a matlab session:

Engine * cokar = engOpen("matlab -nodesktop -nosplash");

/*--- Reserve the vector ‘‘xx’’

copy into memory

import the data */

mxArray * xx = mxCreateDoubleMatrix(1, N+1, mxREAL);

memcpy((void *)mxGetPr(xx), (void *)x, sizeof(x));

engPutVariable(cokar, "xx", xx);

/*--- Reserve the vector ‘‘yy’’

copy into memory

import the data */

mxArray * yy = mxCreateDoubleMatrix(1, N+1, mxREAL);

memcpy((void *)mxGetPr(yy), (void *)y, sizeof(y));

engPutVariable(cokar, "yy", yy);

9.4 Transferring data to the Matlab domain 305

//--- Matlab session:

engEvalString(cokar, "Handle1 = plot(xx,yy,’-’,’linewidth’,2);");

engEvalString(cokar, "hold on");

engEvalString(cokar, "axis square");

engEvalString(cokar, "axis([-5 5 -5 5])");

engEvalString(cokar, "set(Handle1,’EraseMode’,’xor’);");

engEvalString(cokar, "xlabel(’x’,’fontsize’,15)");

engEvalString(cokar, "ylabel(’y’,’fontsize’,15)");

engEvalString(cokar, "set(gca,’fontsize’,15)");

//--- Animation:

float velx=1.0;

float vely=0.5;

float Dt = 0.1; // time step

//--- Loop over time:

for (int istep=0; istep<=10000; istep++)

{
centerx = centerx+velx*Dt;

centery = centery+vely*Dt;

for (int i=0; i<=N; i++)

{
x[i]=x[i]+velx*Dt;

y[i]=y[i]+vely*Dt;

}

memcpy((void *)mxGetPr(xx), (void *)x, sizeof(x));

engPutVariable(cokar, "xx", xx);

memcpy((void *)mxGetPr(yy), (void *)y, sizeof(y));

engPutVariable(cokar, "yy", yy);

engEvalString(cokar, "set(Handle1,’XData’,xx,’YData’,yy);");

engEvalString(cokar, "drawnow;");

if(centerx > 5.0) velx=-velx; //--- reflect if necessary

if(centerx <-5.0) velx=-velx;

if(centery > 5.0) vely=-vely;

if(centery <-5.0) vely=-vely;

}

//--- End the session:

306 Introduction to C++ Programming and Graphics

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Figure 9.4.4 Animation of a bouncing circle inside a box generated by Mat-

lab through C++ code.

cout << "Hit return to finish\n";

fgetc(stdin);

return 0;

}

The graphics display is shown in Figure 9.4.4.

Problems

9.4.1. Write a code that defines data in the C++ domain and then calls
Matlab to display a cube.

9.4.2. Write a code that animates the rotation of a square. The data should
be produced in the C++ domain and transferred to Matlab for visual-
ization.

9.5 Transferring data from Matlab to the C++ domain

Data generated in the Matlab workspace can be retrieved and stored in app-
ropriate variables in the C++ domain.

9.5 Transferring data from Matlab to the C++ domain 307

Matrix determinant and square

The following code contained in the file muse1.cc defines a matrix in
the C++ domain, calls Matlab to compute the determinant and the matrix
square, and transfers the results back to the C++ domain:

#include <iostream>

#include "engine.h"

using namespace std;

int main()

{
const int BSZ=256;

char BuFFer[BSZ];

//--- Define a matrix in C++:

const short N = 2;

double x[N][N] = {{1.0, 2.0},
{4.0, 3.0}};

//--- Start an engine session:

Engine * oliver = engOpen("matlab12 -nojvm -nosplash");

engOutputBuffer(oliver, BuFFer, BSZ);

//--- Define a character buffer:

const int BufSIZE=256;

char buFFer[BufSIZE];

engOutputBuffer(oliver, buFFer, BufSIZE);

//--- Transfer the matrix x to matlab as xm:

mxArray * xm = mxCreateDoubleMatrix(N, N, mxREAL);

memcpy((void *)mxGetPr(xm), (void *)x, sizeof(x));

engPutVariable(oliver, "xm", xm);

//--- Evaluate and print the determinant:

engEvalString(oliver, "determinant = det(mat)");

cout << BuFFer;

//--- Retrieve the determinant:

mxArray * det = engGetVariable(oliver, "determinant");

double * orizousa = mxGetPr(det);

cout << *orizousa << endl;

308 Introduction to C++ Programming and Graphics

//--- Evaluate the square:

engEvalString(oliver, "mat2 = mat^2");

cout << BuFFer;

//--- Retrieve the square:

mxArray * x2 = engGetVariable(oliver, "mat2");

double * square = mxGetPr(x2);

cout << "C++ domain:" << endl;

cout << square[0] << " " << square[2] << endl;

cout << square[1] << " " << square[3] << endl;

//--- End the session:

engClose(oliver);

return 0;

}

The session produces the following output on the screen:

>>

determinant =

-5

>>

mat2 =

9 16

8 17

C++ domain:

9 16

8 17

The indented output originates from the Matlab domain, and the non-indented
output originates from the C++ domain. It is important to observe that the
Matlab matrix x2 is retrieved as the C++ vector square in a column-wise
fashion.

Eigenvalues and eigenvectors

A complex number is composed of a real and an imaginary part. The real
and imaginary parts of a scalar, vector, or matrix produced by Matlab are
placed in consecutive memory blocks.

The following code contained in the file muse2.cc defines a matrix in the
C++ domain, calls Matlab to compute the eigenvalues and eigenvectors, and
transfers the results back to the C++ domain:

9.5 Transferring data from Matlab to the C++ domain 309

/* --------

Use matlab to compute the eigenvalues

and eigenvectors of a matrix

-----------*/

#include <iostream>

#include <iomanip>

#include "engine.h"

using namespace std;

int main()

{

//--- Define a matrix in C++:

const short N = 4; // size of the data matrix

double x[N][N] = {{ 1.0, 2.0, 3.0, 4.0},
{-4.0,-3.0, 5.0, 6.0},
{ 8.0,-5.0, 5.0,-6.0},
{-0.8,-3.0,-5.0, 6.0},
};

//--- Start an engine session:

Engine * bouboulina = engOpen("matlab -nojvm -nosplash");

//--- Establish a buffer:

const int BSZ=1024;

char BuFFer[BSZ];

engOutputBuffer(bouboulina, BuFFer, BSZ);

//--- Transfer x to matlab as xm:

mxArray * xmat = mxCreateDoubleMatrix(N, N, mxREAL);

memcpy(mxGetPr(xmat), x, sizeof(x));

engPutVariable(bouboulina, "matrix", xmat);

//--- Compute the eigenvalues:

engEvalString(bouboulina, "[V,D]=eig(matrix)");

//--- Display the eigenvalues:

cout << BuFFer;

//--- Retrieve the eigenvector matrix:

310 Introduction to C++ Programming and Graphics

mxArray * Eigv = engGetVariable(bouboulina, "V");

double * V = mxGetPr(Eigv);

//--- Define the real (EVR) and imaginary (EVI) parts

//--- of the eigenvalue matrix:

double EVR[N][N];

double EVI[N][N];

int Ic=-1, Jc;

for (int j=0; j<=N-1; j++)

{
for (int i=0; i<=N-1; i++)

{
Ic=Ic+1;

EVR[i][j]=V[Ic];

Jc = Ic+N*N;

EVI[i][j]=V[Jc];

}
}

//--- Print the real part of the eigenvector matrix:

cout << setiosflags(ios::fixed | ios::showpoint);

cout << endl;

cout << "C++ domain:" << endl << endl;

for (int i=0; i<=N-1; i++)

{
for (int j=0; j<=N-1; j++)

{
cout << setprecision(5) << setw(10) << EVR[i][j] << " ";

}
cout << endl;

}

//--- Print the imaginary part of the eigenvector matrix:

cout << endl;

for (int i=0; i<=N-1; i++)

{
for (int j=0; j<=N-1; j++)

{
cout << setprecision(5) << setw(10) << EVI[i][j] << " ";

}
cout << endl;

9.5 Transferring data from Matlab to the C++ domain 311

}

//--- Retrieve the eigenvalue matrix:

mxArray * Eig = engGetVariable(bouboulina, "D");

double * D = mxGetPr(Eig);

//--- real (ER) and imaginary (EI) parts of the eigenvalue matrix

double ER[N][N];

double EI[N][N];

Ic=-1;

for (int j=0; j<=N-1; j++)

{
for (int i=0; i<=N-1; i++)

{
Ic=Ic+1;

ER[i][j]=D[Ic];

Jc = Ic+N*N;

EI[i][j]=D[Jc];

}
}

//--- Print the real part of the eigenvalue matrix:

cout << endl;

for (int i=0; i<=N-1; i++)

{
for (int j=0; j<=N-1; j++)

{
cout << setprecision(5) << setw(10) << ER[i][j] << " ";

}
cout << endl;

}

//--- Print the imaginary part of the eigenvalue matrix:

cout << endl;

for (int i=0; i<=N-1; i++)

{
for (int j=0; j<=N-1; j++)

{
cout << setprecision(5) << setw(10) << EI[i][j] << " ";

}
cout << endl;

}

312 Introduction to C++ Programming and Graphics

//--- end the session

engClose(bouboulina);

return 0;

}

The session produces the following output on the screen:

>>

V =

0.1395 - 0.4469i 0.1395 + 0.4469i 0.8390 -0.6200

-0.6325 -0.6325 -0.1584 0.0613

-0.0107 + 0.4167i -0.0107 - 0.4167i 0.4250 -0.6626

0.0052 + 0.4550i 0.0052 - 0.4550i 0.3008 0.4157

D =

-3.5013 + 6.8653i 0 0 0

0 -3.5013 - 6.8653i 0 0

0 0 5.5207 0

0 0 0 10.4819

C++ domain:

0.13951 0.13951 0.83896 -0.61997

-0.63248 -0.63248 -0.15835 0.06126

-0.01070 -0.01070 0.42498 -0.66261

0.00515 0.00515 0.30077 0.41574

-0.44691 0.44691 0.00000 0.00000

0.00000 -0.00000 0.00000 0.00000

0.41667 -0.41667 0.00000 0.00000

0.45500 -0.45500 0.00000 0.00000

-3.50127 0.00000 0.00000 0.00000

0.00000 -3.50127 0.00000 0.00000

0.00000 0.00000 5.52066 0.00000

0.00000 0.00000 0.00000 10.48188

6.86532 0.00000 0.00000 0.00000

0.00000 -6.86532 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000

We have computed and retrieved the real and imaginary parts of the eigenvalues
and eigenvectors and stored them in individual matrices.

9.5 Transferring data from Matlab to the C++ domain 313

Problems

9.5.1. Write a code that defines a 3 × 3 matrix in the C++ domain, calls
Matlab to compute its inverse, and finally transfers the inverse back to
the C++ domain into a 3 × 3 matrix.

9.5.2. Write a code that defines two 3 × 3 matrices in the C++ domain, calls
Matlab to compute their product, and finally transfers the product back
to the C++ domain into a new 3 × 3 matrix.

Unix Primer A
By any measure and all accounts, Unix is the most efficient and dependable
operating system.

Like C++, Unix is case sensitive. The command or name aginara is not
the same as Aginara.

To use a Unix computer, we need an account. Once this is established,
we log in by typing the username and password in response to a prompt. To
log out, we type:

logout

To change the password, we type:

passwd

A Unix file system can be regarded as a file cabinet accessible at a mount
point. A file system can be mounted or unmounted manually or automatically
when a recordable medium, such as a hard drive or a CD-ROM, is attached.
File systems have different types such as ext3, or ntfs.

Each folder (directory) of a file system contains subfolders (subdirecto-
ries) and documents (files). Ancillary files whose names begin with a dot, such
as .simos, are hidden from plain view. The directories are thus arranged in a
pyramidal, tree-like structure. The top directory at the apex, denoted by a
slash (/), is called the root. A typical directory structure is shown below:

/bin .../boot /dev /home /usr

/home/pangalos /home/karaiskakis

/

A Unix Primer 315

mkdir koulis Generate a directory named koulis
rmdir kekos Remove the directory named kekos

(a directory can be removed only if empty)
rmdir -R kekos Remove directory kekos and its contents

(the argument -R stands for “recursive”)
mv kekos koulis Rename directory kekos to koulis
cp -R kekos koulis Copy directory kekos to koulis
ls kekos List files and folders in directory kekos
ls -a kekos Include hidden files beginning with a dot
ls -l kekos Long list of directory contents
pwd Print the name of the working directory
cd koulis Go to directory named koulis

(koulis can be the absolute or relative name)
cd / Go to the root directory
cd Go to the home directory
cd .. Go up one directory from working directory
cd ../.. Go up two directories from working directory
~ Home directory
~username A user’s home directory
. Working (current) directory
.. Parent of working directory
../.. Grandparent of working directory
../../.. Ancestor of working directory

Table A.1 Unix commands for manipulating directories. The “working directory”
is an abbreviation of the “current working directory.”

The absolute name of the file or directory named “karaiskakis” in this
tree is: /home/karaiskakis. If we are situated in directory /home, the relative
name of this file or directory is: karaiskakis.

Assume that the absolute name of a directory is: /usr/local/lib/vogle.
If we are situated in directory /usr/local, the relative name of this directory
is: lib/vogle.

Every user has a home (login) directory accessed at log in, denoted with
a tilde: ~ .

Unix commands are interpreted by a program called the Unix shell. Ex-
amples are the csh, the tcsh, the bourne, and the bash (bourne again) shell.
While the basic commands are the same, each shell has its own dialect. We can
change the current shell by typing the name of a new shell. To exit the shell,
we type: exit .

The tables in the rest of this appendix illustrate basic Unix commands.

316 Introduction to C++ Programming and Graphics

vi simos Create or edit file simos using the vi editor
view simos Read-only version of vi
cat > simos Type text in a file named simos;

end the session with Ctrl-D
mv simos siomadis Rename file simos to siomadis
mv simos kekos Move file simos into directory kekos
mv -i simos kekos Inquire before overwriting
cat simos Display contents of file simos
more simos Display contents of file simos

one screen at a time
less simos A new version of more
rm simos Remove (delete) file
rm -i simos Inquire before deleting
diff simos siomadis Show the differences between

files simos and siomadis
cmp simos siomadis Byte-by-byte comparison
grep string file1 file2 ... Show lines containing string in listed files
grep -v string file1 file2 ... Show lines not containing string
grep -i string file1 file2 ... Show lines containing string, ignore case

Table A.2 Manipulating files in Unix. A file is generated and modified using a text
editor. Because vi runs in the non-graphics mode, it is the most important
editor. Type man vi to obtain further information. Popular graphics editors
are gedit and emacs.

chown user file1 directory1 ... Change ownership
chgrp group file1 directory1 ... Change group
chmod mode file1 directory1 ... Change the permission mode
chmod -R mode directory1 directory2 ... Change all files in listed

directories; R stands for recursive
Mode:

u g o user (owner) group other
+ - add or remove permission
r q x read write execute

Table A.3 In Unix, directories and files have an owner and a designated group
of users. Read, write, and execute permissions are set for the owner (user),
the group, and others. For example, issuing the command “chmod go+rwx
katsarola” grants read, write, and execute permissions to the group and
others for the file or directory katsarola.

A Unix Primer 317

lpr file Print file on default printer
lpr -Pseftalia file Print file on printer named seftalia
lpr -cn file Print n copies
lpr -d file Interpret file as a device-independent (dvi) file
lpq Show printing queue on default printer
lpq -Pseftalia Show printing queue on printer named seftalia
lprm # Remove print request # listed with lpq

Table A.4 Unix printing commands.

ps List processes and identification numbers (pid)
jobs Report current jobs and job id numbers
ctrl-c Terminate an active job
ctrl-z Suspend an active job
kill pid# Terminate an active process
history Show session history
!1958 Repeat command with history number 1958
!str Repeat last command beginning with string str
!! Repeat entire last command line
!$ Repeat last word of last command line
man command Display manual for a command
man -k string List one-line summaries of manual pages

containing the string
alias ouzo command Abbreviate command to: ouzo
? Single-character wild card
* Arbitrary number of characters wild card
command > file Direct output of command to file instead of

the standard output (screen), replacing content
command >> file Output is appended to the current contents
command < file Command receives input from file instead of

the standard input (keyboard)
cmd1 | cmd2 “Pipe” (send) output of cmd1 to input of cmd2
script file Log everything displayed on the screen to a file;

end with exit
date Display date and time
hostname Display the computer name
ping goulis Probe computer goulis on the Internet
users Show logged-in users
env Display the environmental variables

Table A.5 Miscellaneous Unix commands.

Summary of
VOGLE Functions

B
The Vogle reference manual is available from the Internet site hosting this
book: http://dehesa.freeshel.org/vogle. The manual pages explain the
syntax and arguments of the Vogle graphics functions in C or C++, Fortran

77, and Pascal. A summary is given in this appendix.

Setting up windows

prefposition(x, y) Specify preferred position
of the next window

prefsize(width, height) Specify preferred width and height
of the next window

Device control

vinit(device) Initialize the graphics device
For example, device can be “X11” or “postscript”

vexit() Exit Vogle (last routine called)
and reset the window or terminal

voutput(”filotimo”) Redirect output for next vinit
to file named filotimo

vnewdev(device) Reinitialize to use a new device
char * vgetdev(device) Returns the name of the current device
int getdepth() Returns the number of bit planes (color planes)

The number of colors displayable by the device
is 2(nplanes−1).

Color

color(hroma) Set the current color: hroma can be:
BLACK, RED, GREEN, YELLOW
BLUE, MAGENTA, CYAN, WHITE
mapped as a structure to: 0, 1, ... 7

clear() Clear screen to current color
mapcolor(indx, red, green, blue) Set color map index

B Summary of Vogle Functions 319

Axes and projections

The projection routines define a new transformation matrix and consequently new
world units. Parallel projections are defined by the functions ortho and ortho2.
Perspective projections are defined by the functions perspective and window.

ortho (left, right, bottom, top, near, far) Define x, y, and z clipping planes
ortho2 (left, right, bottom, top) Define x and y clipping planes
perspective (fov, aspect, near, far) Specify perspective

for field of view (fov), aspect
ratio (aspect), and distance
from the eye to the near and far
clipping planes

window (left, right, bot, top, near, far) Viewing pyramid
clipping (onoff) Turn clipping on or off;

set onoff to 0 to turn off

Text

font (fontname) Set the current font
int numchars() Return number of characters

in the current SOFTWARE font
textsize (width, height) Set maximum size of a character

in the current SOFTWARE font
Negative size gives backward characters

textang (ang) Set the SOFTWARE text angle
fixedwidth (onoff) Turn fixed-width mode on or off

for a SOFTWARE font
centertext (onoff) Turns center-text mode on or off

for SOFTWARE a font
getcharsize (c, width, height) Get the width and height of a character
getfontsize (width, height) Get maximum width and height

of a character
drawchar (c) Draw the character c

and update the current position
drawstr (str) Draw the text in string

at the current position
float strlength (str) Return the length of the string srt
boxtext (x, y, l, h, str) Draw the SOFTWARE string str

so that it fits in the imaginary box
boxfit (l, h, nchars) Set scale for text so that a string

of the biggest characters in the
SOFTWARE font will fit inside an l × h box,
where l and h are real values

320 Introduction to C++ Programming and Graphics

Keyboard and cursor

int getkey() Get the ASCII ordinal of the next key typed
int checkkey() Returns zero if no key is pressed

or ASCII ordinal if a key is pressed
int locator (xaddr, yaddr) Locate the cursor: addr and yaddr are set

to the current location in world coordinates
The function returns a bit pattern indicating
which buttons are held down
If mouse buttons 1 and 3 are pressed,
the locator returns the binary 101
(decimal 7). The function returns -1 if the
device has no locator capability

int slocator (xaddr, yaddr) Locate the cursor in screen coordinates.
The return value of the function is set up
in the same way as with the locator

int getstring (bcol, string Read in a string, echoing it in the current font
with the current color and transformation
bcol is the background color used for erasing
characters after a backspace or delete key
is received. The Backspace key (ASCII 8)
and the Del key (ASCII 127) are interpreted as
erasing characters. An EOT (ASCII 4)
or a Carriage return (ASCII 13) will terminate
the input. getstring returns the number of
characters read. getstring does not check
for overflow in the input buffer string

Moving the pen

move (x, y, z) Move current graphics position to (x, y, z)
rmove (deltax, deltay, deltaz) Relative move
move2 (x, y) Move graphics position to point (x, y)
rmove2 (deltax, deltay) Relative move in world units
smove2 (x, y) Move current graphics position

in screen coordinates (-1.0 to 1.0)
rsmove2 (deltax, deltay) Relative move in screen units (-1.0 to 1.0)

Points

point (x, y, z) Draw a point at x, y, z
point2 (x, y) Draw a point at x, y

B Summary of Vogle Functions 321

Drawing

draw (x, y, z) Draw from the current graphics position
to the point (x, y, z)

rdraw (deltax, deltay, deltaz) Relative draw
draw2 (x, y) Draw from the current graphics position

to the point (x, y)
rdraw2 (deltax,deltay) Relative draw
sdraw2 (x, y) Draw in screen coordinates, -1.0 to 1.0
rsdraw2 (deltax, deltay) Relative draw in screen units, -1.0 to 1.0

Viewport

It is possible to subdivide the screen into rectangular partitions called viewports,
and then navigate inside each partition using screen coordinates ranging from -1.0
to 1.0.

viewport (left, right, bottom, top) Specifies a portion of the screen
for drawing; the box limits: left,
right, bottom, and top are
real values in screen coordinates.

pushviewport () Save the current viewport
popviewport () Retrieve last viewport
getviewport (left, right, bottom, top) Returns limits of current viewport

in screen coordinates

Aspect details

float getaspec t() Returns the height-over-width ratio
of the display device

getfactors (wfact, hfact) Returns the width over the minimum of
the width and height of the device,
and the height over the minimum of
the width and height of the device

getdisplaysize (w, h) Returns width and height of device in pixels

Attribute stack

pushattributes () Save the current attributes on the attribute stack
popattributes () Restore attributes to what they were

at last pushattributes

322 Introduction to C++ Programming and Graphics

Matrix stack

pushmatrix () Save the current transformation matrix
on the matrix stack

popmatrix () Reinstate the last matrix pushed

Viewpoint

polarview (dist, azim, inc, twist) Specify the viewer’s position
in polar coordinates

up (x, y, z) Specify the world up
lookat (vx, vy, vz, px, py, pz, twist) Specify the viewer’s position

Arcs and circles

circleprecision (nsegs) Set number of line segments
around a circle; default is 32

arc (x, y, radius, startang, endang) Draw an arc in world units
sector (x, y, radius, startang, endang) Draw a sector interpreted

as a polygon
circle (x, y, radius) Draw a circle interpreted

as a polygon.

Curves

curvebasis (basis) Define a basis matrix for a curve
curveprecision (nsegs) Define the number of line segments to draw a curve
rcurve (geom) Draw a rational curve
curve (geom) Draw a curve
curven (n, geom) Draw n-3 overlapping curve segments;

n must be at least 4

Transformations

translate (x, y, z) Set up a translation
scale (x, y, z) Set up scaling factors for x, y, and z axes
rotate (angle, axis) Set up a rotation for axis, where axis is x, y, or z

Flushing

vsetflush (yesno) Set global flushing status
vflush () Call device flush or synchronization routine

B Summary of Vogle Functions 323

Rectangles and polygons

rect (x1, y1, x2, y2) Draw a rectangle
polyfill (onoff) Set the polygon fill flag
polyhatch (onoff) Set the polygon hatch flag
hatchang (angle) Set the angle of the hatch lines
hatchpitch (pitch) Set the distance between hatch lines
poly2 (n, points) Construct an (x, y) polygon

from an array of point
poly (n, points) Construct a polygon from an array of points
makepoly () Open a polygon constructed by a series

of move-draws and closed by closepoly
closepoly () Terminate a polygon opened by makepoly
backface (onoff) Turn on culling of backfacing polygons
backfacedir (clockwise) Set backfacing direction to clockwise

or anti-clockwise

Patches

patchbasis (tbasis, ubasis) Define the t and u basis matrices of a patch
patchprecision (tseg, useg) Set minimum number of line segments

making up curves in a patch
patchcurves (nt, nu) Set the number of curves making up a patch
rpatch (gx, gy, gz, gw) Draw a rational patch in the current basis,

according to the geometry matrices
gx, gy, gz, and gw

patch (gx, gy, gz) Draw a patch in the current basis
according to the geometry matrices
gx, gy, and gz

Objects

makeobj (n) Commence the object number n
closeobj () Close the current object
int genobj () Get a unique object identifier
int getopenobj () Get the number of the current object
callobj (n) Draw object number n
int isobj (n) Return non-zero if an object numbered n

has been defined
delobj (n) Delete the object number n
loadobj (n, filename) Load the object number n

in the file filename
saveobj (n, filename) Save the object number n into file filename;

does not save objects called inside object n

324 Introduction to C++ Programming and Graphics

Double buffering

backbuffer () Make vogle draw in the backbuffer;
returns -1 if the device is not up to it

frontbuffer () Make vogle draw in the front buffer;
this will always work

swapbuffers () Swap the front and back buffers

Position

getgp (x, y, z) Get the current graphics position
in world coordinates

getgp2 (x, y) Get the current graphics position
in world coordinates

sgetgp2 (x, y) Get the current screen graphics position
in screen coordinates ranging from -1 to 1

C++/Matlab/Fortran 77
Dictionary

C
In this Appendix, we summarize the main syntactic differences between C++
(and C), Matlab, and Fortran 77, and present translation tables.

• Like C++, Matlab is case-sensitive. Fortran 77 is case-insensitive,
although this can be changed by raising an appropriate compiler flag.

• A C++ statement may begin at any place in a line and continue in the
next line. A Matlab statement may continue in the next line provided
that a continuation mark represented by three dots (...) is inserted at the
end of the current line. A Fortran 77 statement must begin after the
sixth column and continue in the next line only if a character is inserted
at the sixth column of the next line, representing a continuation mark.

• In C++ and Matlab, the end of a statement is indicated by a semicolon
representing a statement delimiter. If we omit the semicolon in Matlab,
the values of variables evaluated by the statement will be printed on
the screen, sometimes flooding the output. No end-of-statement mark
is required in Fortran 77.

• In C++ and Matlab, two or more statements may be placed in the same
line provided they are separated with semicolons. Only one statement per
line is allowed in Fortran 77.

• In C++, Matlab, and Fortran 77, white space is ignored. In C++ and
Matlab, a number cannot be split into two pieces separated by space.
Thus, we may not write “3.141572” as “3.141 572”.

• In C++, in-line comments may be inserted following the double slash
(//). In Matlab, we use the percentage sign (%); in Fortran 77, we
use the exclamation mark (!).

• In C++, all text enclosed between a slash-asterisk pair (/*) and the con-
verse asterisk-slash pair (*/) is reckoned to be commentary and ignored
by the compiler. In Matlab, we use the percent sign at the beginning
of each line. In Fortran 77, we use the exclamation mark anywhere, or
the “c” character at the beginning of each line.

326 Introduction to C++ Programming and Graphics

• In C++, all variables must be declared. Variable declaration is not nec-
essary in Matlab; some declarations are necessary in Fortran 77.

In Fortran 77, all variables beginning with the letters I,J,K,L,M,N
(or i,j,k,l,m,n) are integers, while all other variables are real, regis-
tered in single precision. These defaults can be changed with appropriate
data type declarations.

For example, the statement:

Implicit Double Precision (a-h,o-z)

declares that all variables whose names begin with a–h and o–z (or A–H
and O–Z) are registered in double precision.

• In C++ and Fortran 77, variables are not necessarily initialized to zero.
In Matlab, all variables must be given initial values.

• In Matlab, a variable can change from integer to real, and vice versa, in
the course of a calculation. Not being bothered with variable types is an
extremely appealing feature of Matlab. The penalty possible confusion
and a prolonged CPU time.

Arrays

In C++, array indices can be zero or positive. In Matlab, array indices
can only be positive. These extremely annoying restrictions can be bypassed
by shifting the indices.

In Fortran 77, array indices can have any positive or negative value.

In C++, the lower limit of an array index is 0. Thus, a vector v with
20 slots begins at v(0) and ends at v(19). Similarly, the indices of the 10 × 5
matrix A[10][5] begin at i, j = 0 and end at i = 9, j = 4.

In Matlab, the lower limit of an array index is 1.

In Fortran 77, the default lower limit of an array index is 1. However,
this can be reset by stating, for example,

double precision A(-30:200)

Dimension B(-4:14,-10:29)

The vector A begins at A(-30) and ends at A(200). The first index of the
matrix B begins at -4 and ends at 14; the second index begins at -10 and ends
at 29.

C C++/Matlab/Fortran 77 Dictionary 327

Functions and subroutines

The structure of functions in C++ was discussed in this book, and the
structure of functions in Matlab is discussed in Appendix F.

Fortran 77 uses functions and subroutines. The structure of a subrou-
tine is:

subroutine poulaki (a, b,...,s)

...

return

end

The parentheses enclose input and output arguments listed in arbitrary order,
and the three dots indicate additional lines of code. The statement calling the
subroutine is:

call poulaki (peace, train, ..., cat)

All arguments in Fortran 77 are passed by reference. Thus, a Fortran

77 function or subroutine is able to change any input argument.

Fortran 77 subroutines are written either in the file hosting the main
program or in other files contain one subroutine or multiple subroutines, listed in
arbitrary order. The names of the files containing the subroutines are arbitrary
and bear no relationship to the names of the subroutines. include files are not
necessary in Fortran 77.

In contrast, Matlab functions are placed in individual files, one function
per file. Strangely, the name of the function is determined by the file name,
with the function name stated in the function declaration inside the file being
irrelevant. This explains why each file must contain only one function, possibly
resulting in a huge collection. include files are not necessary in Matlab.

Translation tables

Table C.1 displays the relational and logical operands in the three lan-
guages. The similarities between Matlab and C++ are noteworthy.

A Matlab or Fortran 77 code can be translated into C++ code using
the language syntax explained in Tables C.2-4.

Examples

The following C++ code prints on the screen the greeting “Hello Themis-
tocles” and moves the cursor to the next line:

328 Introduction to C++ Programming and Graphics

Matlab Fortran 77 C and C++

== = ==
< .lt. <

<= .le. <=
> .gt. >

>= .ge. >=
∼= .ne. !=
& .and. &&
| .or. ||

Table C.1 Relational and logical operands in Matlab, Fortran 77, and C++.
The Matlab and C++ columns are nearly identical.

#include <iostream>
using namespace std;

int main()

{
cout << "Hello Themistocles \n";

return 0;

}

The output of the code is:

Hello Themistocles

In Matlab, the same code consists of one line alone:

disp "Hello Themistocles"

In Fortran 77, the same code consists of two lines:

write (6,*) "Hello Themistocles"

end

Note that six blank spaces must be inserted at the beginning of each line.

C C++/Matlab/Fortran 77 Dictionary 329

Matlab C++

%————– /* ————–
% AUTHOR: J Doe AUTHOR: J Doe
%————– —————- */

int main()
{

No formal structure . . .
return 0;
}

Variable declaration float a[30], b[4];
is not required double a[10];

double b[6][68];
Non-positive indices int argos[100];
are not permitted const int WED= 0;

const int dim = 40;
double a[dim];

i=6; % integer int i=6; // integer

a=10.0; % double float a=10.0; // real

b=10.0D0; % double double b=10.0; // double

C=[0.1 0.2. 0.7]; double C[3]={0.1, 0.2, 0.7};

A=[0.1 0.2; -1.0 -0.4]; double A[2][2]={ {0.1, 0.2}, {-1.0, -0.4} };

B=[0.9 0.4; ... double B[2][2]={ {0.9, 0.4}
-3.0 -0.3]; ,{-3.0, -0.3} };

A(1,1)=0.1; A[0][0] = 0.1;

break exit(1);

Table C.2 Matlab/C++ equivalent structures and statements. Statements,
but not variable names, are written in lower case in both languages.

330 Introduction to C++ Programming and Graphics

Fortran 77 C++

c AUTHOR: J Doe /* AUTHOR: J Doe */

program main int main()
. . . {

stop . . .
end return 0;

}

Dimension a(0:29), b(0:3) float a[30], b[4];
Double precision a(0:9) double a[10];
Double precision b(0:5,0:67) double b[6][68];
Integer argos(100) int argos[100];
Dimension argos(-23:89)

Integer WED const int WED= 0;
Parameter(WED=134)

Double precision a(0:39) const int dim = 40;
double a[dim];

i = 6 ! integer int i = 6; // integer
a = 10.0 ! real float a = 10.0; // real
b = 10.0D0 ! double double b = 10.0; // double

Dimension b(0:1) float b[2] = {0.1, 0.3};
b(0) = 0.1
b(1) = 0.3

Dimension A(0:1,0:1) float A[2][2] ={ {0.1, 0.2}, {-1.0, -0.4} };
A(0,0) = 0.1
A(0,1) = 0.2
A(1,0) =-1.0
A(1,1) = 0.4

Stop exit(1);

Go to 34 goto melitzana;
34 Continue melitzana:

Table C.3 Fortran 77/C++ equivalent structures and statements.

C C++/Matlab/Fortran 77 Dictionary 331

Matlab Fortran 77 C++

for i=1:n Do i=1,n for (i=1;i<=n;i++)
a=a+3; a=a+3 { a=a+3;
b=b+4; b=b+4 b=b+4;

end End Do }

for i=1:n Do i=1,n for (i=1;i<=n;i++)
a=a+3 a=a+3; a=a+3; // only one

end End Do // statement is allowed

for i=j:s:n Do i=j,n,s for (i=j;i<= n;i=i+s)
. { . . .
end End Do }

while (i∼=0) Do while (i.ne.0) while (i!=0)
. { . . .
end End Do }

if(i==1) If(i.eq.1) then if(i==1)
. { . . .
end End If }

if(i==1) If(i.eq.1) then if(i==1)
x=3.0; x=3.0 x=3.0;

elseif(i==2) Else If(i.eq.2) then else if(i==2)
x=4.0; x=4.0 x=4.0;

else Else else
x=5.0; x = 5.0 x=5.0;

end End If

if(i==1 & j==2) If(i.eq.1.and.j.eq.2) k=3 if(i==1 && j==2) k=3;
k=3;

end

if(i==1 | j==2) If(i.eq.1.or.j.eq.2) then if(i==1 || j==2) k=3;
k=3; k = 3

end End If

Table C.4 Matlab/Fortran 77/C++ equivalent structures. Note that
elseif is one word in Matlab.

332 Introduction to C++ Programming and Graphics

Matlab C++

#include <iostream>

a=input(”); cin >> a;

b=input(’Please enter b:’) cout <<“Please enter b:\n”;
cin >> b;

disp(a) cout << a << endl;

fprintf(’%10.5f\n’,a) #include <iomanip>
cout << setprecision(5)
<< setw(10); cout << a
<< endl;

name = fopen(’input.dat’); #include <iostream>
ifstream name;
name.open(“input.dat”);

name = fopen(’input.dat’,’wt’) #include <fstream>
ifstream name(“input.dat”);

fprintf(name, ’%f %f %f \n’,a,b,c) name >> a >> b >> c
>> endl;

fprintf(name, ’%f’,a(i,j)) name >> a[i][j];
fclose(name) name.close();

name=fopen(’output.dat’,’wt’); #include <fstream>
ofstream name;
name.open(“output.dat”);

#include <fstream>
name=fopen(’output.dat’,’wt’); ofstream name(“output.dat”);
fprintf(name,’%f’,a) name << a;
fclose(name) name.close();

Table C.5 Equivalent Matlab/C++ structures and calls regarding input and
output (I/O). The #include statements are placed at the top of the file
containing the C++ code. iostream contains the header files of the standard
input/output (keyboard/monitor) stream. fstream contains the header files
of the file stream.

C C++/Matlab/Fortran 77 Dictionary 333

Fortran 77 C++

#include <iostream>

read (5,*) a cin >> a;
read (5,*) a,b,c cin >> a >> b >> c;
write (6,*) a,b,c cout << a << b << c << endl;
write (6,*) cout << “\n”;
write (6,*) ”Please enter a:” cout << “Please enter a: \n”;
write (6,*) ”temp=”, tmp cout << “temp=” <<tmp<< “\n”;

#include <iostream>
write (6,100) a #include <iomanip>

100 Format (f10.5) cout << setprecision(5) << setw(10);
cout << a;

#include <fstream>
open (1, file=”input.dat”) ifstream dev name;

dev name.open(“input.dat”);

#include <fstream>
open (1, file=”input.dat”) ifstream dev name(“input.dat”);
read (1,*) a,b,c dev name >> a >> b >> c;
read (1,*) a(i,j) dev name >> a[i][j];
close (1) dev name.close(“input.dat”);

#include <fstream>
open (2, file=”output.dat”) ofstream othername;

othername.open(“output.dat”);

#include <fstream>
open (2, file=”output.dat”) ofstream othername(“output.dat”);
write (2,*) a,b,c othername << a << b << c << endl;
write (2,*) a(i,j) othername << a[i][j] << endl;
close (2) othername.close(“output.dat”);

Table C.6 Fortran 77/C++ equivalent structures and calls regarding input
and output (I/O). The #include statements are placed at the top of the
file containing the C++ code. iostream contains the header files of
the standard input/output (keyboard/monitor) stream. fstream contains
the header files of the file stream.

334 Introduction to C++ Programming and Graphics

The following C++ code computes the sum of the inverses of the squares
of the first N integers,

double s=0;

int i;

for (i=1; i<=N; i+1)

{
s=s+1.0/(i*i);

}

In Matlab, the same code reads:

s=0;

for i=1:N

s=s+1.0/i^2;

end

In Fortran 77, the same code reads:

s=0

Do i=1,N

s=s+1.0/i**2

End

Note the obligatory six blank spaces at the beginning of each line.

In Chapter 3, we discussed the bubble-sort code for sorting an array of
numbers or names. The Internet site:

http://www.codecodex.com/wiki/index.php?title=Bubble_sort

lists the bubble-sort code in some twenty languages, including C++ and For-
tran. Some of these codes, including Fortran, almost read like English.

In Section 4.5, we discussed the code bits.cc that computes the maximum
integer that can be described with an available number of bits. The equivalent
Fortran 77 program contained in the file bits.f is:

Program bits

Implicit Double Precision (a-h,o-z)

Integer p,q

write (6,*) " Will compute the greatest integer "

write (6,*) " that can be described with n bits "

98 write (6,*) " Enter the number of bits"

write (6,*) " (should be less than 32)"

C C++/Matlab/Fortran 77 Dictionary 335

write (6,*) " 0 to quit "

write (6,*) " ------------------------------"

read (5,*) n

If(n.eq.0) Go to 99

write (6,101)

c--

q = 0.0D0

Do i=0,n-1

p = 2**i

q = q+p

write (6,100) i+1,p,q

End Do

Go to 98 ! return to repeat

c--

99 Continue ! done

100 Format (1x,i5,2(1x,i15))

101 Format (" bits",5x,"increment",5x,"largest integer")

Stop

End

At the beginning of Section 4.6, we discussed the code prj.cc that com-
putes the inner product (projection) of two vectors. The equivalent Fortran

77 program contained in the file prj.f is:

Program prj

Double precision a(2), b(2), prod

a(1) = 0.1

a(2) = 0.2

b(1) = 2.1

b(2) = 3.1

call prj (a, b, n, prod)

write (6,*) " inner product: ", prod

Stop

End

c-------

subroutine prj (a, b, n, prod)

Double precision a(2), b(2), prj

336 Introduction to C++ Programming and Graphics

prod = 0.0D0

Do i=1,n

prod = prod + a(i)*b(i)

End Do

Return

End

Why C++?

Although Matlab makes life easy, the substantial memory requirements
and CPU cost are important considerations. Fortran 77 is free, efficient,
and easy to learn. Why then consider C++? Knowledge of C++ endows us
with a wide selection of important programming tools related to object-oriented
programming.

Perhaps more important, methods and ideas of object-oriented program-
ming can be translated into physical concepts in the various fields of physical
sciences and engineering. This correspondence has not been yet explored to
its full extent due to the extreme specialization of the scientific disciplines.
Initiatives are under way to foster an interdisciplinary approach.

ASCII Code D
The ASCII code maps characters to integers. Characters include letters of the
English alphabet, numbers, control characters, and other special symbols.

• Control characters for printers and other devices are encoded by the first
32 integers, 0–31. Code 32 represents the space between words.

• Codes 22–126 represent printable characters.

• The capital or upper-case letters of the English alphabet, A–Z, are en-
coded by successive integers in the range 65–90.

• The lower-case letters of the English alphabet, a–z, are encoded by suc-
cessive integers in the range 97–122.

• Code 127 is the Escape character.

Decimal Octal Hex Character

0 0 00 NUL Null character
1 1 01 SOH Start of header
2 2 02 STX Start of text
3 3 03 ETX End of text
4 4 04 EOT End of transmission
5 5 05 ENQ Enquiry
6 6 06 ACK Acknowledgment
7 7 07 BEL Bell
8 10 08 BS Backspace
9 11 09 HT Horizontal tab
10 12 0A LF Line feed
11 13 0B VT Vertical tab
12 14 0C FF Form feed
13 15 0D CR Carriage return
14 16 0E SO Shift out
15 17 0F SI Shift in
16 20 10 DLE Data link escape
17 21 11 DC1 Device control 1 (usually XON)
18 22 12 DC2 Device control 2

338 Introduction to C++ Programming and Graphics

19 23 13 DC3 Device control 3 (usually XOFF)
20 24 14 DC4 Device control 4
21 25 15 NAK Negative acknowledgment
22 26 16 SYN Synchronous idle
23 27 17 ETB End of transmission block
24 30 18 CAN Cancel
25 31 19 EM End of medium
26 32 1A SUB Substitute
27 33 1B ESC Escape
28 34 1C FS File separator
29 35 1D GS Group separator
30 36 1E RS Record separator
31 37 1F US Unit separator
32 40 20 SPC Space between words
33 41 21 !
34 42 22 ”
35 43 23 #
36 44 24 $
37 45 25 %
38 46 26 &
39 47 27 ’
40 50 28 (
41 51 29)
42 52 2A *
43 53 2B +
44 54 2C ,
45 55 2D -
46 56 2E .
47 57 2F /
48 60 30 0
49 61 31 1
50 62 32 2
51 63 33 3
52 64 34 4
53 65 35 5
54 66 36 6
55 67 37 7
56 70 38 8
57 71 39 9
58 72 3A :
59 73 3B ;
60 74 3C <
61 75 3D =
62 76 3E >
63 77 3F ?

D ASCII Code 339

64 100 40 @
65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F O
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z
91 133 5B [
92 134 5C \
93 135 5D]
94 136 5E ^
95 137 5F
96 140 60 ′

97 141 61 a
98 142 62 b
99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C l

340 Introduction to C++ Programming and Graphics

109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C |
125 175 7D }
126 176 7E ~
127 177 7F DEL

C++ Keywords E
The words listed in the following table are reserved for C++ declarations and
operations and may not be employed as variable names in a program.

Keyword Use

asm Insert an assembly language instruction
auto Declare a local variable
bool Declare a Boolean variable
break Break out of a loop
case Introduce a block of code in a switch statement
catch Handle exceptions from throw
char Declare a character variable
class Declare a class
const Declare immutable data or functions

that do not change data
const cast Cast from const variables
continue Bypass iterations of a loop
default Default handler in a case statement
delete Delete an object to free memory
do Looping construct
double Declare a double precision floating-point variable
dynamic cast Perform runtime casts
else Alternate case for an if statement
enum Create enumeration types
explicit Use constructors only when they exactly match
export Allow template definition to be

separated from declaration
extern External variables are defined in another

program or file and evaluated upon linking
false Boolean value of false
float Declare a floating-point variable
for Looping construct
friend Grant a non-member function access to private data
goto Jump to a different part of the program

342 Introduction to C++ Programming and Graphics

if Execute code based on the result of a test
inline Optimize calls to short functions
int Declare a integer variable
long Declare a long integer variable
mutable Override a const variable
namespace Partition the global namespace by defining a scope
new Allocate dynamic memory for a new variable
operator Create overloaded operator functions
private Declare private members of a class
protected Declare protected members of a class
public Declare public members of a class
register Request that a variable be optimized for speed

by storing it in the CPU registers instead of the RAM
reinterpret cast Change the type of a variable
return Return from a function
short Declare a short integer variable
signed Modify variable type declarations
sizeof Return the size of a variable or type
static Create permanent storage for a variable

in a function so that the value is preserved
when we exit the function

static cast Perform a non-polymorphic cast
struct Define a new structure
switch Select code based on different values for a variable
template Create generic functions
this Pointer to the current object
throw Throw an exception
true Boolean value of true
try Execute code that can throw an exception
typedef Create a new type name from an existing type
typeid Describe an object
typename Declare a class or undefined type
union A structure that assigns multiple variables

to the same memory location
unsigned Declare an unsigned integer variable
using Import complete or partial namespaces

into the current scope
virtual Create a function that can be overridden

by a derived class
void Declare functions or data with no associated data type
volatile Warn the compiler about variables

that can be modified unexpectedly
wchar t Declare a wide-character variable
while Looping construct

Matlab Primer F
Only elementary computer programming skills are necessary to read and write
Matlab code. The code is written in one file or a collection of files, called the
source or program files, using a standard file editor, such as the vi editor. The
source code includes the main program, also called a script, and the necessary
user-defined functions. The names of these files must be suffixed with .m

Execution begins by typing the name of the file containing the main
program in the Matlab environment. Alternatively, the code can be typed one
line at a time followed by the Return keystroke in the Matlab environment.

Matlab is an interpreted language, which means that the instructions
are translated into machine language and executed in real time, one at a time. In
contrast, a source code written in Fortran, C, or C++ must first be compiled
to produce the object files, which are then linked together with the necessary
system libraries to produce the executable binary file.

F.1 Grammar and syntax

Following is a list of general rules regarding the grammar and syntax of Mat-

lab. When confronted with an error after issuing a command or during execu-
tion, this list should serve as a first check point:

• Matlab variables are (lower and upper) case sensitive:
The variable echidna is different than the variable echiDna. Similarly, the
Matlab command return is not equivalent to the erroneous command
Return; the latter will not be recognized by the interpreter.

• Matlab variables must start with a letter:
A variable name is described by a string of up to thirty-one characters
including letters, digits, and the underscore; punctuation marks are not
allowed.

• Matlab string variables are enclosed by a single quote:
For example, we may define the string variable:

thinker 764 = ’Thucydides’

344 Introduction to C++ Programming and Graphics

• Beginning and end of a command line:
A Matlab command can begin at any position in a line, and may continue
practically indefinitely in the same line.

• Line continuation:
To continue a command onto the next line, we put three dots at the end
of the line.

• Multiple commands in a line:
Two or more commands can be placed in the same line provided they are
separated with a semicolon (;).

• Display:
When a command is executed directly or by running a Matlab code,
Matlab displays the numerical value assignment or the result of a calcu-
lation. To suppress the output, we put a semicolon (;) at the end of the
command.

• White space:
More than one empty space between words are ignored by the compiler.
However, numbers cannot be split in sections separated by blank spaces.

• Range of indices:
Vectors and arrays must have positive and non-zero indices; the vector
entry v(-3) is unacceptable in Matlab. This annoying restriction can
be circumvented in clever ways by redefining the indices.

• Comments:
A line beginning with the % character, or the tail-end of a line after the %
character, is a comment, and is ignored by the Matlab interpreter.

• Mathematical symbols and special characters:
Table F.1.1 lists mathematical symbols and special characters used in
Matlab interactive dialog and programming.

• Logical control flow commands:
Table F.1.2 lists the basic logical control flow commands.

• Input/Output commands:
Tables F.1.3-5 list basic Input/Output (I/O) commands, functions, and
formatting statements. Once the output format is set, it remains in effect
until changed.

F.1 Grammar and syntax 345

+ Plus
- Minus
* Matrix multiplication
.* Array multiplication
^ Matrix power
.^ Array power
kron Kronecker tensor product
\ Backslash or left division
/ Slash or right division
./ Array division
: Colon
() Parentheses
[] Brackets
. Decimal point
.. Parent directory
... Line continuation
, Comma
; Semicolon, used to suppress the screen display
% Indicates that the rest of the line is a comment
! Exclamation point
′ Matrix transpose
′′ Quote
.′ Non-conjugated transpose
= Set equal to
== Equal
∼=1 Not equal
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
& Logical and
| Logical or
~ Logical not
xor Logical exclusive or

i, j Imaginary unit
pi number π = 3.14159265358 . . .

Table F.1.1 Matlab operators, symbols, special characters, and constants.

346 Introduction to C++ Programming and Graphics

break Terminate the execution
else Use with the if statement
elseif Use with the if statement
end Terminate a for loop, a while loop, or an if block
error Display a message and abort
for Loop over commands a specific number of times
if Conditionally execute commands

pause Wait for user’s response
return Return to the Matlab environment,

invoking program or function
while Repeat statements an indefinite number of times

until a specified condition is met

Table F.1.2 Matlab logical control flow commands and construct components.

disp Display numerical values or text
Use as: disp disp() disp(‘text’)

fclose Close a file
fopen Open a file
fread Read binary data from a file
fwrite Write binary data to a file
fgetl Read a line from a file, discard newline character
fgets Read a line from a file, keep newline character
fprintf Write formatted data to a file using C language conventions
fscanf Read formatted data from a file
feof Test for end-of-file (EOF)
ferror Inquire the I/O error status of a file
frewind Rewind a file
fseek Set file position indicator
ftell Get file position indicator
sprintf Write formatted data to string
sscanf Read formatted string from file
csvread Read from a file values separated by commas
csvwrite Write into file values separated by commas
uigetfile Retrieve the name of a file to open through dialog box
uiputfile Retrieve the name of a file to write through dialog box

Table F.1.3 Matlab Input/Output (I/O) commands.

F.2 Precision

Matlab stores all numbers in the long format of the floating-point represen-
tation. This means that real numbers have a finite precision of roughly sixteen

F.3 Matlab commands 347

input Prompt for user input
keyboard Invoke keyboard as though it were a script file
menu Generate menu of choices for user input

Table F.1.4 Matlab interactive input commands.

format short Fixed point with 4 decimal places (default)
format long Fixed point with 14 decimal places
format short e Scientific notation with 4 decimal places
format long e Scientific notation with 15 decimal places
format hex Hexadecimal format

Table F.1.5 Matlab formatting commands.

significant digits, and a range of definition roughly varying between 10−308 and
10+308 in absolute value. Numbers smaller than 10−308 or larger than 10+308

in absolute value cannot be accommodated.

Matlab performs all computations in double precision. However, this
should not be confused with the ability to view and print numbers with a
specified number of significant figures using the commands listed in Table F.1.5.

F.3 Matlab commands

Once invoked, Matlab responds interactively to various commands, state-
ments, and declarations issued by the user in the Matlab window. These are
implemented by typing the corresponding name, single- or multi-line syntax,
and then pressing the Enter key.

Table F.3.1 lists general utility and interactive-input Matlab commands.
Issuing the command demos initiates various demonstrations and illustrative
examples of Matlab code, well worth exploration.

To obtain a full explanation of a Matlab command, statement, or func-
tion, we may use the Matlab help facility, which is the counterpart of the
Unix man facility. For example, issuing the command help break in the Mat-

lab environment produces the description:

BREAK Terminate execution of WHILE or FOR loop.

BREAK terminates the execution of FOR and WHILE loops.

In nested loops, BREAK exits from the innermost loop only.

If you use BREAK outside of a FOR or WHILE loop in a MATLAB

script or function, it terminates the script or function at

that point. If BREAK is executed in an IF, SWITCH-CASE, or

TRY-CATCH statement, it terminates the statement at that point.

348 Introduction to C++ Programming and Graphics

clear Clear variables and functions from memory
demo Run demos
exit Terminate a Matlab session
help On-line documentation
load Retrieve variables from a specified directory
save Save workspace variables to a specified directory
saveas Save figure or model using a specified format
size Reveal the size of matrix
who List current variables
quit Terminate a Matlab session

Table F.3.1 General utility Matlab commands.

The command clear is especially important, as it resets all variables to the
“uninitialized” status, and thereby prevents the use of improper values defined
or produced in a previous calculation. A detailed explanation of this command
can be obtained by typing help clear .

F.4 Elementary examples

In the following examples, we demonstrate the interactive usage of Matlab with
simple sessions. A line beginning with two “greater than” signs (>>) denotes
the Matlab command line where we enter a definition or issue a statement.
Unless stated otherwise, a line that does not begin with >> is Matlab out-
put. Recall that the command clear clears the memory from previous data to
prevent misappropriation.

• Numerical value assignment and addition:

>> a = 1

a =

1

>> b = 2

b =

2

>> c = a + b

c =

3

F.4 Elementary examples 349

• Numerical value assignment and subtraction:

>> clear

>> a=1; b=-3; c=a-b

c =

4

• Number multiplication:

>> clear

>> a = 2.0; b=-3.5; c=a*b;

>> c

c =

-7

Typing the variable c displays its current value, in this case -7.

• Vector definition:

>> clear

>> v = [2 1]

v =

2 1

>> v(1)

ans =

2

>> v’ % transpose

ans =

2

1

Typing v(1) produces the first component of the vector v as an answer. The
comment “transpose” is ignored since it is preceded by the comment delimiter
“%.” The answer ans is, in fact, a variable evaluated by Matlab.

• Vector addition:

>> v = [1 2]; u = [-1, -2]; u+v

ans =

0 0

350 Introduction to C++ Programming and Graphics

• Matrix definition, addition, and multiplication:

>> a = [1 2; 3 4]

a =

1 2

3 4

>> b = [[1 2]’ [2 4]’]

b =

1 2

2 4

>> a+b

ans =

2 4

5 8

>> c = a*b

c =

5 10

11 22

• Multiply a complex matrix by a complex vector:

>> a = [1+2i 2+3i; -1-i 1+i]

a =

1.0000 + 2.0000i 2.0000 + 3.0000i

-1.0000 - 1.0000i 1.0000 + 1.0000i

>> v = [1+i 1-i]

v =

1.0000 + 1.0000i 1.0000 - 1.0000i

>> c = a*v’

c =

2.0000 + 6.0000i

-2.0000 + 2.0000i

By taking its transpose indicated by a prime, the row vector, v, becomes a
column vector that is conformable with the square matrix, a.

• Print π:

>> format long

>> pi

ans =

3.14159265358979

F.4 Elementary examples 351

• for loop:

>> for j=-1:1

j

end

j =

-1

j =

0

j =

1

In this example, the first three lines are entered by the user.

• if statement:

>> j=0;

>> i=1;

>> if i==j+1, disp ’case 1’, end

case 1

• for loop:

>> n=3;

>> for i=n:-1:2

disp ’i=’; disp (i), end

i=

3

i=

2

The loop is executed backward, starting at n, with step of -1.

• if loop:

>> i=1; j=2;

>> if i==j+1; disp ’case 1’

elseif i==j; disp ’case2’

else; disp ’case3’

end

case3

In this example, all but the last line are entered by the user.

352 Introduction to C++ Programming and Graphics

• while loop:

>> i=0;

>> while i<2, i=i+1; disp(i), end

1

2

The four statements in the while loop could be typed in separate lines; that is,
the commas can be replaced by the Enter keystroke.

F.5 Matlab functions

Matlab comes with an extensive library of internal functions for numerical
computation and data visualization.

Table F.5.1 lists general and specialized mathematical functions. To ob-
tain specific information on the proper usage of a function, use the Matlab help
facility. If you are unsure about the proper syntax or reliability of a function,
it is best to write your own code from first principles. It is both rewarding
and instructive to duplicate a Matlab function and create a personal library
of user-defined functions based on control-flow commands.

F.6 User-defined functions

In Matlab, a user-defined function is written in a file whose name defines
the calling name of the function. The file name must be suffixed with the
Matlab identifier: .m . Thus, a function named pindos must reside in a file
named pindos.m, whose general structure is:

function [output1, output2, ...] = pindos (input1, input2,...)

......

return

The three dots indicate additional input and output arguments sepa-
rated by commas; the six dots indicate additional lines of code. The output
string, output1, output2, ..., consists of numbers, vectors, matrices, and
string variables evaluated by the function by performing operations involving
the input string, input, input2, To execute this function in the Mat-

lab environment or invoke it from a program file, we issue the command:

[evaluate1, evaluate2, ...] = pindos (parameter1, parameter2,...)

After the function has been successfully executed, evaluate1 takes the value
of output1, evaluate2 takes the value of output2, and the rest of the output
variables take corresponding values.

F.6 User-defined functions 353

Function Purpose

abs Absolute value
acos Inverse cosine
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
angle Phase angle
asec Inverse secant
asech Inverse hyperbolic secant
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tangent
atan2 Four quadrant inverse tangent
atanh Inverse hyperbolic tangent
ceil Round toward plus infinity.
cart2pol Cartesian-to-polar coordinate conversion
cart2sph Cartesian-to-spherical coordinate conversion
conj Complex conjugate
cos Cosine
cosh Hyperbolic cosine
cot Cotangent
coth Hyperbolic cotangent
csc Cosecant
csch Hyperbolic cosecant
exp Exponential
expm Matrix exponential
fix Round toward zero
floor Round toward minus infinity
gcd Greatest common divisor
imag Complex imaginary part
lcm Least common multiple
log Natural logarithm
log10 Common logarithm
pol2cart Polar-to-Cartesian coordinate conversion
real Real part
rem Remainder after division
round Round toward the nearest integer

Table F.5.1 Common and specialized Matlab mathematical functions. Contin-
ued on next page.

354 Introduction to C++ Programming and Graphics

Function Purpose

sec Secant
sech Hyperbolic secant
sign Signum function
sin Sine
sinh Hyperbolic sine
sph2cart Polar-to-Cartesian coordinate conversion
sqrt Square root
tan Tangent
tanh Hyperbolic tangent
bessel Bessel functions
besseli Modified Bessel functions of the first kind
besselj Bessel functions of the first kind
besselk Modified Bessel functions of the second kind
bessely Bessel functions of the second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of the beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integral
erf Error function
erfc Complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
log2 Dissect floating point numbers
pow2 Scale floating point numbers
rat Rational approximation
rats Rational output

eye Identity matrix
ones Matrix of ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Matrix of zeros

Table F.5.1 Common and specialized Matlab mathematical functions.

F.7 Numerical methods 355

If a function evaluates only one number, vector, matrix, character string,
entity or object, then the function statement and corresponding function can
be simplified to:

function evaluate = pindos (input1, input2,...)

...

return

An example of a simple function residing in the function file bajanakis.m is:

function bname = bajanakis(isel)

if(isel == 1)

bname = ’sehoon’;

elseif(isel == 2)

bname = ’phaethon’;

else

bname = ’alkiviadis’;

end

return

F.7 Numerical methods

Matlab includes a general-purpose numerical methods library whose functions
perform numerical linear algebra, solve algebraic equations, carry out function
differentiation and integration, solve differential equations, and execute a vari-
ety of other tasks. Special-purpose libraries of interest to a particular discipline
are accommodated in toolboxes.

Table F.7.1 shows selected Matlab numerical methods functions. While
these functions are generally robust and reliable, it is wise to always work under
the premises of the Arabic proverb: “Trust in Allah but always tie your camel.”

F.8 Matlab graphics

A powerful feature of Matlab is the ability to produce professional graphics,
including animation. Graphics are displayed in dedicated windows appearing
in response to the graphics commands.

Graphics functions are listed in Tables F.8.1. in several categories. To
obtain a detailed description of a graphics function, use the help facility. Some
useful tips are:

356 Introduction to C++ Programming and Graphics

Function Purpose

cat Concatenate arrays
cond Condition number of a matrix
det Matrix determinant
eig Matrix eigenvalues and eigenvectors
inv Matrix inverse
lu LU -decomposition of a matrix
ode23 Solution of ordinary differential equations

by the second/third-order Runge-Kutta method
ode45 Solution of ordinary differential equations

by the fourth/fifth-order Runge-Kutta-Fehlberg method
qr QR-decomposition of a matrix,

where Q is an orthogonal matrix and R
is an upper triangular (right) matrix

poly Characteristic polynomial of a matrix
quad Function integration by Simpson’s rule
root Polynomial root finder
svd Singular-value decomposition
trapz Function integration by the trapezoidal rule

x = A\b Solves the linear system A · x = b,
where A is an N × N matrix,
and b,x are N -dimensional column vectors

x = b/A Solves the linear system x · A = b,
where A is an N × N matrix,
and b,x are N -dimensional row vectors

Table F.7.1 A partial list of general-purpose numerical methods Matlab func-
tions.

• To generate a new graphics window, use the command: figure

• To produce a graphics file, use the export or save option under the file
pull-down menu in the figure window.

• To manipulate axis properties, use the command axis and its options.

• To superimpose graphs, use the command hold.

• To close a graphics window, use the command close.

In the remainder of this section, we present several graphics sessions
followed by the graphics output.

F.8 Matlab graphics 357

Two-dimensional graphs

bar Bar graph
comet Animated comet plot
compass Compass plot
errorbar Error bar plot
feather Feather plot
fplot Plot a function
fill Draw filled two-dimensional polygons
hist Histogram plot
loglog Log-log scale plot
plot Linear plot
polar Polar coordinate plot
rose Angle histogram plot
semilogx Semi-log scale plot, x-axis logarithmic
semilogy Semi-log scale plot, y-axis logarithmic
stairs Stair-step plot
stem Stem plot for discrete sequence data

Graph annotation and operations

grid Grid lines
gtext Mouse placement of text
legend Add legend to plot
text Text annotation
title Graph title
xlabel x-axis label
ylabel y-axis label
zoom Zoom in and out of a two-dimensional plot

Line and fill commands

fill3 Draw filled three-dimensional polygons
plot3 Plot lines and points

Two-dimensional graphs of three-dimensional data

clabel Contour plot elevation labels
comet3 Animated comet plot
contour Contour plot
contour3 Three-dimensional contour plot

Table F.8.1 Elementary and specialized Matlab graphics functions and proce-
dures. Continued on next page.

358 Introduction to C++ Programming and Graphics

contourc Contour plot computation (used by contour)
image Display image
imagesc Scale data and display as image
pcolor Pseudocolor (checkerboard) plot
quiver Quiver plot
slice Volumetric slice plot

Surface and mesh plots

mesh Three-dimensional mesh surface
meshc Combination mesh/contour plot
meshgrid Generate x and y arrays
meshz Three-dimensional mesh with zero plane
slice Volumetric visualization plot
surf Three-dimensional shaded surface
surfc Combined surf/contour plot
surfl Shaded surface with lighting
trimesh Triangular mess plot
trisurf Triangular surface plot
waterfall Waterfall plot

Three-dimensional objects

cylinder Generate a cylinder
sphere Generate a sphere

Graph appearance

axis Axis scaling and appearance
caxis Pseudocolor axis scaling
colormap Color lookup table
hidden Mesh hidden line removal
shading Color shading
view Graph viewpoint specification
viewmtx View transformation matrices

Graph annotation

grid Grid lines
legend Add legend to plot

Table F.8.1 Elementary and specialized Matlab graphics functions and proce-
dures. Continued on next page.

F.8 Matlab graphics 359

text Text annotation
title Graph title
xlabel x-axis label
ylabel y-axis label
zlabel z-axis label for three-dimensional plots

Graphics control

capture Screen capture of current figure in UNIX
clf Clear current figure
close Abandon figure
figure Create a figure in a new graph window
gcf Get handle to current figure
graymon Set default figure properties for gray-scale monitors
newplot Determine correct axes and figure for new graph
refresh Redraw current figure window
whitebg Toggle figure background color

Axis control

axes Create axes at arbitrary position
axis Control axis scaling and appearance
caxis Control pseudo-color axis scaling
cla Clear current axes
gca Get handle to current axes
hold Hold current graph
ishold True if hold is on
subplot Create axes in tiled positions

Graphics objects

figure Create a figure window
image Create an image
line Generate a line
patch Generate a surface patch
surface Generate a surface
text Create text
uicontrol Create user interface control
uimenu Create user interface menu

Table F.8.1 Elementary and specialized Matlab graphics functions and proce-
dures. Continued on next page.

360 Introduction to C++ Programming and Graphics

Graphics operations

delete Delete object
drawnow Flush pending graphics events
findobj Find object with specified properties
gco Get handle of current object
get Get object properties
reset Reset object properties
rotate Rotate an object
set Set object properties

Hard copy and storage

orient Set paper orientation
print Print graph or save graph to file
printopt Configure local printer defaults

Movies and animation

getframe Get movie frame
movie Play recorded movie frames
moviein Initialize movie frame memory

Miscellaneous

ginput Graphical input from mouse
ishold Return hold state
rbbox Rubber-band box for region selection
waitforbuttonpress Wait for key/button press over figure

Color controls

caxis Pseudocolor axis scaling
colormap Color lookup table
shading Color shading mode

Table F.8.1 Elementary and specialized Matlab graphics functions and proce-
dures. Continued on next page.

F.8 Matlab graphics 361

Color maps

bone Gray-scale with a tinge of blue color map
contrast Contrast-enhancing gray-scale color map
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating RGB and black color map
gray Linear gray-scale color map
hsv Hue-saturation-value color map
hot Black-red-yellow-white color map
jet Variation of HSV color map (no wrap)
pink Pastel shades of pink color map
prism Prism-color color map
white All white monochrome color map

Color map functions

brighten Brighten or darken color map
colorbar Display color map as color scale
hsv2rgb Hue-saturation-value to RGB equivalent
rgb2hsv RGB to hue-saturation-value conversion
rgbplot Plot color map
spinmap Spin color map

Lighting models

diffuse Diffuse reflectance
specular Specular reflectance
surfl Three-dimensional shaded surface with lighting
surfnorm Surface normals

Table F.8.1 Elementary and specialized Matlab graphics functions and proce-
dures.

362 Introduction to C++ Programming and Graphics

• Graph of the function: f(x) = sin3(πx)

>> x=-1.0:0.01:1.0; % define an array of abscissae

>> y = sin(pi*x).^3; % note the .^ operator (Table F.1.1)

>> plot(x,y)

>> set(gca,’fontsize’,15)

>> xlabel(’x’,’fontsize’,15)

>> ylabel(’y’,’fontsize’,15)

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

• Graph of the Gaussian function: f(x) = e−x2

>> fplot(’exp(-x^2)’,[-5, 5])

>> set(gca,’fontsize’,15)

>> xlabel(’x’,’fontsize’,15)

>> ylabel(’y’,’fontsize’,15)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

F.8 Matlab graphics 363

• Paint a polygon in black:

>> x =[0.0 1.0 1.0]; y=[0.0 0.0 1.0]; c=’k’;

>> fill (x,y,c)

>> set(gca,’fontsize’,15)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

• mesh plot:

>> [x, y] = meshgrid(-1.0:0.10:1.0, -2.0:0.10:2.0);

>> z = sin(pi*x+pi*y);

>> mesh(z)

>> set(gca,’fontsize’,15)

0

10

20

30 0 10 20 30 40 50

−1

−0.5

0

0.5

1

The Standard Template
Library

G
C++ is endowed with the standard template library (STL), which offers a
variety of utility functions and data structures generalized as templates and
coined containers.

A comprehensive reference manual of the STL can be found at the Inter-
net sites:

http://cppreference.com

http://www.josuttis.com/libbook/idx.html

The contents of STL can be broadly classified into the following categories:

• Algorithms containing various subroutines and utility functions

• Sequence containers (vectors, lists) holding sequences of data elements

• Associative containers (maps and multimaps) containing key/value pairs
that provide access to values by way of keys

• Ordered sets (sets and multisets) storing elements in an orderly fashion

• Container adapters (stacks, queues, and priority queues) used to enforce
access rules

• Specialized containers (bitsets, strings, valarrays) offering limited yet ef-
ficient implementations for specific data types

A vector contains contiguous elements stored in an array. Accessing
members or appending elements requires constant time, as in RAM; locating a
specific element or inserting elements requires linear time.

A string is similar to a vector<char>, but enjoys an extended menu of
utility functions.

A double-ended queue offers fast insertion and deletion at the beginning
and end of a vector.

G The Standard Template Library 365

A list is a sequence of elements stored in a linked list. Compared to
vectors, the list offers fast insertion and deletion but slower random access.

A queue is a container adapter offering a FIFO (first-in, first-out) data
structure.

A priority queue is a queue, but the elements inside the data structure
are ordered by some predicate.

A deque provides a dynamic array structure with random access, and
offers fast insertion and deletion of elements at the front and back of the array.

A stack is a container adapter offering the functionality of a stack –
specifically, a FILO (first-in, last-out) data structure.

A set is an associative container encapsulating a sorted set of unique
objects.

A multiset is an associative container allowing for duplicate objects.

A map is a sorted associative container containing unique key/value
pairs. For example, a map can be defined to associate a string with an in-
teger, and then used to associate the number of days in each month with the
name of each month.

A multimap differs from a map in that it permits duplicate keys; that is,
it allows a key to map more than one element.

A bitset allows a set of bits to be used as a data structure. Bitsets can
be manipulated by various binary operators such as logical AND and OR.

An iterator is used to access members of the container classes in lieu of
a pointer. For example, an iterator can be used to step through the elements
of a vector.

A valarray offers efficient implementations for arrays, but lacks certain
standard container functions.

Index

.a, 199

.so, 199
#ifndef, 183
Fortran 77, 325
Matlab, 325
Glui, 252, 281
Glut, 252
Gtk+, 252, 283
Mesa, 252
RAND MAX, 78
and bitwise operator, 87
bajanakis, 355
break, 55
cmath, 39
const, 33, 110
continue, 56
define, 88
draw 2d axes, 222
draw plot 3d, 236
exit, 58
extern, 118, 248
for, 55
fstream, 70
goto, 56
if/else if, 54
if/else, 53
if, 53
iosmanip, 74
iostream, 39, 59
length, 136
namespace, 40
not bitwise operator, 87
or bitwise operator, 87
plot 2d simple, 219
plot 2d, 225
plot 3d trans, 241

plot 3d, 244
protected, 186
rand, 78
resetiosflags, 75
return, 95
setiosflags, 75
sizeof operator, 33
sort, 137
std, 40
typedef, 33
undef, 89
xor bitwise operator, 87
Vogle, 197

absolute directory name, 315
abstract base class, 191
accessor function, 156
algebra on real numbers, 167
algorithm, 53, 80
alias, 33

return of, 108
alphabetizing, 84
ALU, 1
animation, 207, 273

with Matlab, 303
API, 197
archive, 199
arrays, 34
ASCII

art, 174
character, 9
code, 62, 337
file, 9

assembler, 15
assembly language, 15
assignation, 47

368 Introduction to C++ Programming and Graphics

attributes, 149

base class, 185
abstract, 191

bash, 315
binary

executable, 17
file, 9
number, 3
system, 3
system arithmetic, 10

BIOS, 2, 15
bit, 3, 4

maximum integer with, 105
bitwise operator, 85

and, 87
not, 87
or, 87
shift, 86
xor, 87

Boolean variable, 30
boot

loader, 3
sector, 3

bourne, 315
bubble-sort, 83, 123
bus, 2
bytecode, 18

cache, 14
calculator, 69
CD-ROM, 1
CFD, 198
chirality, 65
circles, 164
class, 149

-base, 185
-super, 185
definition, 153
derived, 185
implementation, 157
inheritance, 185
interfaces, 152
object, 151
of circles, 164

of points, 175
of runners, 178
of squares, 164
polymorphic, 191
templates, 193

clock
frequency, 1
rate, 1

color, 253
combinatorial, 98
command line arguments, 140
compiler, 17

directive, 39
compiling in Unix, 41
compression of a file, 87
Computational Fluid Dynamics, 198
conditional operator, 50
constant, 33, 110
constructor, 152

default, 154
parametered, 154

control structure, 53
CPU, 1, 24
csh, 315
CU, 1
cube, 260

data
structures, 36
type, 28

composite, 34
defined, 33

decimal to binary, 6, 88
delimiter, 25
dereference operator, 130
destructor, 153

default, 155
device driver, 59
DIMM, 14
directive of the preprocessor, 100
directory name

absolute, 315
relative, 315

directory path, 17
display on the screen, 59

Index 369

DOS, 288
double buffering, 207, 273
DRAM, 14
DVD, 1
dvi, 43

Ebyte, 5
ECS, 9
editor, 24
EEPROM, 15
eigenvalue, 308
eigenvector, 308
encapsulated postscript, 203, 257
end-of-file, 72
enumeration, 37
environmental variable, 290
EOF, 72
EPROM, 15
eps, 203, 257
event callback, 270
executable file, 17
external variable, 117

FDX, 17
file

editor, 24
qualified open, 73
system, 314

flash BIOS, 15
floating-point system, 19
floppy disk, 1
flops, 12
formatted input and output, 74
FPU, 12
free form, 26
friends, 163
fruit, 161
function

accessor, 156
arguments, 91
in individual files, 100
in the main program, 91
mutator, 156
overloading, 119
pointer, 142

return, 95
template, 121
user-defined, 91
with array arguments, 109
with scalar arguments, 102

Gbyte, 5
GCD, 65
gimp, 257
glade, 286
glBin, 258
global variables, 102, 159
gnu, 24
grammar, 25
graphics programming, 197, 252
greatest common divisor (GCD), 65
GRUB, 3
GUI, 43, 281

programming, 283

hard drive, 1
hardware, 1
HD, 1
HDD, 1
header file

for a class, 183
for a function template, 121
in C++, 38
system, 38
user-defined, 100

hexadecimal system, 22

IDE, 43, 286
implementation-included file, 121
include statement, 38
indexing, 82
inheritance, 185
inner product, 110
input

from a file, 70
from the keyboard, 59

interface of a class, 152

Java, 288
jvm, 288

370 Introduction to C++ Programming and Graphics

Kbyte, 5
kernel panic, 2
keyboard, 59
keywords, 341

latex, 43
LD LIBRARY PATH, 290
literal, 29
local variables, 103

machine language, 15
macro, 89
main function, 24
makefile, 42
master boot record, 3
mathematical library, 68
Matlab, 287

animation, 303
calling from C++, 287
plot

2D, 296
3D, 297

primer, 343
matrix

declaration, 35
initialization, 52

maximum of an array, 81
MBR, 3
Mbyte, 5
member, 149

function, 149
memory

address, 13, 127
cache, 14
DRAM, 14
EEPROM, 15
RAM, 13
ROM, 14
SDRAM, 14

microprocessor, 1
minimum of an array, 81
modulo, 48
monitor, 59
motherboard, 14
mount point, 314

mutator function, 156

namespace
std, 40
standard, 40

NaN, 20
nanotubes, 65
new line, 62
nibble, 6
NULL, 131

obfuscation, vii, 45
object, 149

-oriented programming, v, 149
code, 15
of a class, 151

octal system, 23
OOP, v, 149
open a file, 73
OpenGL, 252
operating system, 2
operators, 47
OS, 2
output

to a file, 70
to the monitor, 59

overloading, 155
a function, 119
an operator, 170
of an operator, 170

Pascal triangle, 80
path, 17
Pbyte, 5
pdf, 43
pointer, 127

arithmetic, 131
null, 146
to a function, 142
to character, 127
to class members, 173, 189
to free memory, 145
to pointer, 132
to scalar, 127
to string, 134
to vector, 134

Index 371

polygon, 207
polymorphic class, 191
polymorphism, 166

dynamic, 190
postscript, 43
preprocessor, 38, 88

directive, 39
prime numbers, 96
printing codes, 62
private field, 159
processor, 1
product, inner, 110
project, 185
PROM, 15
ps, 43
public field, 159

RAD, 286
radix, 4
RAM, 13

static, 14
random numbers, 77
ranking, 81
rapid application development, 286
RBGA, 253
read

false, 61
from a file, 70
from the keyboard, 59
successful, 65

real
number, 28
variable, 20

receive from the keyboard, 59
recursive calling, 120
reference, 33

declarator, 104
operator, 127

register, 2
relative directory name, 315
ROM, 14
root, 314
roses, 187

selection-sort, 84

set, 149
shared object, 199
shell, 284, 315

script, 284
shift bitwise operator, 86
SIMM, 14
Simula, v
software, 1
sorting, 82
source code, 17
space, 149
spaghetti code, 57
squares, 164
SRAM, 14
standard

input, 59
output, 59

standard template library, 364
static

RAM, 14
variable, 93

STL, 137, 364
string, 31

to character conversion, 136
symbolic

language, 15
link, 34

syntax, 25

Tab key, 67
tabulation, 76
tape, 1
tcsh, 315
teapot, 256
template

of a class, 193
of a function, 121

this, 174
toggle, 88
trace, 111
transparency, 253
triangle, 258
two’s complement, 5
typecasting, 31, 63, 133

Unicode, 289

372 Introduction to C++ Programming and Graphics

Unix, 314
compiling in, 41
kernel, 2

variable
constant, 33
external, 117
global, 102
local, 103

vector, 34
declaration, 35

initialization, 51
pointer, 135

virtual function, 190

widget, 281
word, 31
word length, 20
write

to a file, 70
to the screen, 59

	0387689923
	Introduction to C++ Programming and Graphics
	Preface
	Contents
	1 Computers and Computing
	2 General Features of C++
	3 Programming in C++
	4 User-Defined Functions
	5 Pointers
	6 Classes and Objects
	7 Graphics Programming with VOGLE
	8 Graphics Programming with GLUT, GLUI, and GTK+
	9 Using Matlab
	Unix Primer

