NUMERICAL
METHODS -

= MEJANDRO L. GARe

SEcoND EDITION

Numerical Methods for Physics

Alejandro L. Garcia
San Jose State University

Prentice Hall, Upper Saddle River, New Jersey 07458

Contents

Preface : v
1 Preliminaries 1
1.1 PROGRAMMING e L 1
1.2 BASIC ELEMENTS OF MATLAB 3
1.3 BASIC ELEMENTS OF C++ P 10
1.4 PROGRAMS AND FUNCTIONS 16
1.5 NUMERICAL ERRORS 26
2 Ordinary Differential Equations I;
Basic Methods 37
2.1 PROJECTILE MOTION 37
22 SIMPLEPENDULUM 46
3 Ordinary Differential Equations II:
Advanced Methods 67
3.1 ORBITS OF COMETS 67
3.2 RUNGE-KUTTA METHODS 74
3.3 ADAPTIVE METHODS &1
3.4 *CHAOS IN THE LORENZ MODEL 86
4 Solving Systems of Equations 107
4.1 LINEAR SYSTEMS OF EQUATIONS 107
42 MATRIXINVERSE 116
4.3 *NONLINEAR SYSTEMS OF EQUATIONS 122
5 Analysis of Data 141
51 CURVE FITTING i i e 141
52 SPECTRAL ANALYSIS 153
53 *NORMAL MODES« . e i et 163
6 Partial Differential Equations I:
Foundations and Explicit Methods 191
6.1 INTRODUCTIONTOPDEs 191

6.2 DIFFUSION EQUATIONo oo . 195

iv

CONTENTS

6.3 FORITICAL MASSo oo h e 202
7 Partial Differential Equations II:
Advanced Explicit Methods 215
7.1 ADVECTION EQUATIONo« o oo e e 215
7.2 *PHYSICS OF TRAFFIC FLOW . 225
8 Partial Differential Equations IIT:
Relaxation and Spectral Methods 249
81 RELAXATION METHODS 249
%9 *PECTRAL METHODS oo oo o 258
9 Partial Differential Equations 1V:
Stability and Implicit Methods 279
01 STABILITY ANALYSIS o o 279
092 TMPLICIT SCHEMES oo s 287
03 *SPARSE MATRICESo 204
10 Special Functions and Quadrature 309
10.1 SPECIAL FUNCTIONSo oo e s 309
10.2 BASIC NUMERICAL INTEGRATION 318
10.3 *GAUSSIAN QUADRATURE oot os 325
11 Stochastic Methods 341
11.1 KINETIC THEORY oo oo e e a
1.2 RANDOM NUMBER GENERATORS M7
11.3 DIRECT SIMULATION MONTE CARLO 356
11.4 *NONEQUILIBRIUM STATES- oo oo v 365
Bibliography 399
Selected Solutions 407

Index

418

Chapter 1

Preliminaries

This chapter has no physics; to nse the computer to do physics, one must first
know how to use it to do math. The hook presents algorithms in their general
form, but when we sit down at the computer we have to give it instructions
that it understands. Sections 1.2 and 1.3 present a synopsis of the MATLARB
and C++ programming languages, and some simple programs are developed in
Section 1.4. The chapter concludes with a discussion of the effect of hardware
limitations {e.g., round-ofl errcrs) on mathematical calculations.

1.1 PROGRAMMING

General Thoughts

Before we get started, let me warn you that this book does not teach pro-
gramming. Presumably, you have already learned a programming language (it
doesn’t really matter which one) and have had some practice in writing pro-
grams. This book covers numerical algorithms, specifically those that are most
useful in physics. The style of presentation is informal. Instead of rigorously
deriving all the details of all possible algorithms, I'll cover only the essential
points and stress the practical methods.

If you've had a math course in numerical analysis, you may see some old
friends (such as Romberg integration). This book emphasizes the application
of such methods to physics problems. You will also learn some specialized
techniques generally not presented in a mathematics course. If you have not
had numerical analysis, don’t worry. The book ig organized assuming no prior
knowledge of numerical methods.

In your earlicr programming course T hope you learned about good program-
ming style. I try to use what I consider good style in the programs, but everyone
has personal preforences. The point of good style is to make your life easier by
organizing and structuring your program development. Many programs in this
book sacrifice efficiency for the sake of clarity. After you understand how a

2 CHAPTER 1. PRELIMINARIES

program works, you should make it a rcgular exercise to improve it. However,
always be sure to check your improved version with the original.

Maost of the exercises in this book involve programming projects. In the first
few chapters, many exercises require only that you modify an existing program.
In the later chapters you are asked to write more and more of your own code.
The excrcises are purposely organized in this fashion to allow you to come
up to speed on whatever computer system you choose to use. Unfortunately,
computational physics is often like experimental work in the following regard:
Debugging and testing is a slow, tedious, but necessary task similar to aligning
optics or fixing vacuum leaks.

Programming Languages

In writing this book, one of the most difficult decisions I had to make was choos-
ing a language. The obvious choices were Basic, FORTRAN, MATLAB, C++,
and Java. I also considered symbolic manipulators such as Maple and Math-
ematica. When the first edition of this book appeared, there were significant
differences among these choices. Some were more powerful, but difficult to use;
others had better graphics, but were not portable across computing platforms,
etc. Since that time, advances in software engincering have diminished the de-
ficiencics (and in many ways the distinctiveness) of these languages, making
the choice of language for the second edition even more difficult. With my edi-
tor’s assistance, we put the question to students and instructors nsing the first
edition, and their choices were MATLAB and C++.*

MATLAB is the language that I encourage my students to use in their course
work. Although you may not be familiar with MATTAB, it is widely used
both academia and industry. It is especially popular in the engineering commu-
nity and with applied mathematicians. MATLAD is very portable; it runs on
Windows PCs, Macintoshes, and Unix workstations.

MATLAB is an interpreted language with excellent scientific librarics. Be-
cauge it is an interpreted language, it is easy to use interactively, while the
compiled libraries improve its performance. Being an interpreted language also
makes MATLAB very clean. Many details {such as dimensioning matrices) are
handled automatically. MATLAB has very good graphics facilities, including
high-level routines (c.g., contour and surface plots). If you are comfortable us-
ing Basic, FORTRAN, or symbolic manipulators, you should have no trouble
programming in MATLAB.

C++ is a rich, elegant, and powerful programming language. Most of the
applications on your computer were probably written in C4+-+. Arguably, FOR-
TRAN remains the dominant language in the physics community, but C-+- is
the lingua franca of engineering. For these reasons many students are eager to
learn this object-oriented language. C++ is difficult to master, but knowing
the basics will suffice for programming the algorithrus in this book. If you have
programming experience with C or Java, you will probably enjoy using C++.

“FORTRAXN versions of the programs in this book are also available online.

1.2, BASIC ELEMENTS OF MATLAB 3

1.2 BASIC ELEMENTS OF MATLAB

This section summarizes the basic elements of MATLAB. Advanced features are
introduced in later chapters as we need them. The MATLAB manuals include
several tutorial chapters, along with a complete reference to the language. If
you don't have a copy of the manual at hand, most of it is available from the
built-in help system. For other MATLAB tutorials, see the texts by Etter [44]
and by Hanselman and Littlefield [70].

Variables

The fundamental data type in MATLAB is the martrix (MATLAB is an acronym
for MATrix TABoratory). A scalar is a 1 x 1 matrix, a row vector is a 1 x N
matriz, and a column vector is an N x 1 matrix. Variables are not declared
explicitly; MATLAB just dimensions them as they are used. For example, take
the scalars = and y, the vectors a and b, and the matrices C. D, and E, and
give them the values

1
=3 y=-2; a=|2|; b:[() 3 —4]
3
1 0 1 01 1 1 ey
C=|01 -1, D=2 3 -1]|; E=|0 -1 (L.D)
1 2 0 00 1 z -1

In MATLAB these variables would be set by the assignment statements

x = 3; % These are some simple assignments

¥y =2

a = [1; 2; 3]; % Column vector a; Row vector b

b = [0 3 -4];

C=[101; 01-1; 12 0]; % Matrices
D=[011; 23 -1; 0 0 1];

E=1[1pi; 0-1; x sqrs(-1)1; % In MATLAB, pi = 3.14.,.

Variable names in MATLAB, as in most languages, must start with a letter but
can be composed of any combination of letters, numbers, and underscores {e.z.,
mass, mass_of particle, MassOfParticle2). Anything following a percent
sign i3 considered a comment in MATLAB.,

"The semicolon at the end of each assignment marks the end of the statement;
you can put multiple statements on a line by separating them with semicolons.
If this semicolon is omitted, the statement is assumed to end at the end of
the line, and the value assigned is displayed on the screen (sometimes useful but,
more offen annoying). Notice that rows in a matrix are separated by semicolons.

Two handy MATLAB functions for creating matrices are zeros and ones.
The statement A=zeros(M,N) sets A tobe an M x N matrix, with all elements
equal to zero. The ones function works in the same fashion, but creates matrices
filled with ones.

4 CHAPTRR A PRELINHNARIES

Mathematics

The basic arithmetic operations are defined in the natural manner. For example,
the MATLAB statements

- ¥; % Some basic operations
a;
D;
E;

2 ' ook N
[T T =]
* + ¥

assign the values

11 2 { 4w+
2=k 1=—6 F=|24 2!, G=1 -3 —1-i (1.2)
12 1 [1 x=2

The power operator is =, thus 273 is 2° = 8, Other mathematical functions are
available from MATLAD's large collection of built-in functions (Table 1.1},

MATLAB performs matrix multiplication; thus in the cxample above, Gy =
Y., Ci B;. Notice that b*a is just the dot product of these vectors. MATLAB
will balk if you try to do a matrix operation when the dimensions don’t match
{e.g., it will not compute C+E). For matrices, division is implemented by using
Gaussian elimination {discussed in Chapter 4).

Sometimes we want to perform operatious element by element, so MATLAB
defines the operators .= ./ and .". Here are some cxamples of these array
operations:

H=C .*x D; % These operations are performed

J=E .7 x; % element-by-element

In this case H, ; = C;;D; ; and J; 3 = (E;)", thus

00 1 1
H=|031]|; J=|0 -1 (1.3)
00 0 27 —i

Individual elements of a matrix may be addressed by using their indices. For
example, 7(1,2) equals 7% and J(3,1) equals 27. Similarly, for vectors, b(3)
(or b(1,3)) equals —4. Notice that matrix indices start at 1 and oot 0.

Matrix B is the transpose of matrix A if 4;; = Bj;, that is, the rows and
columns are exchanged. The Hermitian conjugate of a matrix is the transpose
of its complex conjugate. In MATLARB

K=171%; % Hermitian conjugate
L=1J.7; % Transpose

give the values

1o 2], _[1 0
=1 i | B R A [

(1.4)

The Hermitian conjugate of J is K, while L is the transpose of J.

1.2. BASIC ELEMENTS OF MATLAB 5

Table 1.1: Selected MATLAB mathematical functions.

abs{x) Absolute value or complex magnitude
norm{x) Magnitude of a vector
sqrt (x) Square root
sin(x), cos(x) Sine and cosine
tan(x) Tangent
atan2(y,x) Arc tangent of y/x in [0, 27]
exp(x) Exponential
log(x), logl0{x) | Natural logarithm and base-10 logarithm
rem{x,y) Remainder (modulo) function {e.g., rem(10.3,4)=2.3)
floor (x) Round down to nearest integer (e.g., £loor(3.2)=3)
ceil () Round up to nearest integer (e.g., ceil(3.2)=4)
rand (N) Uniformly distributed random numbers from
_ the interval 0, 1). Returns N x NV matrix.
randn (N) Normal {Gaussian) distributed random numbers
(zero mean, unit variance). Returns N x N matrix.

Loops and Conditionals

Repeated operations are performed by using loops. Here is an example of a for
loop in MATLAB:

for i=1:5 % Your basic loop; i goes from 1 to 5
p{i} = 172
end % This is the end of the loop

This loop assigns the valuep = [1 4 9 16 25]. The body of the for loop (i.e.,
the set of statements executed in the loop) is terminated by the end statement.
Notice that p is created as a row vector. If we wanted it to be a column vector,
we could build it as

for i=1:5 % Your basic loop; i1 goes from 1 to 5
p(i,1) = i*2; % p is a column vector

end % This is the end of the loop

or

for i=1:5 % Your basic loop; i goes from 1 to 5
p(i) = i72;

end % Thisz is the end of the loop

p=p"; % Transpose p into a colummn vector

using the transposc operator. _
In a for loop, the default step is +1, but it is possible to use a different
increment. For example, the loop

0 CHAITER 1 PRISLININARTLS

for i=1:2:5 % Loop over odd values of i
g{i) = i;
q{i+1) = -i;

end

assigus the values g = [1 -1 3 -3 5 -5].
MATLAR also has while loops; here is a simple example:

while(x > 1)
X = x/2;
end

A while command cxecutes the statements in the body of the loop while the
loop condition is true. If # = 5 bofore the loop, then z will cqual ;3’: when the
loop completes. The break statement can he used to terminate for loops or
while loops.

Here arc some cxamples of how conditionals are implemented; you see that
it is quite standard.

if(x >86) % & simple conditiomal

z = =z-1;

¥ = MaxHeight; % Body of this conditional has two statements
end

1If(x >= x min & x <= x_max) % A more complicated conditional

status = 1;

else % This conditional uses else
status = ¢;

end

H(x==0| x == 1) % Another conditional using elseif
flag = 1;

elseif{ x < 0 & x ~= -1} % Notice that elseif is ONE WORD
flag = -1;

else
flag = 0;

end

Notice that cquals and not oquals are == and ~=, respectively. Logical “and”
i & (ampersand), and logical “or” is | {vertical bar). The end command
terminates both loops and conditionals.

Colon Operator

The colon operator, : |, is one of MATLAR’s handicst tools.” Tet’s consider a
few examples of its use. First, the for loop,

TFORTRAN 90 has a similar colon aperator

1.2. BASIC ELEMENTS OF MATLAB 7

tau = 0.1;
for i=1:100

time(i) = tau * i
end

could be replaced with

tau = 0.1;
1=1:100;
time = tau * i;

In the latter, a vector i=[1 2 ...100] is created. We may further abbreviate
this to

tau = 0.1;
time = tau * (1:100);

In all three cases, the vector time=[0.1 0.2 ...10.0] is created.
The colan operator is also useful for looping over rows or columns of a matrix.
For example, the loop

[M,N] = size(A); % Find dimensions of A
for i=1:M

first(i) = A(i,1);

last(i) = A(i,N);
end

copies the first and last columns of matrix A into the vectors first and last.
The above can be replaced with

[M,N] = size(A}; Y% Find dimensions of A
first = A(:,1);
last = A{:,N);

Not only does using the colon operator abbreviate our code, but it also makes
it run faster. The program becomes more efficient because we are explicitly
executing a vector operation instead of performing an element-by-element cal-
culation.

Input, Output, and Graphics

MATLAB has various types of input and ousput facilities. The input command
prints a prompt to the screen and accepts input from the keyboard. Here is a
simple exarple of its use:

% = input (’Enter the valus of x: ’);

In this example, you can enter a scalar, a matrix, or any valid MATLAB ex-
pression.

The disp command may be used to display the value of a variable or to
print a string of text:

8 CHAPER 1 PRELIMINARIES

Table 1.2: Selected MATLAB graphics functions.

plot{x,y) Plot vecsor y versus vector x
loglog(x,y), semilogx(x,y), Plot vector y versus veclor x
semilogy(x,vy) uging leg or semilog scales
polar(theta,rho) Palar plot
contour (z) Contour piot. of matrix z
mesh{z) 3-D wirec-mesh plot of matrix =
title(’text’), Write a title on a plot
xlabel{"text’), ylabel(Ptext’) | Write axis lahels on a plot
print Print graphics

M=1[1,2, 3; 4, b, 6; 7, 8, 9];
disp(’The value of M is ’);
disp(M);

produces the output

The value of M is

1 2 3
4 5 6
7 8 9

Formatted output is also available with the fprintf command,
fprintf (’The values of x and y are g and %g meters \n’,x,y)

The values of the variables x and y are displayed in place of the %g’s. The \n at
the end of the text string indicates a carriage return {new line). The MATLAB
commmands Load and save can be used to read and write dasa files.

MATTAB has vatious graphics commands for creating xy plots, contour
plots, and three-dimensional wire-mesh plots. Table 1.2 gives a list of a few of
the basic graphics commands.

MATLAB Session

When you first enter the MATLAB environment, you are at the command level
as indicated by the >> prompt (in the regular edition) or the EDU>> prompt (in
the student edition}. From the command line you can enter individual MATLADB
commands. To end vour MATLADB gession, tvpe quit or exit.

For programming, it is more convenient to enter a set of comunands to be
oxecuted in a file. In the MATLAB terminology such a script of commands is
called an M-file. Our programs and functions will ll be M-files. You run an
M-file by invoking its name (the name of the file) on the command line. Before
running a program you need to tell MATLAD where to look for your M-files,

1.2. BASIC ELEMENTS OF MATLAB 9

1(x) = eXpl-x/4)*sin{x) Hs) = expl-x/4) *sin(x)
; - 1 |

“o 5 10 15 20 7 s 0 15 =
b) x

P

-5 LA

Figure 1.1: Samples of MATLAB plotting.

that is, the directory where your files are located. MATLAB searches for M-files
in all locations specified in a list called the “path.” Use the path command or
the “Set path...” menu item to add your directories to MATLAB’s path.

After MATLAB execuies the commands in the M-file, it returns control to
the command line. You can then enter individual commands (for example, to
display the values of your variables). The interactive help may be used from
the command line. For example,

EDU>> help bessel

tells you about MATLAR’s Bessel function routines. You can also get help on
special characters (e.g., try help &).

EXERCISES

(Recommended exercises indicated by holdface mumbers)

L. TFor the matrix A=[1 2; 3 4], use compute MATLAB to find: (a) A*&; (b) A.*4;
(¢) A”2; (d) &.72; () A/A; (1) A./A. [MATLAB]

2. Given the vectors x = [1 2 3... 10] and y = [1 4 9...100], plot them in
MATLAB using: (a) plot(z,y): (b) plot(x,y,’+?); {¢) plot (x,y,7 =", x,¥, 7 +"); (d)
plot(x,y,’-7, x(1:2:10), y(1:2:10), '+’); (e) semilogy(x,¥); (f} loglog (x,y, ' +’).
[MATLAB]

3. Reproduce the plots shown m Figure 1.1. Try to be as accurate as possible in your
reconstruction. [MATLAB]

14 : CHAPTER L PREVINMINARIES

Table 1.3: Selected CH+ mathernatical [unictions.

- _
pow(x,¥y) Raising to a power, ¥
fabs (x) Absolute value
sqrt{x) Square root
sin(x), cos(x) Sine and cosine
tan(x) Tangent
atan2(y,x) Arc tangent of y/x in [0, 27)
exp(x) Expounential
Log(x), logl0(x) | Natural logarithm and base-10 logarithm
fleor(x) Round down to nearest integer (c.g., floor (3 .2)=3}
ceil(x) Round up to nearest integer (c.g., ceil(3. 2)=4)
fmod (x,y) Remainder of x/y {e.g., fmod(7.3,2.0)=1. 3)

double x = 4, y = 2.5, =z:
z = {3*%x -y + 0.5)/2.0:

assigns the value z=5. There is no built-in arichmetic operator to raise a value
to a power; use the pow(x,y) function (e.g., pow(2.0,3.0) is 23 — 8). The
modulo operator is %, so 23%4 equals 3 since 2 =52

C++ provides several shorteuts for common arithmetic operations. The
Most common is i++ for 1=i+1 {similarly, i-~ for i=i-1). Other shortcuts are

X += 2.5; // Bame azs x = x + 2.5;
y —= 3; // Same as y =y - 3;
Z *= x; // Same as z = z * x;

vy /=x + =z // Same as y = y/(x+z);

Commonly used mathematical functions are available in the standard library
<math.h> Table 1.3 gives a short list of some of the basic functions.

Loops and Conditionals

Repeated operations are performed by using loops. Here is an example of a for
loop in C++:

int i; double p[&+1];
for(i=1; i<=B; i++) // A basic loop; i goes from 1 to &
plil = i*i;
This loop assignsg the values 1,4, ...,25t0p[1], p[2], ..., p[5]. The body of
this for loop only contains one statement. Braces, {}, are needed if the body
contains multiple statements; for example,

int i; double x = 1.0, ¥y =-1.0;
for(i=1; i<=5; i++) {

1.3. BASIC ELEMENTS OF C++ 13

X *= i
¥y /= x;
}

By convention, the statements within a loop are indented to outline the loop’s
structure.
C+-+ also has while loops. Here is a simple example:

double x = 5;
while(x > 1)
x /= 2;

The statements in the body of the loop are repeatedly executed while the loop
condition is true. In this example x will equal % when the loop completes. The
break statement can be used to terminate for loops or while loops.

Here are some examples of how conditionals are implernented: First, a simple
if statement

if(x > 5) { // A simple conditional
7-=;
y = MaxHeight;

+

Second, an if-else conditional

if{ x >= z_min &§& x <= x_max)
status = 1;

else
status

0;

Logical “and” is && (two ampersands) and logical “or” is | | (two vertical bars).
This conditional can be written as

status = (x >= x_min && x <= x_max} 7 1 : 0;
Third, a conditional using else if

f(x==0 1| x==1) // If x equals 0 or 1

flag = 1;

else if(x < 0 && x != -1)
flag = -1;

else
flag = 0;

Logical “equals” and “not equals” are == and !=, respectively.

Input and Qutput

The introduction of “streams” in C++ is a great improvement over the input
and output routines originally available in C. For example, the lines

O LA L ENTTN A S

double ¥ = 3.1;
cout << " Value of x is " << x << v meters" << endl;

display
Value of x is 3.1 meters

to standard output (which is normally your screen). The endl stream manipuo-
lator indicates an end-of-line (i-e., a new line).

Similarly, the input stream cin allows us Lo enter data from the kevboard,
The lines

double Vs
cout << "Enter value of ¥y "
cin >> y;

display
Enter value of y:

to the screen with the cursor () waiting for vou to enter the value of y. Streams
can also be used to read and write files.

EXERCISES

6. Find the errors in each sct of C++ statements below-

A B
const double pi = 3.141502654

double radins, cireum = 2¥pisradius;

[B) e
int i; double x=1;

for(i=1, i<10, i++)

X = xti; A\ Tncrement x
e
int new=1; a=1; b=2;
if(new > 5)

& -= new; new = a;
else

b += new; new = b;
I e
double y=1, Y _max=50%50;
while(0 < y <= y_max)

yo*= 2

You can either check these by hand or have the computer help vou find the er-
rozs, [C4+]

1.3. BASIC ELEMENTS OF C++ 15

7. TFor each set of C++ statements below, find the value of x after the code executes:

int i, j; double x, y;
/(@) =emmmmmmmm e e e e e e
i=3; j=4;
x = (i/3)*(j/i);
/7 by =
x=1;
for{ i=1; i<10; i+=2)
x /= 1;
/1 (€) mmmmmmm e
x=1;
for(i=1; i<=10; i++)
if(i>6) x -=1;
else if(i > 3) x = 2%i;

else x—-;
/] (@) mmmmmmmm e
x=-1; y=1;

while(= <y)
x= {x¥y <0) 7 -x 1 yH+;

You can either work these out by hand or on the computer. [C4++]
8. For each set of C++ statements below, find the value of x after the code executes.
Warning: Results may not be what you expect.

int i,j; double Xx,¥;
[/ () mmmmmmmmm e
x=1;
for(i=1; i<G; i++)
x = i+x / 2.0;

/7 (b)) s e
x=1;
for{ i=1; i<10; i+=2);
x /= 1
/7 {e) ——————— e -= -
3=L
for(i=1; i<=10; i++)
if(i > 5)
X -= i;
else
j o= 2#i;
x = j/2;
[/ (@) ————mmm e e e e
x=1; y =2;

for(i=1; i<=5; i++)
Y *= X)X k= §;

I recommend that you work these out by hand before checking them on the com-
puter. [C++]

CHAPTER L PRELINBNARTES

Table 1.4: Qutline of rogram orthog, which cvalyates (e dot. produet of 5
pair of three dimensjonal vectors.

, ———

e Initialize the vectors a and b.
e Evalnate the dot product as a - b — aiby +azhy + agh,.

* Print dot product and state whether vectors arc orthogonal.

_—

See pages 31 and 32 for program listings.

1.4 PROGRAMS AND FUNCTIONS
Orthogonality Program in MATLAB

In this section we write some simple programs using MATLAB and C+4. Our
first example, called orthog, tests whether two vectors are orthogonal by com-
puting their det product. This stmple program is outlined in Table 1.4.

We first consider the MATLAR version, listed on page 31. Tn MATLAB, a
program’s name is set by the program’s file name. Tn this case, the program ig
in a file called orthog.m. The first fow lines of orthog are

% orthog - Program to test if a pair of vectors
% is orthogonal. Assumes vectors are in 3D space
clear all; help orthog; % Clear the memory and print header

The first two lines are comments; if you type help orthoeg from the command
line, MATLAB displays thesc lines. The clear all command on the third line
clears the memory. The help statement on this line serves to display the first
two lines each time you run orthog.

The next few lines of orthog are

#* Initialize the vectors a and b
a = input(’Enter the first vector: D
b = input (’Enter the second vector: ’);

The vectors are entered using the input command on these lines. The comments
that begin with %* are those that have corresgponding enlries in the program’sy
outline (see Table 1.4).

The next few lines caleulate the dot product.

%* Evaluate the dot Product as sum over products of elements
a_dot_b = 0;
for i=1:3
a_dot_b = a_dot_b + a(i)*h(i);
end

1.4, PROGRAMS AND FUNCTIONS 17

The for loop, using index i, goes over the components of the vectors. A slicker
way to do the same thing would be to use

%* Evaluate the dot product as sum over products of elements
a_dot_b =a % b';

In this case, we use MATLAB’s matrix multiplication to compute the dot prod-
uct as the vector product of the row vector a and column vector b’ {using the
Hermitian conjugate operator).

The last lines of orthog are

%»* Print dot product and state whether vectors are orthogonal
if(a_dot_b == 0) '
disp(’Vectors are orthogonal’);
else
disp(’Vectors are NOT orthogonal’);
fprintf(°Dot product =-%g \n’,a_dot_b);
end

According to the value of a_dot_b, the program displays onc of the two possible
responses.
Here is the output from a typical run:

>>orthog

orthog - Program to test if a pair of vectors
is orthogonal. Assumes vectors are in 3D space

Enter the first vector: [1 1 1]
Enter the second vector: [1 -2 1]
Vectors are orthogonal

If, instead, you get the following error message,
777 Undefined function or variable ’orthog’.

then your MATLAB path probably does not point to the directory containing
orthog.m.

Orthogonality Program in C+-+

Now we consider the C4++ wversicn of the ortheg program, which tests if a
pair of vectors are crthogonal by computing their dot product. The program is
outlined in Table 1.4 and listed on page 32.

The first few lines are

// orthog - Program to test if a pair of vectors
// is orthogonal. Assumes vectors are in 3D space
#include <iostream.h>

18 CHADPTER 1 PRELIMINARIES

The first two lines are comments reminding us what the prograrm does. The
third line serves to include the iostream library, which allows us to use input
and output streams. The next line marks the beginning of the main program

void main() {

with a matching } at the end of the program.
The first lines in the body of the program are

//* Initialize the vectors @ and b
double a[3+1], bl[3+1];
cout << "Enter the first vector" << endl;

int i;

for(i=1; i<=3; i++) {
cout << " al" << i << "] =",
cin >> alil;

}

Comments marked as //# correspond to entries in the program’s outline (see
Table 1.4). Vectors a and b are declared as floating-point arrays with four
elements, three components plus one unused element (index zero). The output,
statements (cout << ...) display the following prompt to the screen:

Enter the first vector
al1l] = _

The input statement (cin >> alil;) reads the value you enter at the keyboard
into ali]l. The next few lines

cout << "Enter the second vector" << endl;
for{ 1=1; 1<=3; i++) {

cout << " Bb[" << i << "] =",

cin »>> b[i];

}

read in vector b in a similay faghion.
Next, the program evaluates the dot product, using

//* Evaluate the dot product as sum over products of elements
double a_dot_b = 0.0;
for(i=1; i<=3; i++)

a_dot_b += alil*b[i];

This for loop contains only one statement so braces are not needed. Finally,
the lines

//* Print dot product and state whether vectors are orthogonal
if(a_dot_b == 0.0)

cout << "Vectors are orthogonal” << endl;
else {

1.4. PROGRAMS AND FUNCTIONS 19

Table 1.5: Outline of program interp, which interpolates and extrapclates data.

Initialize the data points, (z1,%1), (z2,y2), and (z3,93) to be fit by a
quadratic.

e Establish the range of interpolation (from @min t0 Zmax)-

Find y* for the desired interpolation values of z*, using the function
intrpf.

Plot the curve given by (x*,3*), and mark the orginal data points.

See pages 31 and 33 for program listings.

cout << "Vectors are NOT orthogonal" << endl;
cout << "Dot product = " << a_dot_b << endl;

by

display the result.
Here is the output from a typical run:

Enter the first vector

al1] =1
al2] =1
al3] =1
Enter the second vector
b[1] = 1
bl{2] = -2
b(3] = 1

Vectors are orthogoenal

Although this program may seem excessively simple, it should help you learn
to compile, link, and run programs on your system.

Interpolation Program in MATLAB

It is well known that given three (z,y) pairs, one may find a quadratic that fits
the desired points. There are various ways to find this polynomial and various
ways to write it. The Lagrange form of the polynomial is

_ rT—@yjle—x x— —it3
plr) = [omeml,, g Lesdes),, s
+ (ﬂ—xlg(w—mz) ()

(wa—a1){@g—ma) I

where {@1,41), (€2, ¥2), (z3,y3) are the three data points to be fit. Commonly,
such polynomials are used to interpolate between data points.

20 CHATTER L PREIMINARIS

Table 1.6: Outline of function intrpf, which evaluates the Lagrange quadratic

(1.5).
o Inputs: x = [x1 22 23], ¥ = [y: y2 ¥2], and 2*
e Oulputs: ¥~

e Caleulate y* = p(x*) using the Lagrange polvnomial (1.3).

See pages 32 and 34 for prograim listings.

A simple interpolation program, called interp, is outlined in Table 1.5. The
MATLAB listing is on page 31; the first few lines arc

% interp - Program to interpolate data using Lagrange

% polynomial to fit quadratic to three data points

clear all; help interp; ¥ Clear memory and print header
%* Initialize the data points to be fit by quadratic
disp(’Enter data points as x,y pairs (e.g., [1 2])?);

for i=1:3
temp = input(’Enter data point: ’);
x(i) = temp(i);
y(i) = temp(2);

end

%* Establish the range of interpolation (from x_min to x_max)
xr = input(’Enter range of x values as [x_min x_max]: °};

Here the program reads in the three () pairs and the range of values for
which the data is to be interpolated.

The interpolated value y* = p(2*) is computed by the function intrpf from
2" = Fmin 10 8% = Fmax. These values of y* (yi) are computed in the loop

%* Find yi for the desired interpolation values xi using
% the function intrpf
npleot = 100; % Number of peints for interpolation curve
for i=1l:nplot
xi{i} = xr{1) + (xr{2)-xr(1))*{i-1)/(nplot-1);
yi(i) = intrpf(xi(i),x,y); % Use intrpf function to interpclate
end

Finally, the resulis arc graphed using MATLAB’s plotting routines.

%+ Plot the curve given by (xi,yi) and mark original data points
plot(x,y,’*’ ,xi,yi,’-?);

xlabel(’x’);

ylabel(’y’);

L4, PROGRAMS AND FUNCTIONS

Three point interpolation

21

»

Data points

Interpolation /

Figure 1.2: Graphical output from the interp program. Input data is {1, 1),
(3, 1), and (2, 4); interpolation range is from —3 to 3.

title(’Three point interpolation’);
legend(’Data points’,’Interpolation’);

The interpolation points (z*, y*} are plotted as a solid line along with the original
data points (z,y) marked by asterisks {sec Figure 1.2},

The real work is done by the function intrpf (Table 1.6). Functions in
MATLAB are implemented as in most languages, except each function must
be in a separate file. The file name must match the function name (function
intrpf is in the file intrpf.m). The first lines of intrpf are

function yi = intrpf(xi,x,y)
% Function to interpolate between data points
% using Lagrange pelynomial (quadratic)

% Inputs

%X Vector of x coordinates of data points (3 values)
¥ Vector of y coordinates of data points (3 values)
% xi The x value where interpolation is computed

% Output

% v¥1 The interpolation polynomial evaluated at xi

The intrpf function has three input arguments and one output argument. How-
ever, a MATLAB function can have a list of output arguments. In Section 3.3
we use an adaptive Runge-Kutta routine that has the calling sequence

function [xSmall, +, taul] = rka(}é,t,tau,err,derivsRK,param)

with six input arguments and three output arguments.

The intrpf function s straightforward, since i, Justoevaluates Foualion
(L.5). The body of the function is

4* Calculate yi = p{(xi) using Lagrange polynomial

yi= (Xi—X(Q))*(Xi—X(S))/((X(l)-X(2))*(X(1)—X(3))}*y(1)
(-2 (1)) (x1-2(3)) /(2 () ~x (1)) #(x(2) -x(3))) *y (2)
T eimx (1)) (x2-x€2)) /(((3) -2 (1)) * (2(3) -x(2)) yxy (3) ;

return;

The ellipsist (...) ending the first two lines signals that they are continued on
the next line.

As in most languages, variables in a function are local to thal function. For
cxample, if we were to modify the value of xi inside the function intrpt, the
variable xi in the main program (interp) would be unaffected. Variables in
the calling seqguence are passed by value {as in C++) and not by reference (as
in FORTRAN).

Interpolation Program in C+-+

The C++ version of interp, the Lagrange polynomial interpolation program,
is outlinod in Table 1.5 (sce page 33 for the listing). The first few lines of the
program arc

// interp - Program to interpolate data using Lagrange
// polynomial to fit guadratic to three data points
#include "Numdeth.h"

double intrpf(double xi, double x[], double y(1);
void main() {

The include statement refers to the header file NumMeth. h, which lists the various
libraries that we normally want to include (<iostream.h>. <math.k>, etc.). The
declaration double intrpf(... states that the program intends to call the
function intrpf, which has three inputs (of type double) and which returns a
value of type double.

The next few lines of the program are

//* Tnitialize the data points to be fit by quadratic
double x[3+1], y[3+1];
cout << "Enter data points:" << endl;
int i;
for(i=1; i<=3; i++) {
cout << "x[" << i << "] = v
cin >> x[i];
cout << "y[" << i << "] = v
cin >> y[i];

§An ellipsis ...} is the punctuation meark that indicates an incomplete thought. An ellipse
i¥ a geometric object whose name indicates thal it is an imperfect circle.

1.4, PROGRAMS AND FUNCTIONS 23

¥

//* Establish the range of interpolation (from x_min to x_max)
double z_min, x_max;

cout << "Enter minimum value of x: "; cin >> x_min;

cout << "Enter mazimum value of x: "; c¢in »> x_max;

The program prompts you to enter the data points to be fit by the Lagrange
polynomial (1.5} and the range of interpolation values.
Next, the arrays xi and yi are declared by

//* Find yi for the desired interpolation values xi using

// the function intrpf _

int nplet = 100; // Number of points for interpelation curve
double #*xi, *yi;

x¥i = newy double [nplot+l]; // Allocate memory for these

yi = new double [nplot+1]; // arrays (nplot+l-elements)

These lines could be replaced by

const int nplot = 100; // Number of points for interpelation curve
double xilnplot+1], yilnplot+1];

since nplot is a constant in this program, but vou should get accustomed to
using new for allocating arrays.
‘The interpolation values of xi and yi are computed by the loop

for{ i=1; i<=nplot; i++) {

xi[i] = x_min + (x_max-x_min)*(1-1}/(nplot-1};

yilil = intrpf(xilil,x,y); // Use intrpf function to interpolate
1

Note that xill]l= #min, xilnplot] = Zpmax, with linearly spaced values in be-
tween. The values of yi (y* = p(z*)} are computed by evaluating Equation
(1.5), which is done by the intrpf function.

The program outputs the results, using

//* Print out the plotting variables: x, y, xi, yi
ofstream xQut("x.txt"*}, yOut("y.txt"), xiOut("xi.txt"),
yilut("yi.txt");
for{ i=1; i<=3; i++) {
x0ut << x[4i] << endl;
yOut << y[i] << endl;
}
for(i=1; i<=nplot; i++) {
xilut << xi[i] << endl;
yilut << yi[i] << endl;
¥

% T/LALTA A A Lt A A LASEJAIFELL Vs L LS Soh

Four data files (x.dat, y.dat, etc.) are created.
Unfortunately, C++ lacks a standard graphics library so we need a separate
graphics application to plot this output. The following MATLAB commands

load x.txt; load y.txt; load xi.txt; load yi.txt;
plot(x,y,’*?,xi,yi, ' =*);

xlabel(’x?); ylabel(’y');

title(’Three point interpolation’);

legend(’Data points’,’Interpolation’);

load and plot the data (see Figure 1.2).
The last line of the program is

delete [1 xi, yi; // Release memory allocated by '"new"

This line is not absolutely necessary hecause the program exits right after re-
leasing the memory allocated to xi and yi. However, it is considered good
programming style to clean up when you're finished using an array.

The intrpf function, which evaluates the Lagrange polynomial, is listed on
page 34, (see outline in Table 1.6). The first few lines of the function are

double intrpf(double xi, double x[], double y[1) {

// Function to interpolate between data points

// using Lagrange polynomial (quadratic)

// Inputs

// xi The x value where interpolation is computed
flox Vector of x coordinates of data points (3 values)
/oy Vector of y coordinates of data points (3 values)
// Dutput .

// yi The interpolation polynomial evaluated at xi

The first line gives the function’s calling sequence. There are three inputs: xi is
a simple variable, and the other two, x and y, are arrays. The function returns
a value (yi), which has type double. Functions that do not return a value have
type void; such functions are equivalent to FORTRAN subroutines.

The variable xi in intrpf is local to the function. That is, the function
receives a copy of this variable from the main program; this is called “pass by
value.” Since the function receives a copy, changing xi within intrpf does
not affect its value in interp. If we wanted the function to receive the actual
variable, the calling sequence would be

double intrpf(doublek xi, double x[], double y[1) {

The ampersand (doublek xi) indicates that xi is “passed by reference.” Ar-
rays, on the other hand, are always passed by reference, since what the function
receives is not a copy of the array, but rather the memory address where the
array begins.

The rest of intrpf is just

t4. PROGRAMS AND FUNCTIONS 25

//* Calculate yi = p{(xi) using Lagrange polynomial

double yi = (xi-x[2])*(xi-x[3]1)/((x[1]1-x[21)*(x[1]-x[3]))*y[1]
+ (xi-x[1D)* (xi-x[3])/((x[2]-x [1]) * (x [2]~x[3])) *y [2]
+ (ri-x[1D#* (xi-2[2]) /((x[3]-x[11)* (x[3]-x[2]))*y [3];

return {(yi);

These lines evaluate the Lagrange polynomial, Equation (1.5), and return the
resulting value. Notice that this long equation is written across three lines. This
is a single statement that ends with the semicolon.

'To run the interp program with the intrpf function, you will need to com-
pile each routine and link them. This procedure varies significantly from system
to system (e.g., make files, workspaces), so consult your compiler’s documenta-
tion or local experts. Resist the temptation to put both routines into a single
file, since that solution will be impractical for the programs in the Jater chapters.

EXERCISES

9. Kernighan and Ritchie, who created the C language, advise that, “The first
program to write in any language is the same for all languages: Print the words
helle, world. This is the basic hurdle; to leap over it you have to be able to create
the program text somewhere, compile it successfully, load it, run it, and find out
where your output went. With these mechanical details mastered, everything else is
comparatively easy.” [80] Write, compile and run a hello program. [Computer]

10. It is always good to know your limits. For your computer system find: (a} the
largest possible floating-point number; (b) the largest integer I such that (7 +1) — 1
equals I; (c) the smallest possible positive floating-point number; (d) the smallest
positive floating-point number = such that {1+ x) — 1 does not equals zero; (e) the
largest NV x N matrix allowed by memory;) the longest row vector allowed by
memory; (g) the maximum number of array dimensions allowed; for example, a(i, j, k)
is & three-dimensional array. [Compiter]

1. For your computer system, write a program to estimate the number of floating-
point operations (e.g., multiplications) that can be performed in one second. In C++,
timing routines are available in the <time k> library. In MATLAB, the tic and toc
commands mimic a stopwatch. [Computer]

12. Modify the orthog program so that it can handle vectors of any length. Your pro-
gram should detect and gracefully handle erroneous inputs such as vectors of unequal
length. [Computer]

13. Modify the orthog program so that it accepts a pair of tliree- dimensional vectors
and outputs a unit vector that is orthogonal to the input vectors. [Computer]

4. Modify orthog so that if the second vector is not orthogonal to the first, the
program computes a new vector that is orthogonal to the first vector, has the same
length as the second vector, and is in the same plane as the two input vectors. This
orthogonalization is often used with eigenvectors and is commonly performed using
the Gram-Schmidt procedure. [Computer]

15, From tables we find the following values for the zeroth-order Bessel function:
Jo(0} = 1.0; Jo{0.5) = 0.9385; Ju(1.0) = 0.7652. Using intrp, find the estimated

values of Jy () for range @ = 0.3, 0.9, LI, 1.5 and 2.0, Look up the tabuliataed valyes
and compare. [Computer]

16. Modify interp so that it can handle any nnmber of data points by using higher-
order polynomials. After testing your program, give it the following values of the
Bessel function: Jo(0) = 1.0; Jy(0.2) = 0.9900; Ju(0.4) = 0.9604; Jo(0.6) = 0.9120;
Jo(0.8) = 0.8463; Jp(1.0) = 0.7652, and repeat the previous exercise. Do vour esti-
mates improve? [Computer]

17. Write a function that is similar to intrpf but that returns the estimated derivative
at the interpolation point. The function will accept three (z,y)} pairs, fit a quadratic
to the data, then return the value of the derivative of the quadratic at the desired
point. [Computer]

18. A Dézier cubic curve is defined by the parametric equations

zt) = aut’ bt ot
y(t) = ayt® +bt7 fogt 4o
where 0 <# < 1. The Bézier control points arc given by the relations

T2 =21+ 05 /3 Y2 =41 + ¢y /3
wy =22+ (ca +82)/8 g =ya +{c, +b,)/3
Ts =1 Fce+beta, ya=y1+oy+by+ay,

The curve goes from (2(0),¥(0)) = (21, 11) to (2(1),4(1)) = (71, y4) and is tangent
to the lines {21,11)(22,92) and (a3, ya) (x4, 34). Write a program to draw a Bézier
curve, given the control points (z1,y1), ..., (x4,y4). Draw the curve with control
points (0,0}, (2,1), {-1,1), and (1,0). [Computer]

1.5 NUMERICAL ERRORS

Range Error

A computer stores individual floating-point numbers using only a small amount
of memory. Typically, single precision (float in C++) allocates 4 bytes (32
bits) for the representation of a number, while donble precision {double in
C++; MATLAB’s default precision) uses 8 hytes. A floating-point number is
represented by its mantissa and exponent (for 1.60x 10719, the decimal mantissa
i3 1.60 and the exponent is —19). The IEEE format for double precigion uses
53 bits to store the mantissa (including one hit for the sign) and the remaining
i1 bits for the exponent. Exactly how a computer handles the representation is
not as important as knowing the maximum range and the number of significant
digits.

The maximum range is the limit on the magnitude of floating-point numbers
given the fixed number of bits used for the cxponent. For single precision, a
typical value is 2%'27 & 10%3%; for double precision it is typically 21923 o
10535, Exceeding the single precision range is not difficult. Consider, for
exarmnple, the evaluation of the Bohr radius in ST units,

_ Aregh?

g = — & 53x107"" m (1.6
mee?

1.5, NUMERICAL ERRORS 27

While its value lies within the range of a single precision number, the range is
exceeded in the calculation of the numerator (dreph® & 1.24x 10™™ kg-C?.m)
and the denominator (mee® a 2.34 x 10°%% kg C?). The best solution for
dealing with this type of range difficulty is to work in a set of units natural to
a problem (e.g., for atomic problems work in units of angstroms, the charge of
an electron).

Sometimes range problems arise not from the choice of units but because
the mumbers in the problem are inherently large. Let’s consider an important
example, the factorial function. Using the definition

rl=nx{n-1xn-2)x..3x2x1 (1.7)
it is easy to evaluate ! in C++ as
double nFactorial = 1;
int i;
for (i=1; i<=n; it++)
nFactorial *= 1;

given that n has been defined.
In MATLAB, using the colon operator this calculation may be performed as

nFactorial = prod(1:n);

where prod(x) is the product of the elements of vector x and 1:n = [1 2 ...
n]. Unfortunately, due to range problems, we cannot compute n! for n > 170
using these direct methods of evaluating (1.7).

A common solution to working with very large numbers is to use their log-
arithm. For the factorial,

log(n!) = log(n) +log(n — 1) + ... +log(3) + log(2) + log(1) (1.8)
In MATLAB, this could be evaluated as
log_nFactorial = sum{ log(l:n));

where sum(x) is the sum of the elements of véctor x. However, this scheme is
computationally expensive if n is large. An even better approach is to combine
the use of logarithms with Stirling’s formula [2]

1
n! = vV2nante " (1 +—+ ! + ..) (1.9)

12n 288n?
or
log{n!) = l10g(2nﬂ') +nlog(n) —n+log | 1+ = + 1 +... (1.10)
) 12n 288n?

This approximation should be used when n is large (n > 30), otherwise the
factorial’s original definition ig preferred.

L7 Crearrral . PRELIMIN A RS

Finally, if the value of n! noeds (o be printed, we ean as express i s
n! = (mantissa) x 10{*xponent] {1.L1}

where the cxponent is the integer part of log,,(n!), and the mantissa is 10¢
where a is the fractional part of log,;{n!). Recall that the conversion between
natural and base-10 logarithms is log,,(z) = log,,(e) log(z).

Round-off Error

Suppose we wanted to numerically compute f'{x), the derivative of a known
function f(x). In caleulus you learned the following formula for the derivative,

Py = H04 0 =1 L12)
with the limit, that A — 0. What happens if we evaluate the right-hand side of
this expression, setting A = 07 Because the computer doesn’t understand that
the expression is valid only as a limit, the division by zero has several possible
outcomes. The computer may assign the value, Inf, which is a special floating-
point numher reserved for representing infinity. Since the numerator is also
zero, the computer may evaluate the quotient to be undefined (Not-a-Number),
NaN, another reserved value. Or the calculation might be halted with a scolding
diagnostic message.

Clearly, setting b = 0 when evaluating (1.12) will not give us anything
useful, but what if we set I to a very small value, say h = 107°%, using double
precision? The answer will still be incorreet due to the second limitation on
the representation of floating-point numbers: the finite numer of digits in the
mantissa. For single precision, the number of significant digits is typically 6

r 7 decimal digits; for double precision it is about 16 digits. Thus, in double
precision, the operation 3 + 1072” returns an answer of 3 becanse of round-
off; using h = 107" in Equation (1.12) will almost certainly return (0 when
evaluating the numerator.

Figure 1.3 illustrates the magnitude of the round-off error in a typical cal-
culation of a derivative. Define the absolute error as

flz+) — f{x)

A(hy = |f'(2) — 3 {1.13)

Notice that A(h) decreases as % is made smaller, which is expected given Equa-
tion (1.12) is exact as h — 0. Below h = 107%, the error starts increasing due
to round-oft effects. At the smallest values of & (< 1071%), the error is so large
that the answer is worthless. In the next chapter we’ll return to the question of
how best to compute derivatives numerically.

To test round-off tolerance, we define €, as the smiallest number that, when
added to 1, returns a value different from 1. In MATLAB, the built-in function
eps returns € on my computer, eps =& 2.22 x 107'% In C4+, the <float.h>

L5, NUMERICAL ERRORS 29

of # % % %

L e L
—20 ~15 -10 —5 o

10 14 10 10 10

Figure 1.3: Absolute error A(h), Equation (1.13), versus & for f(z) = 22 and
@ =1

header defines DBL_EPSILON as ¢, for double precision. Notice in Figure 1.3 that
A(h) plateaus when h < e,.

Because of round-off errors, most scientific calculations use deuble precision.
The disadvantages of double precision are that it requires more storage and
that it is sometirnes (but not always) more computationally costly. Modern
computer processors are designed to work in double precision, so it can actually
be slower to work in single precision. Using double precision sometimes only
forestalls the difficulties of round-off. For example, a matrix inverse ralculation
may work fine in single precision for small matrices of 50 x 50 elements, but fail
because of round-off for larger matrices. Double precision may allow us to work
with matrices of 100 x 100, but if we need to solve even larger systems we will
have to use a different algorithm. The best approach is to work with algorithms
‘that are robust against round-off error.

EXERCISES

19. Suppose that we take electron volts as our unit of energy, the mass of the electron
as our unit of mass, and set Planck’s constant equal to unity. Convert 1 kg, 1 m, and
15 into these units. [Pencil]

20. Suppose that we take the mean radius of Earth-Sun orbit as the unit of length,
the mass of Earth as the unit of mass, and a year as the unit of time. Convert the
gravitational constant, G, into these units. What is the force of attraction between
Earth and the Moon in these units? Between Earth and the Sun? [Pencil]

21. The probability of Hipping N coins and obtaining m “heads” is given by the

binomial distribution to be
N1 13

mli{N —m)!

Ry CHAPTIR L PRIDININAR S

What is more probable, Dipping 10 coins and getling no hoads or lipping 10,000 coins
and getting exactly 5000 heads? [Pencil]
22. The double factorial is defined as

6x4x2 g even

all = " — -
il =nx(n—-2)x(n 4)"x{5><3x1 odd

(&) Write a program that prints out n!! by evaluating its definition using logarithins.
Test your program by checking thar 10001 ~ 3.90 x 101284, compute 2001, (b) Obtain
an expression for n!! in terms of nl. [Pencil] {c) Write a program that prints out n!l by
evaluating it vsing Stirling’s approcimation when n > 30. Cowmpute 100001, 3141590
and (6.02 x 10%}11. [Computer]
23, Suppose that you are standing at 40° latitude and arc 2 m rall, {a4) Find the
velocity of your feet, v, due to the rotation of Barth. Assume that Earth i a perfect
sphere of radins B = 6378 km and that a day is exactly 24 h long. (b) Using the result
from (), compute the centripetal acceleration at your fect as g = o2 /r. (c) Repeat
parts (a) and (h) for your head, and compute the difforance between the acceleration
at your head and foet. Show how round-off can corrupl your calculation and how to
fix the problem. [Pencil]
24, () Write a program to reproduce Figure 1.3, Use h — L1t q0 S
(b) Modify your program to use h — 1, 274, 2% The results are strikingly
diffcrent; explain why. [Computer]
25. Write a program to find ., the smallest number that when added to 1 returns a
value different from 1. Compare your result with cither M ATLAB’s built-in funetion
eps Or DBL_EPSILON, as defined in the C4+ <float . h> header. [Compiter]
26. Cousider the Taylor cxpansion for the exponential
. R

e :1+:ﬂ—0—-2—r+3¥!ﬁ
where S(x, N} is the partial sum with N4+1 terms. (a) Weite a program that plots the
absolute fractional error of the sum, |S(x, N} —e”|/e® | versus N (np to N = 60) for a

= lim S{z, &)
N = o

given value of . Test your program for # = 10, 2, —2, and —10. From the plots, explain
why this is not a good way to evaluate ¢® when o < 0.]49] (b) Modily ¥Our program
s0 that it uses the identity e =1/e7" =1/8(—=2,0) to cvaluate the exponential when
1s negative, Explain why this approach works hottor, [Compu tor]

BEYOND THIS CHAPTER,

The Lagrange formulation for assembling an interpolating polynomial hag only
one advantage: It is easy to understand and remember. Algorithimically, it
is not the best method for polynomial interpolation for a variety of reasons,
including susceptibility to round-off error when fitting higher-order polynomials.
A superior approach is 10 build a divided difference table and use the Newtonian
formulation.[33]

The round-off error in a numerical scheme can be quantitatively estimated
using backward error analysis.[133] It is possible to perform calculations of ar-
bitrary precision by storing numbers as rational quotients (fraction with integer

APPENDIX A: MATLAB LISTINGS 31

numerator and denominator). While a few calculations call for such accuracy
{(e.g.. some orbital mechanics problems), the computations can be very slow.

Finally, you'll discover that most of the fundamental elements of numerical
analysis were introduced long before the invention of the electronic computer.
This is clear from the names of the basic algorithms; the litany includes Newton,
Euler, Gauss, Jacobi, and many other famous physicists and mathemaricians.
For historical accounts of the development of numerical analysis, sec Golds-
tine [38] and Nagh [91].

APPENDIX A: MATLAB LISTINGS

Listing 1A.1 Program orthog. Determines if a pair of vectors is orthogonal by
computing their dot product.

% orthog — Program to test if a pair of vectors
% is orthogonal. Assumes vectors are in 3D space
clear all; help orthog; % Clear the memory and print header
%* Initialize the vectors a and b
a = input (’Enter the first vector: ’);
b = input (’Enter the second vector: ?);
%* Evaluate the dot product as sum over products of elements
a_dot_b = 0;
for i=1:3
a_dot_b = a_dot_ b + a(i}*b(i);
end
%* Print dot product and state whether vectors are orthogonal
if(a_det_b == 0)
disp{’Vectors are orthogenal’);
else
disp{’Vectors are NOT orthogonal’);
fprintf (?Dot product = Yg \n’,a.dot_b);
end

Listing 1A.2 Program interp. Uses the intrpf (Listing 1A.3) function to inter-
polate between data points.

% interp - Program to interpolate data using Lagrange

% polynomial to fit quadratic to three data points

clear all; help interp; 7% Clear memory and print header
%* Initialize the data points to be fit by quadratic
disp(’Enter data points as x,y pairs (e.g., [1 2]1}?);

for i=1:3
temp = input(’Enter data point: ’);
x(i) = temp(1);
y(i) = temp(2);

end

%* Establish the range of interpolation (from x_min to x_max)

L A R RS N AP P S B N VY SRR FNA PR R N T

r = input {(’Enter range of x values as [x_min x_max]: ’);
%* Find yi for the desired interpolation values xi using
% the function intrpf
nplot = 100; % Number of points for interpolation curve
for i=l:nplot
xi{i) = zr(1) + (xr(2}-zr(1))*{i-1)/(nplot-1);
yi{i) = intrpf(xi(i},x,¥); ¥ Use intrpf function to interpolate
end
%% Plot the curve given by (xi,yi} and mark original data points
plot(x.y,’** xi,yi,’~');
xlabel{’x?);
ylabel{'y’);
title{’Three point interpolation’);
legend{’Data points’,’Interpolation’);

Listing 1A.3 Function intrpf. Uses a quadratic to interpolate between three
data points.

function yi = intrpf(xi,x,y}

% Function to interpolate between data points

% using Lagrange polynomial (quadratic)

% Inputs

Pox Vector of x coordinates of data points (3 values)
oy Vector of y coordinates of data peints {3 values)
% xi The x value where interpolation is computed

% Output

ooyl The interpolation polynomial evaluated at xi

%% Calculate yi = p{xi) using Lagrange polynomial

yi = (xi-z(2))*{zi-x(3))/ ((x{1)-x(2)) *{x(1)-x(3) M) *y (1
+ (xi-x{1))*{xi-x(3))/ ((=(2)-= (1)) *{x(2) -x(3)))*+y (D)
+ (xi-x (1)) *{xi-2(2))/ (e (33 -2 (1)) #{x(3) -x(2)))*y(3);

return;

APPENDIX B: C++4 LISTINGS

Listing 1B.1 Program orthog. Determines if a pair of vectors is orthogonal by
computing their dot product.

// ortheg - Program to test if a pair of wvectors
// is orthogonal. Assumes vectors are in 3D space
#include <iostream.h>

void main{) {

//% Initialize the vectors a and b

APPENDIX B: C++ LISTINGS 33

double al[3+1], b[3+1];
cout << "Enter the first vector" << endl;
int i;
for(i=1; i<=3; i++) {
cout << " al[" << i << "] =",
cin >> alil;
)
cout << "Enter the second vector'" << endl;
for(i=1; i<=3; i++) {
cout €< " b[" << i <« "] =1,
cin >> b[il;
¥

//* Evaluate the dot product as sum over products of elements
double a_dot_b = 0.0;
for(i=1; i<=3; i++)

a_dot_b += al[il*b[il;

//* Print dot product and state whether vectors are orthogonal
if(a_dot_b == 0.0)
cout << "Vectors are orthogonal" << endl;

else { _
cout << "Vectors are NOT orthogonal" << endl;
cout << "Dot product = " << a_dot_b << endl;
}

X

Listing 1B.2 Program interp. Uses the intrpf (Listing 1B.3) function to inter-
polate between data points.

// interp - Pregram to interpolate data using Lagrange
// polynomial to fit quadratic to three data points
#include "NumMeth.h™

double intrpf(double xi, double x[J], double y[I1};
void main{} {

//* Initialize the data points to be fit by quadratic
double x[3+1], y[3+1];
cout << "Enter data points:" << endl;
int 1i;
for{ i=1; i<=3; i++) {
cout << "x[" << i «¢ "] =0
cin > x[i];
cout << "y[" << i << "] =
¢in »>> y[il;

1

34 CHAPTER L PRELININARHOS

//* Establish the range of interpolation (from x_min to x_max)
double x_min, x_max;

cout << "Enter minimum value of x: "; cin >> X_min;

cout << "Enter maximum value of x: "; cin >> X_max;

//* Find yi for the desired interpclation values xi using
// the function intrpf

int nplot = 100; // Number of points for interpeclation curve
double *xi, *yij;

xi = new double [nplot+1]; // Allocete memory for these

yi = new double [nplot+1l; // arrays (nplot+l slements)

for(i=1; i<=rplot; i++) {
zilil = x min + (x_max-x_min)#*{i-1)/(aplot-1);
yili] intrpf(xilil,z,y}; // Use intrpf function to interpolate

}

//* Print out the pletting variables: x, ¥y, xi, vi
ofstream x0ut ("x.txt"), yOut("y.txt"), xiOut{"xi.txt"),
yilut("yi.txt");
for(i=1; i<=3; i++) {
x0ut << x[i] << endl;
yOut << y[i] << endl;
}
for{ i=1; i<=nplot; i++) {
xilut << xil[i] << endl;
yilut << yil[i] << endl;
}

delete [1 xi, yi; // Release memory allocated by "new"
+
/#*¥%%x To plet in MATLAB; use the script helow #ksowkdkskthsdhrfkkdk
load x.txt; load y.txt; load x¥i.txt; load yi.txt;
plot(x,y,’** ,xi,yi,’-);
xlabel(’x’); ylabel(’y’);
title{’Three point interpolation’};
legend{’Data peints’,’Interpolation?);
AR sk X AT AR A SRR o o Kk o ook Aok ook ok ko ok

Listing 1B.3 Function intrpf. Uses a guadvatic to interpolate between three
data points.

doubie intrpf(deuble xi, double z[], double y[1) {
/f Function to interpolate between data poin's
// using Lagrange polynomial (quadratic)

// Inputs
// xi The x value where interpolation is computed
//ox Vector of x coordinates of data points (3 values)

/oy Vector of y coordinates of data points (3 values)

APPENDIX B: C++ LISTINGS 35

// Dutput
/r yi The interpolation polyncmial evaluated at xi

//* Calculate yi = p{xi) using Lagrange polynomial

double yi = (xi-x[21)*(xi-z[31)/((x[1]1-x[2])*{(x[1]1-=[3]1))*y[1]
+ (2i-x[1D)*(xi-x {315/ ((x[2]-x [1]) * (= [2] -x[3]2) *y[2]
+ {(2d-x[11)# (xi-2[2])/ ((x[3]-x (11)% (2 [3] -2 [2]3) *y[3];

return (yi);

}

Listing 1B.4 Header NumMeth.h. Header file for this book’s programs. Header
file Matrix.h, which defines the Matrix object class, is listed in Appendix 4.C.

// General header file for C++ programs
// in "Numerical Methods for Physics”

#include <iostream.h>
#include <fstream.h>
#include <assert.h>
#include <math.h>
#include "Matrix.h"

Chapter 2

Ordinary Differential
Equations I: Basic Methods

In this chapter we solve one of the first problems considered in freshman physics:
the flight of a baseball. Without air resistance the problem i3 easy to solve.
However, to include realistic drag, we need to compute the solution numerically.
To analyze this problem we first have to define numerical differentiation. Before
you studied physics, you had to learn calculus, so it should not be surprising
that we start with this topic. In the latter half of the chapter we visit another
old fricnd, the simple pendulum, but without the small angle approximation.
Interestingly, oscillating systems, such as a pendulum, reveal a fatal flaw in some
of the numerical methods for solving ordinary differential equations.

2.1 PROJECTILE MOTION

Basic Equations

Consider simple projectile motion, say the flight of a baseball. To describe the
motion we must compute the vector position r{#) and vector velocity v(t) of the
projectile. The basic equations of motion are

dv 1 dr '

— = —F.(v) — gv: — =V 2.1

o = oFav) s (2.1)
where m is the mass of the projectile. The force due to air resistance is Fo{V},
the gravitational acceleration is g, and ¥ is the unit vector in the y-direction.
The motion is two dimensional, so we may ignore the z-component and work in
the xy plane.

Air resistance increases with the velocity of the object, and the precise form
for F,, depends on the flow around the projectile. Commonly, it is approximated
as !

¥, = —ECdpAiv}v (2.2}

38 CHAIPER 20 ODES 1 BASIC METHODS

where Cly is the drag coeflicient, p is the density of the air, and A4 iy the cross-
sectional area of the projectile. The drag coefficient is a dimensionloss paramcter
that depends on the projectile’s geometry—the more streamlined the object, the
stmaller the coefficient. !

For a smooth sphere of radius R moving very slowly through a fluid, the
drag coeflicient is given by Stokes’ law, :

12w 24

O, = 2V
1 Ru Re

(2.3)
where 1 is the viscosity of the luid (v & 1.5x 1073 m> /s for air) and Re = 2Rv /v
is the dimensionless Reynolds number. For an object the size of a baschall
moving through air, Stokes” law is valid only if the velocity is less than about
0.2 mm/s (Re = 1). ,

At higher speeds (above 20 ecm/s, Re > 10%), the wake behind the sphere
develops vortex rolls and the drag cocfficiens is approximately constant {Cg =
0.5) for a wide range of velocities. When the Reynolds number exceeds a critical
value, the flow in the wake becomes turbulent and the drag coeflicient drops
dramatically. This reduction occurs because the turbulence disrupts the low-
pressure region in the wake behind the sphere.[128] For a smooth sphere, this
critical Reynolds number is approximately 3 x 10°. For a baseball, the drag
coefficient is usually smaller than that of a smooth sphere because the baseball’s
stitching disrupts the laminar flow, precipitating the onset of turbulence.* We
take Cy & 0.33 as an average value for the typical range of velocities found in
baseball (See Exercisc 2.10).

Notice that the drag force, Equation (2.2), varies as the square of the mag-
nitude of the velocity (|[F,] o< ¢?) and, of course, acts in the direction opposite
the velocity., A baseball’s mass and diameter are 0.145 kg and 7.4 cm, almost
exactly the same as for a cricket ball. For a baseball, the drag and gravitational
forces are equal in magnitude when v &~ 40 m /4.)

We know how to solve the equations of motion if air resistance is negligible.
The trajectory is

1.
I‘(f) =r; + Vlf - Egtzj} (24)
where rp = r(2 = 0) and v; = v(t = 0) are the initial position and velocity. Tf

the projectile starts at the origin and the initial velocity is at an angle 6 above
the horizontal, then :

22 2,
Timax = »g—l siné cosd; Yoax = =+ sin® @ (2.5)

are the horizontal range and the maximum height. The time of flight is

% :
tg = %Sinﬁ (2.6)

*Similarly, the dimples on a golf ball give it a lower drag coefficient.[78]

2.1. PROJECTILE MOTION 39

Again, these expressions only hold when there is no air resistance. It is easy to
check that the maximum horizontal range is achieved when the initial velocity
makes an angle of § = 45° with the horizontal. We want to keep this information
in mind when we build cur simulation. If you know the exact solution for a
special case, you should always check that the program works correctly for that
case.

Forward Derivative

To solve the equations of motion (2.1) we need a numerical method for evaluating
first derivatives. The formal definition of the derivative is,

f"(t) = Thﬂ% M (2.7)

where 7 is the time increment or time step. As discussed in Section 1.5, this
formula must be treated with some care. Figure 1.3 illustrates that using an
extremely small value for 7 can cause large errors in the calculation of [f(t +
7) — f(¢)]/7. Specifically, round-off errors occur in the computation of t + 7,
in the evaluation of the function f and in the subtraction in the numerator.
Given that r cannot be taken to be arbitrarily small. we need to estimate the
difference between f/(¢) and [f(t ++) — f(#)]/r for finite 7.

To find this difference we’ll use a Taylor expansion. As physicists, we usually
see the Taylor series expressed as

)= FO+ 70+ 20 + . s

where the symbol (...) means higher-order terms that are usually dropped from
the derivation by the next line. An alternative, equivalent form of the Taylor
geries used in numerical analysis is

2
[+ = fIO + 70 + 5110 (29)

where { is a value between ¢ and ¢ + 7. We have not dropped any terms; this
expansion has a finite number of terms. Taylor’s theorem guarantees that there
exists some value ¢ for which (2.9) is true, but it doesn’t tell us what that value
is.

The previous equation may be rewritten to give

J+7m)—flt) 1

7 = 5

() (2.10)
where t < { < ¢+ 7. This equation is known as the right derivative or forwaerd
derivative formula. The last term on the right-hand side is the truncation error;
it is the error introduced by the truncation of the Taylor series.

In other words, if we keep the last term in (2.10), our expression for f'(¢) is
exact. But we can’t evaluate that term because we don’t know ¢; all we know ig

A0 CHAPPE 20 ODES 1 BASH METHODS

that ¢ lies somewhere between ¢ and L+7. So we drop the S e (Truncale)
and say that the error we make by neglecting this term is the truncation error.
3o not confuse this with the round-off error discussed in Section 1.5, Round-off
error depends on hardware; truncation error depends on the approximarions
used In an algorithm.

Sometimes yon will see Equation (2.10) written as

7= f+ T) f()

where the truncation crror terin is now j nst specified by its order in 73 in this
case the truncation error is linear in 7. In Figure 1.3 the predominant source of
error in estimating f'(x) as [f(x+h)— f(2)]/h is vound-oft error when B < 10-#
and {rneation error when A > 107%. In the latter case, the absolute error is
proportional to A, just as Equation (2.11) predicts.

+ O(r) (2.11)

Euler Method
The equations of motion that we want to solve numerically may be written as

dv . dr

.(E = a(I‘,V); E -

where a is the acceleration. Notice that this is the more general form of the
equations. In projectile motion the acceleration is only a funetion of v {becausc
of drag); in later problems (e.g.. orbits of comets) the acceleration will depend
on position.

Using the forward derivative (2.11), our equations ol motion are

v(t + T) — (1)

(2.12)

— 01y = alr(t),v{i)) .. (2.13)
M YOl = v (2.14)
v(l4+7) = vit)+rale(t),v(f] £)) 4+ Q%) (2.15)
r(t+7) = r{)+rv(t) +07) (2.16)

Notice that 7O(7) = O(r?). This numerical scheme is called the Euler method.
Before discussing the relative merits of this approach, let’s see how it would be
used in practice.

Tirst, we introduce the notation,

fo=fltn); th=(m—-1)7 n=12,... (2.17)

so fi = f{t = 0). Our equations for the Euler method (dropping the error term)
now take the form

Vail = Vg t+7ap (2.18)
Tpr1 = TIn+TVy (2 19)

2.1, PROJECTILE MOTION 41

Figure 2.1: Trajectory of a particle after a single Fuler time step. For illustrative
purposes 7 is large.

where a, = a(r,,v,). The calculation of the trajectory wonld proceed as
Tollows: ‘

1. Specify the iniﬁal com'*litions: ry and vy.

2. Choose a time step 7.

3. Calcuizite the acceleration given the current r and v.

4. Use cquations (2.18) and (2.19) to compute the new r and v.

5. Go o sﬁep 3 until enough trajectory points have been computed.

The method computes a set of values for r,, and v, that gives us the trajectory,
at least at a discrete set of points. Figure 2.1 illustrates the calculation of a
trajectory for 3 single time step.

Euler-Cromer and Midpoint Methods

A simple {and for now unjustified} modification of the Euler method is to use
the following equations:)

Vaopl = Vo +Ta, (2.20)
o1 = Pn 4 TVail ' (2.21)

Notice the subtle change: The updated velocity is used in the second equation.
This formula is called the Euler-Cromer method.[36] The truncation error is still
of order. O{7?), so it doesn’t look like we gain much. Interestingly, we will see
that this form is markedly superior to the Euler method in some cases.

Qur democratic nature makes us think of using the midpoint method,

Vopr: = Vp+Ta, (2.22)
Vo4 + vp,
2

I+l = Tn + 7 (228]

Notice that we average the two velocities. Plugging the velocity equation into
‘the position equation, we see that

1 . .
Fpii =Ty +TVy + §an7'2 (2.24)

42 CHAPTER 2. ODES I: BASIC MIEETHODS

which really makes this lonk appealing. The truncation error is still of order
72 in the velocity equation, but for position the truncation error is now 7.
Indeed, for projectile motion this method works better than the other two.
Unfortunately, we will later be disappointed to find that the midpoint method

gives relatively poor results for ather physical systems,

Local Error, Global Error, and Choosing a Time Step

To judge the accuracy of these methods we need to distinguish between local
truncation error and global truncation error. So far, the truncation error we
have discussed has been the local error, that i3, the error made in a single time
step. In a typical problem we want to evaluate a trajectory from t = D to ¢t = 7'
The number of time steps is N, = T/7; notice that if we reduce 7, we must take
more steps. If the local error is O(77), then we estimate the global error as

global error N, x (local error)
= NOF") = (T/7)0(+") = TO(r™ 1 (2.25)

For example, the Euler method has a local truncation error of Q(72}, but a global
truncation error of O(7). Of conrse, this analysis gives us only an estimate since
we don’t know if the local errors will accumulate or cancel (i.c., constructively
or destructively interfere). The actual global error for a numerical scheme is
highly dependent on the problem we are studying.

A question that is always raised is, “What, do you pick for 777, and the
answer Is often an inane comment such as, “A small number like 1075 Let’s
try to do better. First, let’s assume that round-off error is negligible so we
only have to worry about truncation error. From {2.10) and (2.16), the local
truncation crror in the Euler method’s calenlation of position is approximately
2r" = 7%q. Using only order of magnitude estimates, taking a ~ 10 m/s”, the
single step error in position is 1071 m, when 7 = 1071 s, If the time of flight is
T 72 10° s, then the global error is on the order of a meter. If an error of this
maguitude is unacceptable then a smaller time step should be used. Finally,
using a time step of 107! s should not introduce any signiticant round-off error
given the magnitudes of the other parameters in the problem.

In the real world, we often don’t do such a nice analysis for a variety of
reasons (complicated equations, problems with round-off, laziness, etc.). How-
ever, we may often use physical intuition. Ask vourself, “On what time scale
is the motion almost linear?” For cxample, for a baseball the entire trajectory
is roughly parabolic, so if the time in the air is a fow seconds, then the motion
is approximately linear over a time scale of a few hundredths of a second. To
check our intuition, we should compare the results obtained using r = 101 g
and v = 107% s and, if they arc sufficiently close, assume everything is fine.
Sometimes we automate testing various values of 7; the program is then said
to be “adaptive” (we will build such a program in Chaprer 3). As with any
numerical method, blind application of this technique is discouraged, although
with just a bit of care it can be used successfully.

21, PROJECTILE MOTION 43

Table 2.1: Qutline of program balle, which computes the trajectory of a base-
ball using the Euler method.

e Set initial position ry and velocity vy of the baseball.

e Set physical parameters {(m, Cq, etc.).

Loop until ball hits ground or maximum steps completed.

— Record position (computed and theoretical) for plotting.
— Compute acceleration of the baseball,

— Calculate the new position and velocity, rp4+1 and v,41, using Euler
method, (2.18) and (2.19).

~ If ball reaches ground (y < D), break out of the loop.

Print maximum range and time of flight.

Graph the trajectory of the baseball.

See pages 58 and 61 for program listings.

Baseball Program

Table 2.1 outlines a simple program, called balle, that uses the Euler method to
compute the trajectory of a baseball. Before running the program, let's establish
some reasonable values to take as inputs. An initial speed jv;| = 15 m/s gives
us a wedkly hit ball (about 34 mph). Starting from the origin and neglecting
air resistance, the time of flight is about 2.2 s, and the horizontal range is about
23 m when the initial angle is # = 45°, Here is what the output to the screen
looks like when we run the MATLAB program under these conditions.

>>balle

balle - Program to compute the trajectory of a baseball
using the Euler method. '

Enter initial height (meters): 0
Enter initial speed (m/s): 15
Enter initial angle (degrees): 45
Air resistance? (Yes:1, No:0): 0
Enter timestep, tau (sec): 0.1
Maximum range is 24.3952 meters
Time of flight is 2.3 seccnds

The output from the C++ version is similar.

A4 CHAIPIR 20 (S F BASTC A THODS

Projeclile motion

v . o
6 L
5 . B ! ., -
e Nt
1,7 .,
. 4 7 N, +
= , |
2 8 g Lo Euler method ", :
2,0 /L Teshed| N
/ N
1/ \
; +
0 3 .
71 L [——— s
Q 5 10 15 20 25
Range {m)

Figure 2.2: Output from balle for an in‘tial height of 0 m, initial speed of
15 mys. angle of # = 45°, and a time step of 7 = 0.1 s. There i3 no air resistance
in this case; the difference between the thearetical curve and calculated points
is due to the truncation error.

The trajectory computed by the program is shown in Figure 2.2. Using a
time step of 7 = 0.1 s, the error in the horizontal range is about onc meter,
as expected from the truncation error. At this slow speed, the results arc not
rmich different when alr resistance is included, since |F,(vi)|/m = ¢/7.

Next, let’s try to hit a homerun. Consider a larger initial velocity, [vq| = 50
m/s (about 112 mph). Due to the air resistance, we find the range reduced to
about 125 m, less than half of its theoretical maximum. The trajectory is shown
in Figure 2.3; notice how it changes from a parabola to a sharply dropping curve.
This trajectory shows why a ball driven deep into the outfield always appears
to be caught as though it is falling almost stra‘ght down,

Our model equations for the Hight of a bageball do not include all the factors
in the problem. The drag coefficient is not really a constant but ingtead is a
complicated function of velocity. Furthermore, the spin on the ball adds to the
lift (Magnus cffect). I you are interested in learning more, there are several
good books on this fascinating subject. 4, 131]

EXERCISES
1. {a) Using Taylor exparsion, derive the throe-point forward difference formula

=3 +4fE+T) - flE+27)
27

J) = + O

and obtain an explicit expression for the error term. [Pencil]
2. Write a program that computes f'{x) using the right derivative formula, Equation
(2.11), and plots a graph of absolute error similar to Figure 1.3. Plot the crror in the

21, PROJECTILE MOTION 45

Projectile motion

3 -/ RN

.
40- /*’ . N

o +_‘+
. e |+ Euler method

- Theory {No air)

70‘

Height {rm)
[#=]
5

7 +
10-/ L
/ ;
o— "
i . . —_ . 2
0 50 100 150 200 250
. Range (m}

Figure 2.3: Output from balle for an initial height of 1 m, initial speed of
50 m/s, angle of # = 45°, and a time step of 7=10.1 5.

calculation of the derivatives of: (a) x> at « = 1; (b) 2° at # = 1; {c) sinz at « = 0;
(d) sinz at x = 7/4; and {e) sinz at x = 7/2. [Computer’

3. The balle program overestimates the range and time of flight (Figure 2.4). Fix
this bit of sloppy programming: Compute a corrected maximum range and time of
flight by interpolating between the last three values of ¢ using the intrpf function
from Section 1.4. Measure the improvement in the computed range and time of flight
when there is no air resistance. Take an initial height of 0 m, initial speed of 50 m/s,
angle of 8 = 45°, and try a variety of values for the time step T, [Computer]

4. Take your program trom the previous exercise and create two new versions that nse
the Euler-Cromer and midpoint methods. With no air resistance, find the largest value
of 7 that gives you a 1% error in the horizontal range (take y1 = 0 m, o1 = 50 m/s, and
¢ = 45°). Comment on the performance of the three numerical methods. [Computer]
5. Suppose that a batter hits a ball and gives it an initial velocity of 50 m/s (take
y1 = 1 m}. Modify balle so that it produces a plot of herizontal range as a function
of angle for 10° < § < 50°. Determine the angle (to within 1°) at which the maximum
range is achieved. [Computer]

6. In Two New Sciences [5, 52] Galileo claims that if a 100-1b iron ball and a 1-1b
iron ball were dropped from a height of 100 braccia (about 50 m), then “when the
larger one strikes the ground, the other is two inches behind it.” (a) Modify balle
to simultaneously compute the motion of two objects, and show thar this statement
is grossly imaccurate. Assume that Cq = 0.5 [smooth sphere); density of iron is
7.8 g/em®. [Computer] (b) Show that y(t) = y(0) — b~ ' log{cosh(+/bgt); where b =
CypA/2m. Use this result to check your answer in part (a). [Pencil] (c) What would
€14 need to be for Galileo’s statement to be accurate? [Computer]

7. Consider a pair of identical 1-lb iron balls dropped from a height of 50 m (see
previous exercise). One ball has zero initial velocity, the other am initial velocity

R TR LI Y F N I T I W A

Height (m)
+
+

e 1 »
) </ Range (m)

Corrected range
+

Simple range

Figare 2.4: Improved calculation of horizont al range,

of 50 m/s in the horizontal direction. Modify balle to simnultancously compute the
motion of two objects to determine the balls’ separation, horizontal and vertical, when
one strikes the ground. Whick ball reaches the ground first? |Computer
8. Suppose that an outfielder catches a fly ball 320 ft from home plate. The moment
the ball is caught, a basc runner on third base takes off for home plate to try to score
on the sacrifice fly. The outfielder can throw the ball with a speed of 95 mph (initial
height is 2 m)." At what angle should she throw? How much time does it take for
the ball to arrive at the plate? A typical base runner will reach horne in about 3.5 to
4.5 s. [Computer]
9. Modity balle to account for wind, Suppose that a batter hits a ball and gives it
an initial velocity of 110 mph at an angle of # = 35° from the horizontal {initial height
s 1 m). Make a plot of horizontaj raznge versus horizontal wind velocity for values
between 40 mph and —40 mph. [Computer]
10. The drag coefficient for a baseball is really not a constant but rather varies with
velocity. 5] Modify balle to use the values

25 30 75 00 125
0.5 05 05 04 028 ¢33
using quadratic interpolation to estimate Calv) (sec Section 1.4). Plot horizontal range
versus angle, as described in Exorcise 2.5, and comment on the rosults, Docs the range

increase or decrease as compared to using a constant C'y = 0.357 [Computer]

2.2 SIMPLE PENDULUM

Basic Equations
The motion of pendula has Tascinated physicists since Galileo wags hypnotized
by the lamp in the cathedral at Pisa, The problem is treated in the standard

T1f thig speed seemns high, recall that an outfelder may throw on the run, unlike the
restricted motion required of a pitcher.

2.2. SIMPLE PENDULUM 47

mechanics texts, but before rushing to the computer let’s review some basic
results. For a simple pendulum it is more convenient to describe the position in
termis of the angular displacement, 8(t). The equation of motion is

d4 g .

E‘: = —E sin (2.26)
where L is the length of the arm and g is the gravitational acceleration. Iu the
small angle approximation, sinf & 8, Equation (2.26) simplifies to

d*g g
=2 2.
0 LB (2.27)
This ordinary differential equation is easily solved to obtain
A(t) = O cos(2nwt /T, + C3) (2.28)

where the constants (1 and ¢ are determined by the initial values of § and
w = df/dt. The small angle period, Ty, is

T, = 2W\E (2.29)

This approximation is reascnably good for oscillations with amplitudes of about
20° or less.

Without the small angle approximation, the equation of motion is more
difficult to solve. However, we know from experience that the motion is still
periodic. In fact, it is possible to obtain an expression for the period without
explicitly solving for #(¢). The total energy is

1 .

B= wzmezwz —mgL cos® {2.30)
where m is the mass of the bob. The total energy is conserved and equal to
E = —mgL cost,, where 0, is the maximum angle. From the above, we have

1
EmL2w2 ~mglLcos = —mgL cos €y (2.31)
or 5
w? = fg(cos 6 — cos Oy (2.32)
Since w = df/dt,
dd
dt = (2.33)
\/gf(cos 6 — cosbnm)
In one period the pendulum swings from 6 = #, to § = —f8, and back to 8 = 6.,.

Thus, in a half period the pendulum swings from 6 = 0y, to & = —6,,. Last, by

AT RAC 20 ODIS T BASTC A THODS

the samc argument, in a quarter period (e pendulum swings [rom @ - Lo
£ = 0, thus integrating both sides,

T L O d
f_JE / @ (2.34)
4 29 Jo eos@ Zcos ‘.

This integral may be rewritten in terms of special functions by nsing the identity
et
cos2f =1— 2sin* 4, so

T 2\/E f P (2.35)
g Jo /sin’ (8., /2) — sin®(0/2)

V

Introducing K (), the complete elliptic integral of the first kind, [62]

dz

w/2
0 V1—2?sin® 2

we may write the period as
L .1 -
T= fl\ﬁﬁ’(sm 56]“) (2.37)
!

using the change of variable sin 7 — sin{#/2)/sinf8,, /2). For small values of &,
we may expand K{x) to ohtain

T=2m /= 1+—1 a2+ (2.38)
= &7 - |
\/g 16 m /

Notice that the leading term is the small an gle approximation (2.29).

Centered Derivative Formulas

Before programming the pendulum problem, let’s loak at two other schemes for
computing the motion of an object. The Euler mcthod is based on the right
derivative formulation for df /dt given by (2.7). An equivalert definition for the

derivative ig i
JE+5) -~ fit—1)
27

F@) = lin}J

This formula is said to be “centered” in t. While this formula looks very similar
to (2.7), there is a big difference when ¢ Is finite. Again, using the Taylor
expansion,

(2.39)

FU+0) = 5O+ /0 1 5700 + L e (240)

Fe=1y = £ = 770+ 55 - Lot e (241)

22 SIMPLE PENDULUM ' 49

where £ is the third derivative of f() and ¢4 is a value between ¢ and ¢ + 7.
Subtracting Equation (2.41) from (2.40) and srranging terms gives,

fetn)—ft-7 1

ri = > EEA, (2.42)

where ¢+ — = < { < ¢t + 7. This is the centered first derivative approzimaetion.
The key point is that the truncation error is now gquadratic in 7, which is
a big improvement over the forward derivative approximation that has O(r)
truncation error.

Using the Taylor expansions for f(t +) and f(¢ — 7), we can also build a
centered formula for the second derivative. It has the form

flt+7)+ fliE—7) —2f(t)

T2

) =

S5O e

where ¢ — 7 < { <t + 1. Again, the truncation error is quadratic in 7. The
best way to understand this formula is to think of the second derivative as being
composed of a right derivative and left derivative, each with increment 7/2.

You might think that the next step would be to cook up more involved
formulas that have even smaller truncation errar, maybe using both f(t & 1)
and f{t £ 27). While such formulas exist and are occasionally used, Equations
(2.10), (2.42), and (2.43) serve as the workhorses for computing first and second
derivatives.

Leap-Frog and Verlet Methods

For the pendulum, the generalized position and velocity are # and w, but to
maintain the same notation as in Section 2.1, we'll work with r and v. We start
from the equations of motion written as

dv

o = air(t)) (2.44)
dr . '
il vit) (245}

Note that we explicitly write the acceleration as depending only on position.
Discretizing the time derivative using the centered derivative approximation
gives,
vit+71)—-vit—T1)
27

for the velocity equation. Notice that while the velocity values are evaluated at
t+ 7 and t — 7, the acceleration is evaluated at time ¢.

For reasons that will soon be apparent, the discretization of the pesition
equation will be centered between ¢ + 27 and ¢,

+O(7%) = ale(t)) (2.46)

r(t+2r) —r(t)
P

Qi) =v(t +7) (2.47)

M) CHAPTIGR 2 ODES L HASICMETHODS

Again we use the notation f,, = f(# = (n - 1)7), in which (247} and {(2.16) arc
written as,

Vil — Vo .
: SR L4 0 = alr) (2.48)
_r"FZ +0(r*) = vup (2.19)

-

Rearranging the terms to collect future values on the left-hand side,

Varl = Vaop+27a(r,) + O(%) (2.50)
Tpis = Ty + 27V + O(7%) (2.51)

which is the leap-frog method. Naturally, when the method is used in o, prograii,
the O(7*) terms must be left out and thus constitute the truncation error for
the method.

The name “leap-frog” is used because the solution is advanced in steps of 27,
with the position evaluated at odd values (r1, ra, v5,...), while the velocity is
computed at even values (v, v, vg,...). This inferlacing is necessary hecause
the acceleration, which is a function of position, needs to be evaluated at a time
that is centered between the new and old velocities. Sometimes the leap-frog
scheme is formulated as

o1

vn-\ % = Vn -3 + Ta(r,,) (252)
| = TIp + TV”+% (233)
with v, = vt = (n — 1 £ $37). Tn this form, the scheme is functionally

cquivalent to the Euler-Cromer method. Feynman uses the leap-rog scheme in
his Lectures on Plysies to caleulate the oscillations of a spring and the orbit of
a planct.[46]

For this chapter’s last numerical scheme, let’s Lake a different approach and
start with,

dr .
d’r
e a(r) (2.55)

Using the central difference formulas for first and sccond derivatives, we have

_‘+T" +O0(7") = v, (2.56)
Tpt) +rpy — 21‘71 : p a -
L e +0(%) = a, (2.57)

where a, = a(r,}. Rearranging terms,

Vo = ﬁ“g—;rﬂiﬂmﬁ) (2.58)

r.,b,+1 = 21‘,., I + ’.‘_zan + ()(74) (259)

2.2. SIMPLE PENDULUM 51

These equations, known as the Verlet method [130], may look strange at first, but
they are easy to use. Suppose that we know rg and ry; using Equation (2.59),
we get ra. Knowing r; and re, we may now compute rg, then using (2.38) obtain
v2, and so forth.

The leap-frog and Verlet methods have the disadvantage that they are not
“self-starting.” Usually we have the initial conditions vy = ¢{f = 0) and v; =
v(t = 0), but not vy = v({ = —7) [needed by leap-frog in Equation (2.50)] or
rg =t = —7) [needed by Verlet in Equation (2.59)]. This is the price we pay
for time-centered schemes.

To get these methods started, we have a variety of options. The Euler-
Cromer method, using (2.53), takes vy = vi, which is simple bus not very
accurate. An alternative is to use ancther scheme to get things started, for
example, in leap-frog one could take a backward Euler step, v = v — 7a;.
Some care should be taken in this first step to preserve a method’s accuracy;

using
2
rp =Ty — TV] - 7—Ea(rl) (2.60)

is a good way to start the Verlet method (see Exercise 2.22).

Besides its simplicity, the leap-frog method often has favorable properties
{e.g., energy conservation) when solving certain problems. The Verlet method
has several advantages. First, the position equation has a good truncation error.
Second, if the force is only a function of position, and if we care only about the
trajectory of the particle and not its velocity (as in many celestial mechanics
problems}, we can completely skip the wvelocity calculation. The method is
popular for computing trajectories in systems with many particles, for example,
the study of fluids at the microscopic level.

Simple Pendulum Program

The equations of motion for a simple pendulum are

dw dt
- = ald); priaty (2.61)
where the angular acceleration a(¢) = —(g/L)sinf. The Fuler method for
solving these ordinary differential equations is to iterate the equations:
9n+1 - Bﬂ + TWa (262)
Wil = Wy + Ty (2.63)

If we are only interested in the angle and not the velocity, the Verlet method
just uses the equation

Bt = 200 — Oy + 7200 (2.64)

Instead of using SI units, we’ll use the dimensionless units natural to the prob-
lem. There are only two parameters in the problem, g and L, and they alwayvs

52 CHAPTER 2. ODES I: BASIC METHODS

Table 2.2: Qutline of program pendul, which computes the time evolution of a
simple pendulum using the Euler or Verlet method.

e Select the numerical method to use: Euler or Verlet.

® Set initial position 8; and velocity w; = 0 of the pendulum.

Set the physical constants and other variables.
¢ Take one backward step to start Verlet; see Equation (2.60).

¢ Loop cver desired number of steps with given time step and numerical
method.
~ Record angle and time for plotting.
— Compute new position and velocity using Euler or Verlet method.

— Test if the pendulum has passed through @ = 0; if yes, use time to
estimate period.

Estimate period of oscillation, ineluding error bar.

Graph the oscillations as # versus t.

See pages 39 and 63 for program listings.

appear in the ratio g/L. Setting this ratio to unity, the small amplitude period
is Ts = 2m. In other words, we need only one unit in the problem: a time scale.
We set our unit of time such that the small amplitude period is 2r.

Table 2.2 ontlines a program called pendul, which computes the motion
of a simple pendulum using either the Euler or Verlet method. The prograrm
estimates the period by recording when the angle has changed sign; that is, it
checks if #, and 8,1 have opposite signs by testing if 8,8, < 0. Each reversal
after the first gives us an estimate for the period, Ty = 27(ngy) — ng), where
7y is the time step on which the &th reversal occurred. The estimated period
from each reversal is recorded, and its average value is computed as

A

= Z 7 (2.65)

,-‘

where M is the number times 7 is evaluated. The error bar for this measured
period is estimated as o = s/v/ M, where

A

T S (e (2.66)

k=1

2.2, SIMPLE PENDULUM 53

40; : : : :
30
20t H
10h, % it Foi

I

F

+

|

B {degrees)

5 10 15 20 25 30
Time

Figure 2.5: Qutput from pendul program using the Euler method. Initial angle
is &, = 10°; the time step v = 0.1, and 300 steps are computed.

is the sample standard deviation of T'. Note that as the number of measurements
increases, the sample standard deviation tends to a constant, while the ostlmated
error bar decreases.

To check the pendul program, we first try a small value for the initial angle,
B, since we know the period T = 2x. Taking v = 0.1, we have about 60 data
points per oscillation; taking 300 steps should give about five oscillations. For
B = 10°, the Fuler method computes an estimated period of (TY = 6375+
(.024, about 1.5% larger than the expected T = 2 (1.002) given by Equation
(2.38). Our estimated error for the period is about £7/2 for each measurement,.
Five oscillations gives us nine measurements of T', so our estimated error for the
period should be about (7/2)/v9 & 0.02. Notice that this estimate is in good
agreement with the result obtained using the sample standard deviation. So far
everything looks reasonable.

Unfortunately, the graphic output (Figure 2.5) shows us that the Buler
method has a problem. The amplitude of the oscillation is steadily growing
in time. Since the energy is proportional to the maximum angle, this means
that the total energy is also increasing in time. The global truncation error
in the Euler method is, in this system, accumulating. By lowering the time
step to 7 = (.05 and increasing the number of steps to 600, we may improve
the results, as shown in Figure 2.6, but not eliminate the accumulating error.
The midpoint method, Equations {2.22) and (2.23), also suffers from this same
rumerical instability.

Using the Verlet method with 8, = 10° and 7 = 0.1, we obtain the plot
shown in Figure 2.7. These results are much better; the amplitude of the os-
cillation stays close to. 10° and (T} = 6.289 = 0.033. Fortunately, the Verlet,
leap-frog, and Euler-Cromer methods do not suffer from the instability found
using the Euler method.

54 CHAPTER 2. QDES I: BASIC METHODS

20

i b"*“*‘““m.- .
O

o (degrees)

W\Wl-h‘“w” .

=151

i
S

<
m;#“"‘*-ﬁ-++++ Ly

0 5 10 15 20 25 a0
Time
Figure 2.6: Output from pendul program using the Fuler method. Initial angle

is #n, = 10°, the time step = = 0.05, and 600 steps are computed. Compare
with Figure 2.5; note difference in axes scales.

N i
10 . — o
3 7 75 7 8
+ s + P s
+ + 4 + F + L “
+ + o+ -+ s o
1 + o+ + o4 T+ toy
+ + 4 + 4 R +
5l * 4 L . L
+ + + - + + n + i
+ + + + - + * 4
+ +
- Do+ + + + + + N +
+
QD * * + * + + N +
+ +
e + * + + T
o 0Or . - + + +
3] ’ ! ! * 4
¥ 3
=2 + + + + + + + 4
=] + + + + + * o+ * ¥)
+ + 4 + . + N + . *
+ = + -+ + + - + n +
5 -+ v Lo . -
+ o+ R .t .t v
+ o+ P + 7 P b +
+ o+ s ot PR T '
+ o+ + o+ + o+ M T
+ o+ A T+ o t o+
1 1 L4 < 3
-10 i) R+ Lt , SE
0 5 10 15 20 25 a0

Figure 2.7: Qutput from pendul program using she Verlet method. Initial angle
is 8, = 10°, the time step 7 = 0.1, and 300 steps are computed.

220 SIMPLE PENDULUM

fain |
b |

g
A
D
"y

et
Ty ey

0 (degrees)
=

LA
T

S

kT

-100-

o
.
T

—1501

~200— . L i B
000 5 10 15 20 25 30
Time

Figure 2.8: Output from pendul program using the Verlet method. Tnitial angle
is Oy, = 170°, the time step 7 = 0.1, and 300 steps are computed.

For 64, = 90°, the first correction to the small angle approximation, Equa-
tion (2.38), gives 7' = 7.252. Using the Verlet method, the program gives an
estimated period of (T) = 7.429 + 0.027, which indicates thal {2.38) is a good
approximation (about 2% error), cven at this large angle. Lor the very large
angle of #y, = 170°, we get the trajectory shown in Figure 2.8. Notice how
the curve terds to flatten at the turning points. In this cage the estimatod pe-
riod is (7% = 15.333 4 0.057, while {2.38) gives T = 9.740, indicating that this
approximation for (2.37) breaks down for this very large angle.

EXERCISES

11 {a) Derive the centerced secend derivative formula (2.43). (b) Check that the
centered formulas for f'(x) and f”(x), Equations (2.42) and (2.43), are exact for a
quadratic (i.e., for f(«) = az®+ bz 4 ¢). Why i3 this true? [Pencil]

12. Write a pragram that computes f'(x) using the centered derivative formula
(2.42) and plots a graph of absolute error similar to Figure 1.5. Plot the error in the
calcalation of the derivatives of: (a) 2 at » = 1; (b) &® at 2 = 1; {c)sinz ot x = 0
(d) sinz at x = n/4; and {(c) sinx at & = 7/2. [Computer]

13. Write a program that computes f” {2} using the centered second derivative formula
(2.43) and produces a graph of absolute error similar to IFigure 1.3, Plot the error in
the calculation of the derivatives of: (a) #* at = 1; (b) 2° at = = 1; (&) sinz at
@ =0;(d) sinr at @ = 7/4; and (¢) sinw at x = /2. [Computer]

14, Using Taylor expansion, derive the centered difference formula for the third
derivative

£ = fle+20) - 2f(s+ h)2—;l—32f(:t: —h)— flx —2h)

and obtain an explicit expression for the crror term. [Pencil]

56 ' C‘HAPTER 2. ODES I. BASIC METHODS

15. In the small angle approximation, the total energy of a simple pendulum is

E= —;-mL2w2 + %-n‘tgu[l@2 —mylL
Show analytically that £ monotonically increases with time when the Euler method
is used to compute the motion. [Pencil]

16. Write a version of the pendul program that uses: (a) the Euler-Cromer method;
(b} the leap-frog method; (¢} the midpoint method. Run your program for the cases
shown in Figures 2.5 ta 2.8. Compare your results with those using Fuler and Ver-
let. [Computer]

17. Obtain a plot of the period T as a function cf the initial angle 8., using the Verlet
method. Be sure to use a small enough value of 7 to get at least 1% accuracy in 7.
Oxn the same plot sketch the small angle approximation {2.29) and the approximation
given by (2.38). Estimate the values of #, where the error in each approximation
exceeds 10%. [Computer]

18. Modify the pendul program so that it plots w(t) versus 8(t), that is, a phase
space piot. Instead of running for a fixed number of sieps, have your program half the
calculation when the pendulum completes one pericd. Using the Verlet method, plot
the data for initial angles of 10°, 45°, 90°, 120°, and 170°. Notice how the shape of
the phase space orbit changes as a function of the initial angle. ‘Computer]

19. Consider a particle of mass m moving along the z-axis under the influence of the

force
- ko <0
F{ —Fy x>0

where Fp is a constant. (a) Using the analysis presented in this section, show that
the period is T = 4/2mz/F>, where £ is the maximum value for the particle’s
position. [Pencil] (b) Write a program to compute the trajectory of the particle and
confirm the result from part {a). [Computer] '
20. The pendul program computes the period in a rather crude fashion. Improve
it by using interpolation to estimate when # changes sign using its three most recent
values. You may want to use the intrpf function from Section 1.4. Comment on the
relative improvement in the error. [Computer]
21. Consider a pendulum with a harmonically driven pivot.[23, 83] The equation of
motion is
d29 g + ﬂ,d(t)
a2~ L
where aq(t) = Agsin(2nt/Ty) is the time-varying acceleration of the pivot. Write a
program that simulates this system; be sure to use a time step appropriate to the driv-
ing period, Ty. Show that when the amplitude of the driving acceleration is sufficiently
high {4q > g), the pendulum is stable in the inverted position (Le., if 8(z = 0) ~ 180°,
then the pendulum oscillates about the point 8 = 180°). [Computer]
22, The wvelocity Verlet scheme is defined as [9, 122]

sin #

1 .
Iny1 = Ty +TVy+ ETzan

1
Vgl Vi + ET(an + an41)

BEYOND THIS CHAPTER 57

Notice that this scheme is self-starting. Prove that the values of r,, computed by this
scheme are the same as those obtained by the standard Verlet algorithm. [Pencil]

23. Show that for ordinary differential equations of the form 42z /dt® = F(#)z(t),
where f is a known function, ihe Verlet algorithm may be improved as

2
2y — Tn 1 + 7 n + 57 (a1 — 20,)

Tpp1 = + O(TG)

]. bl 11—2T2fn+1

where () = f(t)a(t). This scherme is known as Numerov’s method; notice its excellent

local truncation etror. Numerov’s method is often used to solve the time-independent
2 2

Schrédinger equation in one dimension. [Hins: Apply (1 + I—Z;—tg) to both sides of

Egquation (2.55).] [Pencil]

BEYOND THIS CHAPTER

This chapter introduced some basic techniques for solving ordinary differential
equations and applied them in two fundamental physics problems, projectile mo-
tien and the simple pendulum. Tor many similar examples, see Giordano [55]
and Gould and Tobochnik [61]. The next chapter covers some advanced tech-
niques for solving ordinary differential equations. However, there are many
instances for which we would want to stick with the basic methods. The most
common scenario is the simulation of a large system of interacting particles (e.g.,
stars in a galaxy, electrons and iong in a plasma). In this case we are not inter-
ested in high-accuracy trajectories for individual particles. Instead, we want to
measure the collective, statistical properties in the system, such as density and
temperature. These statistical quantities are obtained from time averages, so
computational efficiency is essential. The Verlet method is a popular algorithm
for these types of simulations.[9, 67]

The basic formulas for estimating derivatives are presented in this chap-
ter, and higher-order difference formulas are not difficult to construct using the
Tayler expansion. One common use of specialized, high-accuracy formulas is for
estimating derivatives at boundaries o compute the flux at the boundary. Par-
tial derivatives (e.g., Laplacian operator) may be constructed by applying our
standard formulas in each direction; specialized formulas also exist for partial
derivatives. Tables of finite difference formulas are found in many references,
for example Abramowitz and Stegun [2] and Anderson et al. [10].

The ordinary differential equations (ODEs) we consider are all initial value
problems. That is, we have complete information as to the initial state of the
gystem, and from it the future states are computed. An alternative type of ODE
problem is a boundary value problem. Suppose that we are given incomplete
state information for two points in time, say ¢ = 0 and 7. An example of such
a problem would be if we knew the initial and final positions of a baseball (but
1not the velocities) and wished to compute the entire trajectory.

A common way of solving boundary value problems is to guess several initial
conditions (e.g., initial velocities for the baseball). We then compute the solu-
tions up to time T with the hope that some of the guesses will be close to the

o CHAPTER 20 ODBS 1 BASIC MIZTHODS

specified boundary value at time 7', Wo then refine our guesses and continme
until we find an acceptable result. This procedure is called o shooling method,
and of course therc are systematic numerical methods for updating the guesses
(e.g., Newton’s method). For more insight on how such iterative methods worl;,
sec Section 4.3, An alternative way to solve boundary value problems is by
relaxation. This technique is described for linear partial differential equations
in Section 8.1. For a complete discussion of numerical techniques for solving
boundary value problems, sec Ascher, et al..[12].

APPENDIX A: MATLAB LISTINGS

Listing 2A.1 Program balle. Computes the trajectory of a baseball, in-
cluding air resistance, using the Fuler methad.

% balle - Program to compute the trajectory of a baseball
% using the Euler method.
¢lear; help balle; Y% Clear memory and print header

4* Set initial position and velocity of the baseball

y1 = input (’Enter initial height (meters): 7);

ri Lo, v11; % Initial vector position

speed = input(’Enter initial speed (m/s): ’Y;

theta = input(’Enter initial angle (degrees): *);

vl = [speed*cos(theta*pi/lSO),
speed#sin(thetaxpi/180)]; % Initial velocity

r=rl; v=vl; Y%Set initial position and velocity

®* Set physical parameters (mass, Cd, etc.)

Cd = 0.35; % Drag coefficient (dimensionless)
area = 4.3e-3; ¥ Cross-sectional area of projectile (m~2)
grav = 9.81; % Gravitational acceleration (m/s"2)

mass = 0.145; ¥ Mass of projectile (kg)
airFlag = input (’Air resistance? (Yes:1, No:0): *);
if(airFlag == 0)

tho = 0; % No air resistance
else
rho = 1.2; % Density of air {(kg/m"~3)
end
air_const = ~0.5%Cd*Tho*area/mass; Y% Air resistance constant

%% Loop until ball hits ground or max steps completed
tau = input (’Enter timestep, tau (sec): *): ¥ (sec)
maxstep = 1000; % Maximum number of steps

for istep=1:maxstep

APPENDIX A: MATLAB LISTINGS 39

%* Record position {computed and theoretical) for plotting
xplot(istep) = r(1); % Record trajectory for plot
yplot(istep) = r(2);

= {istep-1)=*tau; % Current time
xNoAir(istep) = r1{1) + v1(1)*t;
yNoAir(istep) = ri(2) + vi(2)*t - 0.Bxgrav=t"2;

%#* Calculate the acceleration of the ball
accel = air_const*norm{v)*v; % Air resistance
accel(2) = accel(2)-grav; % Gravity

%* Calculate the new position and velocity using Euler metnod
r = r + tauxv; % Euler step
v = ¥ + taukxaccel;

%* If ball reaches ground (y<0), break out of the loop
if(r(2) < 0)

xplot(istep+1) = r(1); Y% Record last values computed
yplot(istep+l) = r{2);
break; % Break out of the for loop
end
end

%% Print maximum range and time of flight
forintf(’Maximum range is %g meters\n’,r{1)};
fprintf(’Time of flight is %g seconds\n’,istep*tau);

%* Graph the trajectory of the baseball

clf; figure(gef); % Clear figure window and bring it forward
% Mark the location of the ground by a straight line

xground = [0 max(zNoAir}]; yground = [0 0];

% Plot the computed trajectory and parabolic, mo-air curve
plot(xplot,yplot,’+’,xNoAir,yNoAir,’—’,Xground,yground,’—’);
legend('Enler method’,’Theory (No air)’);

xlabel (‘Range (m)’); ylabel(’Height (m)?);

title(’Projectile motion’);

Listing 2A.2 Program pendul. Computes the time evolution of a simple
pendulum using the Euler or Verlet methods.

% pendul - Program to compute the motion of a simple pendulum
% using the Euler or Verlet method
clear all; help pendul % Clear the memory and print header

GO CHAPTER 20 ODES o BASIC MIYTHODS

%* Select the numerical method to use: Euler or Verlet
NumericalMethod = menu(’Choose a numerical method:?,
’Euler’,’Verlet?);

%* Set initial position and velocity of pendulum
thetaC = input ("Enter initial angle (in degrees): ’);
theta = thetaO+pi/180; % Convert angle to radians
omega = Q; % Set the initial velocity

%* Set the physical constants and other variables

g_over_L = 1; % The constant g/L
time = 0; % Initial time
irev = Q; % Used to count number of reversals

tan = input (’Enter time step: ’);

#* Take one backward step to start Verlet
accel = -g_over_L*sin(theta); % Gravitational acceleration
theta_old = theta - omega*tau + 0.5*tau"2+*accel ;

%% Loop over desired number of eteps with given time step
% and numerical method

nstep = input{’Enter number of time steps: 7);

for istep=1l:nstep

%* Record angle and time for plotting

t_plot(istep) = time;

th_plot(istep) = thetax180/pi; % Convert angle to degrees
time = time + tau;

%#* Compute new position and velocity using

A Euler or Verlet method
accel = -g_over_L*sin(theta); % Gravitational acceleration
if { NumericalMethod == 1)
theta_old = theta;: % Save previous angle
theta = theta + tauxomega; % Euler method
omega = comega + tau*accel;
alge
theta_new = 2*theta - theta_old + tau”2*accel;
theta_old = theta; % Verlet method
theta = theta_naw:
end

%* Test if the pendulum has passed through theta = 0;

p if yes, use time to estirate period

if(theta*theta_old < 0) % Test position for sign change
fprintf (’Turning point at time t= %f \n’,time);

APPENDIX B: C++ LISTINGS

if(irev == (¢)

time_old = time;

elge
period(irev) = 2%(time - time_old);

time_old = time;

end
ire
end
end

v

= irev + 1;

61

% If this is the first changs,
% just record the time

% Increment the number of reversals

J* Estimate period of oscillation, including error bar
AvePeriod = mean(period);
= std(period)/sqrt(irev);

ErrorBar

tprintf(’Average period = Jg +/- Y%g\n’, AvePeriod,ErrorBar);
gep g g

%i* Graph the oscillations ag theta versus time

clf; figure(gef);
plot(t_plot,th_plot,’+’);
xlabel(’Time’);

% Clear and forward figure window

ylabel(’\theta (degrees)’);

APPENDIX B: C+4++4 LISTINGS

Listing 2B.1 Program balle. Computes the trajectory of a bagseball, in-
cluding air resistance, using the Euler method.

// balle - Program to compute the trajectory of a baseball
using the Euler method.
"NumMeth.h"

/i

#include

void main(}) {

//* Set initial position and velocity of the baseball
double y1, speed, theta;
double r1[2+1], vi[2+1], r[2+1], v[2+1], accell[2+1];

cout << "Enter initial height (meters): "; cim >> yi;

rif1] = ¢; ri[2] = yi; // Initial vector position

cout << "Enter initial speed (m/s): "; cin >> speed;

cout << "Enter initial angle (degrees): "; cin >> theta;

const double pi = 3.141592654;

v1[1] = speed*cos{(thetaxpi/180); // Initial velocity (x)

v1[2] = speed*sin(theta*pi/180); // Initial velocity (y)

r[1] = r1[1]; «rl(2] = ri[2]; // Set initial position and velocity
vi{1] = vi[11; wv[2] = v1i[2];

G2 CHAPTER 20 ODES 1 BASIC ATHODS

//* Set physical parameters (mass, Cd, etc.)

double Cd = 0.35; // Drag coefficient (dimensionless)
double area = 4.3e-3; // Cross-sectional area of projectile (m~2)
deuble grav = 9.81; // Gravitational acceleration (m/s"2)

double mass = 0.145; // Mass of projectile (kg)
double airFlag, rho;

cout << "Air resistance? (Yes:1, No:0): "; cin >> airFlag;
if(airFlag == 0)
rho = 0; // No air resistance
else
tho = 1.2; // Dengity of air (kg/m"3)
double air_const = ~0.5xCd*rhoxarea/mass; // Air resistance consta

//* Loop until ball hits ground or max steps completed

double tau;

cout << "Enter timestep, tau (sec): "; cin >> tau;

int iStep, maxStep = 1000; // Maximum number of steps

double *xplot, *yplot, *xNohir, *yNodir;

xplot = new double [maxStep+1]; yplot = new double [maxStep+1];
xNoAir = new double [maxStep+1]; yNoAir = new double [maxStep+1];
for(iStep=l; iStep<=maxStep; i8tep++) {

//* Record position (computed and Lheoretical) for plotting
xplot[iStep] = r[1]; // Record trajectery for plot
yplot[iStep] = r[2];

double t = (iStep-1)#*tau; // Current time

xNodir[iStep]l = r1[1] + vi[1]#t;

yNodir[iStep] = ri[2] + vi[2]*t - 0.5%gravst*t;

//* Calculate the acceleration of the ball
double normV = sqrt(v[1]*v[1] + v[2]*v[2]);

accel{1] = air_const*normV*v[1]; // Air resistance
accel[2] = air_const*normV+v[2]; // Air resistance
accel(2] ~= grav; // Gravity

//* Calculate the new positicn and velocity using Fuler method
r(1] += tauxv(1]; // Euler step

r[2] += tauxv[2];

v[1] += tauxaccel[1];

v[2] += tau*accell[2];

//* 1f ball reaches ground (y<0), break out of the loop
it rf2) <0} {
zplot[iStep+1] = r[1]; // Record last values computed
yplot[iStep+1] = r[2];

APPENDIX B: C++ LISTINGS 63

break; // Break out of the for loop
}
}

//* Print maximum range and time of flight
cout << "Maximum range is " << r[1] << " meters" << endl;
cout << "Time of flight is " << iStep#tau << " seconds” << endl;

//* Print out the plotting variables:
// xplot, yplot, xNodir, yNodir
ofstream xplotOut{"xplot.txt"), yplotOut("yplot.txt'),
xNoAirOut ("xNodir.txt"), yNeAirOut ("yNoAir.txt");
int 1i;
for(i=1; i<=iStep+l; i++) {
xplotOut << xplot[i] << endl;
yplotDut << yplot[i] << endl;
}
for(i=1; i<=iStep; i++) {
xNoAirDut << xNofir(lil << endl;
yNoAirfDut << yNolir[i] << endl;
}

delete [] =xzplet, yplot, zNoAir, yNoAir; // Release memory

}

Jrkxxk To plot in MATLAB; use the sScript below skskskskokskscksorksksokdox
load xplot.txt; load yplot.txt; load xNoAir.txt; lcad yNoAir.txt;
clf; figure(gef); % Clear figure window and bring it forward

% Mark tlie location of the ground by a straight line

xground = [0 max(xNoAir)]l; yground = [0 0];

% Plot the computed trajectory and parabolic, no-air curve
plot(xplot,yplot,’+’' ,xNoAir,yNodir,’-’ ,xground,yground, *-*);

legend ('Euler method’,’Theory (No air)’);

xlabel(’Range (m)’); ylabel(’Height (m)’);

title (’Projectile motion’};

sk oo ok o KK K 3k o ok 6 ok e o sk ke ok ok 3K o o ek e ok ks ok ok ok ok sk sk sk sk ok ok ek o ok o ok o ok ok sk sk sk skok ok ok ok ok

Listing 2B.2 Program pendul. Computes the time evolution of a simple
pendulum using the Euler or Verlet methods.

/! pendul ~ Program to compute the motion of a simple pendulum
// using the Euler or Verlet method
#include "NumMeth.h"

void main(} {

CHAPTICN 20 OIS I BASIC METHODS

//* Select the numerical method to use: Euler or Verlet
cout << "Choose a numerical method 1) Euler, 2) Verlet: ";
int method; cin >> method;

//* 8et initial position and velocity of pendulum

cout << "Enter initial angle (in degrees): ";

double thetal; cin >> thetal;

const double pi = 3.141592654;

double theta = thetalxpi/180; // Convert angle tc radians
double cmega = 0.0; // Set the initial velocity

//* Set the physical constants and other variables

double g _over L = 1.0; // The constant g/L

double time = 0.0; // Initial tine

double time_old; // Time of previous reversal

int irev = 0; // Used to count number of reversals

n

cout << "Enter time step: ";
double tau; cin >> tau;

//* Take one backward step to start Verlet
double accel = -g_over_L*sin(theta); // Gravitational acceleration
double theta_old = theta - omega*tau + 0.B¥tauxtauxaccel;

//* Loop over desired number of steps with given time step

!/ and numerical nethod

cout << "Enter number of time steps: ";

int n3tep; cin >> nStep;

double *t_plot, *th_plot, #*period; // Plotting variables
t_plet = new double [nStep+1]; th_plot = new double [nStep+i];
period = new double [nStep+il];

int iStep;

for(iStep=1; iStep<=nStep; iStep++)} {

//= Record angle and time for plotting

t_plot[iStep] = time;

th_plot[iStep] = thetax180/pi; // Convert angle to degrees
tire += tau;

//* Compute new position and velocity using
// Euler or Verlet method

accel = —g_over_L*sin(theta); // Gravitational acceleration
if(method == 1) {

theta_old = theta; // Save previous angle

theta += tauxomega; // Euler method

omega += tau*accel;

APPENDIX B: C++ LISTINGS 65

is

else {
double theta_new = 2xtheta - theta_old + tauxtaukaccel;
theta_old = theta; // Verlet method
theta = theta_new;

}

//* Test if the pendulum has passed through theta = 0;

// if yes, use time to estimate period

if (thetaxtheta_old < 0) { // Test position for sign change
cout << "Turning point at time T = " << time << endl;
if(irev == 0) // If this is the first change,

time_old = time; // just record the time

else {

pericdlirev] = 2#{time - time_old);
time_old = time;

}
irevt+; // Increment the number of reversals
}
}
int nPeriod = irev-1; // Number of times period is measured

//* Estimate period of oscillatioenm, includihg error bar
double AvePeriod = (.0, ErrorBar = 0.0;
int i;
for(i=1; i<=nPeriod; i++) {
AvePeriod += period[i];
ErrorBar += period[il*periocd[il;
}
AvePeriod /= nPeriod;
ErrorBar = sqrt(ErrorBar/ (nPeriod*{(nPeriod-1)));
cout << "Average period = " << AvePeriod << " +/- " << ErrorBar << endl;

//* Print out the plotting variables: t_plet, th_plot
ofstream t_plotDut("t_plot.txt"), th_plotOut("th_plot.txt");
for(i=1; i<=nStep; i++) {

t_plotOut << t_plot[i] << endl;

th_plotOut << th_plot[i] << endl;
}

delete [t_plot, th_plot, period;

1

Jxxxxx To plot in MATLAB; use the script below wskkssksksokksckokkkokoks ko
load t_plot.txt; load th_plot.txt;
clf; figure(gct); % Clear and forward figure window

60 CHAPTER 2. ODES 1: BASH! MIETHODS

pPlot(t_plot,th_plot,?+?);
xlabel{’Time’); ylabel(’Theta (degrees)’);
***X**/

Chapter 3

Ordinary Differential

Equations II: Advanced
Methods

In Chapter 2 we learned how to solve ordinary differential equations (ODEs)
using some simple methods. In this chapter we do some basic celestial mechanics
beginning with the Kepler preblem. Computing the orbit of a small satellite
about a large body {e.g., a comet orbiting the Sun), we discover that more
sophisticated methods are needed to handle even this simple two-body system.
The second problem we consider in this chapter is the Lorenz model. This
nonlinear system of ODEs was one of the first in which chaotic dynamics was
found.

3.1 ORBITS OF COMETS

Basic Equations

Consider the Kepler problem in which a small satellite, such as a comet, orbits
the Sun. We use a Copernican coordinate system and fix the Sun at the origin.
Tor now, consider only the gravitational force between the comet and the Sun,
and neglect all other forces (e.g., forces due to the planets, solar wind). The
force on the comet is

GmM

T | (3.1)

F=

where r is the position of the comet, m is its mass, M (= 1.99 x 10°° kg) is the
mass of the Sun, and G (= 6.67 x 10~ m?/kg-s?) is the gravitational constant.

The natural units of lewgth and time for this problem are not meters and
secords. As a unit of distance we will use the astronomical unit (AU; 1 AU =
1.496 x 101! m), which equals the mean Earth-Sun distance. The unit of time

68 | CHAPTER 3. ODES II: ADVANCED METH(ODS

will be the AU year {the period of a circular orbit of radius 1 AU). In these
units, the product GM = 472> AU? /yr?. We take the mass of the comet, m, as
unity; in MKS units the typical mass of a comet is 1052 kg.

We now have enough to assemble our program, but before doing so let’s
quickly review what we know about orbits. For a complete treatment, see any of
the standard mechanics texts, such as Symon [123] or Landau and Lifshitz [83'.
The total energy of the satellite is

(3.2)

where r = |r| and v = |v|. This total energy is conserved, as is the angular
momentum, :
L =1 x (mv) (3.3)

Since this problem is two-dimensional, we will take the motion to be in the
zy plane. The only nonzero component of the angular momentum is in the
z-direction.

When the orbit is circular, the centripetal force is supplied by the gravita-
tional force,

mv? GMm

r r2

v=+/GM/r _ (3.9)

To put in some values, in a circular orbit at r = 1 AU the orbital speed is v = 2r
AU/yr (about 30,000 km/h). Using (3.5) in (3.2), the total energy in a circular

orbit is
GMm
2r

In an elliptical orbit, the semimajor and semiminor axes, ¢ and b, are unequal
(Figure 3.1). The eccentricity, e, is defined as

e=/1-b2/a2 (3.7)

Earth’s eccentricity is € = 0.017, thus its orbit is nearly circular. The distance
from the Sun at perihelion (closest approach) is ¢ = (1 — e)a; the distance from
the Sun at aphelion i3 @ = (1 + e}a.

Equation (3.6) also holds for elliptical orbits if we replace the radius with
the semimajor axis; that is, the total energy is

B GMrm
2a

Note that £ < (0. From (3.2) and (3.8), we find that the orbital speed as a
function of radial distance is

(3.4)

or

E=- (3.6)

B =

(3-8)

v=/GM (— - -) (3.9)

+.1. ORBITS OF COMETS 69

¥
x
« >
2a

Figure 3.1: Elliptical orbit about the Sun.

Table 3.1: Orbital data for selected comets
Comet Narne T {yrs) ¢ q (AU) + First Pass
Encke 3.30 0.847 0.339 12.4° 1786
Biela ©B.62 0.736 0.861 12.6° 1772
Schwassmann-Wachmann 1 16.10 0.132 5.540 9.5° 1925
Halley 76.03 0.967 0.587 162.2° 239 B.C.
Grigg-Mellish 164.3 0.969 0.923 109.8° 1742
Halc-Bopp 2508, (0.995 0.913 89.4° 1995

The speed is maximum at perihelion and minimum at aphelion, the ratio of
these speeds being ¢)/¢. Finally, using conservation of angular momentum, we
may derive Kepler’s third law,
2 _ dn® 4
T = G—MCL (3.10)
where T' is the period of the orbit.

The orbital data for a few well-known comets are given in Table 3.1. The
inclination, 7, is the angle between the orbital plane of the comet and the ecliptic
plane (the plane of the orbit of the planets}. When the inclination is less than
90°, the orbit is said to be direct, when it is greater than 90°, the orbit is
retrograde (i.e., orbits the Sun in the opposite direction from the planets).

Orbit Program

A simple program, called orbit, that computes orbits for the Kepler problem
using various numerical methods is outlined in Table 3.2. The Euler methad,
described in Section 2.1, computes the comet’s trajectory as

Tnpl = Ip+Tvp (3'11)
Vor1 = v+ Talr,) (3.12)

70 | CHAPTER 3. ODES II: ADVANCED METHODS

Table 3.2: Outline of program orbit, which computes the trajectory of a comet
using various numerical methods.

s Set initial position and velocity of the comet.
s Set physical parameters (rn, GM, ete.)
e Loop over desired number of steps using specified numerical method.

— Record position and energy for plotting.

— Calculate new position and velocity using:

Euler method (3.11), (3.12) or;

Euler-Cromer method (3.13), (3.14) or;
Fourth-order Runge-Kutta method (3.28), (3.29] or;
Adaptive Runge-Kutta method.

L S

¢ Graph the trajectory of the comet.

o Graph the energy of the comet versus time.

See pages 91 and 96 for program listings.

where a is the gravitational acceleration. Again, we discretize in time and use
the notation f,, = f(t = (n — 1)7), where 7 is the time step.

The simplest test case is a circular orbit. For an orbital radius of 1 AU,
Equation (3.5) gives a tangential velocity of 2x AU/yr. Fifty data points per
orbital revolution should give us a smooth curve, so 7 = 0.02 yr {(or about one
week) is a reasonable time step. With these values, the orbit program, using
the Euler method, gives the results shown in Figure 3.2, We immediately see
that the orbit is not a circle, but an outward spirak. The reason is clear from
the energy graph; instead of being constant, the total energy is continuously
increasing. This type of instability is also observed in the Euler method for the
simple pendulum (see Section 2.2).

Fortunately, there is a simple solution to this problem—the FEuler-Cromer
method computes the trajectory as

Varl = Vo +7ary) {(3.13)
Tprl = Py +TVapa (314)

Notice that the only change from the Euler method is that we first compute the
new velocity, v,y1, and then use it in the calculation of the new position. For
the same initial conditions and time step, the Euler-Cromer method gives much
better results, as shown in Figure 3.3. The orbit is nearly circular, and the
total enerpy is conserved. The kinetic and potential energies are not constant,

3.1. ORBITS OF COMETS 71

90 27565
120 60 30
- - -t __
bty) " Kinetic |
o = foar
gy, 11026 IR
B 10 N ;
| 05929 R

Energy (M AU%P)

i
l? (=]

i

i

\

|

|

|

1
n
[=]

.

:
v

“

!
4}
o

n

270
Distance {Al)

2
Time {yr}

Figure 3.2: Graphs of trajectory and energy from the orbit program using the
Euler method. Initial radial distance is 1 AU and the initial tangential velocity
is 27 AU/yr. The time step is 7 = (L02 yr; 200 time steps are computed.

Results disagree with theoretical prediction of a circular orbit with constant
total energy.

90
1.0?0&6G 20
et ST
s e 1| R A LT T
. 084251 7w, - - -
PN |
0.42834 . 1or ’
S PN AN e
- gET7 + = R
L 2T 3 !
S : . “2
18¢ cxl 0 =10
I 2
; =201~ — — —
4 &
21 330 -30°
40 . . ,"’-ﬁ". _,4"_.7“‘77_""_-K“‘).“/-_\l
270 50 1 2 4
Distance {AU) Time {yr}

Figure 3.3: Graphs of trajectory and energy from the orbit program using
the Euler-Cromer method. Parameters are given in Figure 3.2. The results

are in qualitative agreement with theoretical prediction of a circular orbit with
constant total energy.

72 CHAPTER 3. ODES II: ADVANCED METHODS

90 357458
: B0 ESG[

| 238305

150; s
L1153

180

Energy (M AU}
o
=]

210 S 92 330 -100- !

2 .
Time {yr}

270
Distance (Al

Figure 3.4: Graphs of trajectory and energy from the orbit program using the
Euler-Cromer method. Initial radial distance is 1 AU and the initial tangential
velocity is « AU/yr. The time step is 7 = 0.02 yr; 200 time steps are computed.
Due to numerical error, the comet achieves escape velocity—final position is
about 35 AU and the total energy is positive.

but this problem may be improved by using a smaller time step. The orbit

program also gives yvou the option of using Runge-Kutta methods, which are
described in the next two sections.

Although the Euler-Cromer method does a good job for low eccentricity
orbits, it-has problems with more elliptical orbits, as shown in Figure 3.4. Notice
that the energy becomes positive; the satellite acquires escape velocity. If we
lower the time step from 7 = 0.02 yr to 0.005 yr we obtain better results, as
shown in Figure 3.5. These results are still not perfect; the orbit should be a
closed ellipse, yet it has a noticeable spurious drift.

At this point you may be asking yourself, “Why are we studying this prob-
lem? The analytic solution s well known.” Tt is true that there are more
interesting celestial mechanics problems {e.g., the effect of perturbations on the
orbit, the three-body problem). However, before doing the complicated cases
we should always check our algorithms on known problems. Suppose that we
introduced a small drag force on the comet. We might be fooled into heliev-

ing that the precession in Figure 3.5 was a physical phenomenon rather than a
numerical artifact.

Clearly, the Fuler-Cromer method does an unacceptable job of tracking the
more elliptical orbits. The results improve if we drop the time step, but then
it takes forever to track a few orbits. Suppose that we wanted to track comets
for possible Farth impacts. A comet striking Earth could be more destructive
than nuclear war. Many comets have extremely elliptical orbits and periods of
hundreds of years. This threai from outer space motivates our study of more
advanced methods for solving ordinary differential equations.

ORBITS OF COMETS

S5 -
99 1.0001
300— o
DGUODS 0 P _Ig.m‘gtlii
' --- =
. 200, " oo Eem J
0.46004 " ol
' +{f§6065 s 100 .
o) o
2 .
180 0% o o 7
: e e) T .
&
i 2100} ‘
—W#;'—.L.‘T)"' & :
330 L
200 v
‘
240 : 300 . ' .)
300 - = - - 1

270
Distance (AU}

Time (yr)

Figure 3.5: Graphs of trajectory and energy from the orbit program using
the BEuler-Cromer method. Parameters are as in Figure 3.4 except the time
step is smaller (7 = 0.005 yr). Results are better, yet the orbit has a spurious
precession.

EXERCISES

1. Suppose that a planet suddenly lost all of its orbital velocity; of course, it would
plunge directly into the Sun. Show that Earth would reach the core of the Sun in
about 65 days. [Pencil]

2. Prove that for the Kepler problem the Euler-Cromer method conserves angular
momentum exactly. [Pencil]

3. Modify the orbit program so that instead of running for a fixed number of time
steps, the program stops when the satellite completes one orbit. {a} Have the program
compute the period, eccentricity, semimajor axis, and perihelion distance of the orbit.
Use the Euler-Cromer method and test the program wish circular and slightly elliptical
orbits. Compare the measured eceentricity with

2FL?
G2 M2m3
(b) Show that your program confirms Kepler's third law. (c) Confirm that (K) =
—{V}/2, where (K} and (V) are the time-average kinetic and potential energy (virial
theorem). [Computer] _
4, For an ellipse, the radial position varies with angle as

6:\/14-

r(6) = a(l —e?)
1 —ccosf
Modity the orbit program to compute and plot the absolute fractional error in r{8)
versus time. Using the Euler-Cromer method, obtain results for an initial radial dis-
tance of 1 AU, an initial tangential velocity of # AU/yr, and time steps of 7 = 0.01,
0.005, and 0.001 yr. [Computer]
5. Modify the orbit program to use the Verlet method. Run the modified program
and produce graphs corresponding to Figures 3.2-3.5. [Computer]
6. Thke Euler-Cromer method must nse a small time step for the more elliptic orbits.
" Using an initial radial distance of 35 AU (Halley’s comet) and various values for the

74 © CHAPTER 3. ODES II: ADVANCED METHODS

aphelion velocity, find the largest value of 7 for which the total energy is conserved to
about 1% per orbit. Assemble a graph of 7 versus initial velocity, and estimate the
time step needed to track Halley’s comet. [Computer]

7. The Lorentz force on a charged particle is F = g{E+v x B) where E and B are the
electric and magnetic fields acting on the particle and ¢ is the particle’s charge. Write
a program to simulate the motion of an electron in uniform, perpendicular electric and
magnetic fields. Show that the motion is helical in form, with a pitch that depends on
the initial particle velocity and with a drift velocity ugmie, = E x B/B?. [Computer]

3.2 RUNGE-KUTTA METHODS
Second Order Runge-Kutta

We now look at one of the most popular methods for numerically solving ODEs:
Runge-Kutta. We will first work out the general Runge-Kutta formulas and then
apply them specifically to our comet problem. In this way it will be easy to use
the Runge-Kutta method for other physical systems. Our general ODE takes

the form p
}% = f(x(t),t) (3.15)

where the state vector z(#) = [z1(t] ...z~ (¢)] is the desired solution. In the
Kepler problem we have

x() = [r=(t) ry(t) val(t) wy(t)] (3.16)
and
dry dry, dv, dv
f(x(1),t) = & @ @t d_f
= [w(t) vl F)/m F,(t)/m] {3.17)

where r,, v, and F, are the z-components of position, velocity, and force,
respectively (and similarly for the y-compoenents). Notice that in the Kepler
problem, the fimction f does not depend explicitly on time; rather, it only
depends on x(¢).

Our starting point is the simple Euler method in vector form it may he
written as

x{t+ 1) = x(t) + 7f(x,t) (3.18)
The first Runge-Kutta formula we consider is
x(t +7) = x(t) + 7E(x*(t + 37),t + 37) (3.19)
where

x*(t + L) = x(t) + S7F(x(8), 1) (3.20)

3.2, RUNGE-KUTTA METHODS 75

Second-order Runge-Kutta (v =1}
" w A]

N
-

T]
SwTw T S e

half-step \

N T N RN
0dns ~u mu a s tm a a e S
03+s s s —a —a Tha Ta Tham Tw T

02 0.4 06 0.8 1
t

Figure 3.6: Graphical illustration of a simple, two-step Runge-Kutta formula.
The arrows have slope dz/df = f(x(t).1). For this figure, dx/dt = —z and
T=1.

To see where this formula comes from, consider for a moment the one-variable
case. We know that the Taylor expansion

zit+7) = =w{t)+7
= x(t) + 71 (=((),)

is exact for some value of { between ¢ and ¢+ 7, as seen in Equation (2.10). The
Buler formula takes ¢ = ¢; Euler-Cromer uses ¢ = ¢ in the velocity equation and
{ = t+7 in the position equation. Ruuge—Kutta tries to use { = t+ =7, since this
is probably a better guess. However, x(1 + T } 1s not known, so we approx1mate
it in the simplest way possible: Use an Euler step to compute z*(t + - 7') and
use this as our estimate of z(¢ + £7). Figure 3.6 illustrates this idea.

Let’s walk through a simpls example using the Runge-Kutta formula. Take
the equation

dz(()
— (3.21)

dx

dt
The solution of (3.22) is z(¢) = e~*. Using the Euler method with a time step
of 7 = 0.1, we get

= —; #(t=0)=1 (3.22)

£{(0.1) = 1+40.1(—1) =09
#(0.2) = 09+ (0.1)(—0.9) = 0.81

76 CHAPTER 3. OIS H: ADVANCID MITTHODS

2(0.3)

0.81 +0.1{—0.81) = 0.729
0.729 + 0.1(~0.729) = 0.6561

Il

Now let’s try Runge-Kutta. To make a fair comparison, we use a larger time
step of 7 = (0.2 for Runge-Kutia because it makes twice as many evaluations of
f{z). For the Runge-Kutta formula prescnted above,

2(0.1) = 1+01{~1)=109

2(0.2) = 1+0.2(-0.9) = 0.82
£°(0.3) = 0.8240.1(—0.82) = (.738
2(04) = 0.82+0.2(-0.738) — 0.6724

Compare this with the exact solution 2(0.4) = exp(—0.4) ~ 0.6703. Clearly,
Runge-Kutta does much better than Euler; the absolute percent errors are 0.3%
and 2.1%, respectively.

General Runge-Kutta Formulas

The formula discussed above is not the only second-order Runge-Kutta formula.
Here is an alternative one:

x(t+7) =x(t) + %’r[f(X(t), 1A+t 7)) (3.23)

where
Mt 1) = x(l) + oF(x(t),#) (3.24)

‘To understand this scheme, again cousider the one-variable case. In our original
formula, we estimated £(x(¢),¢) as Flrr (@t +)t + +7). Our new formula is
similar, but now we approximate S@&(C). Q) as & f (. t) + fla*(t + T),t+ 7.

These formulas were not pulled out of the alr; you can work them out using
the two-variable Taylor expansion,

oo 1 9 i
fle+ht+r) = Z gl (h% + ’T%) flat) (3.25)
— il x

where all derivatives. are evaluated at (z,£). For a general second-order Runge-
Kutta formula, we want to obtain a formula of the form

a(t+7) = x(t) + w7 flat), 1) + wo T 2"t + r) (3.26)

where
"= x(t) + Arf(a(t), 6 (3.27)
There are four unspecified coefficients: @, b, wy, and w,. Notice that we recover

(3.19} and (3.20) with the values

1 .
w =0; wy=1; aﬁa, ,J_5

3.2, RUNGE-KUTTA METHODS 77
and (3.23) and (3.24) with
1 1
u"l—iu 1”2_51 Ot—]., 6_1

We want to pick these four coefficients such that we get second-order accuracy;
that is, we want to match the Taylor series through the second derivative terms.
The details of the calculation are left as an exercise, but any set of coefficients
satisfying the relations wy + wy = 1, aws = %, and a = A will give a second-
order Runge-Kutta scheme. The local truncation error is O(77), but the explicit
expression does not have a simple form (see Exercige 3.10). Tt is not clear that
one scheme is superior to another since the truncation error, being a complicated
function of f{x,¢), will vary from problem to problem.

Fourth-Order Runge-Kutta

I presented the second-order Runge-Kutta formulas because it is easy to under-
stand their construction. In practice, however, the most commonly used method
is the following fourth-order Runge-Kutta formula:

1
X(t + ‘T) = X(t) + -G-T[Fl + 2F, + 2F3 + F4] (328)
where
F, = f(x1)
1 1
Fz = f(er §TF1:t+2T) (329)

1 1
3 = =7F4, =
F3 f<X+2 g}t-l-‘z’r)

F4 = f(_X+TF3,t+T)

The following excerpt from Numerical Recipes [104] best summarizes the status
that the above formula holds in the world of numerical analysis:

For many scientific users, fourth-order Runge-Kutta is not just the
first word on ODE integrators, but the last word as well. Tn fact, you
can get pretty far on this old workhorse especially if you combine it
with an adaptive stepsize algorithm.... Bulirsch-Stoer or predictor-
corrector methods can bhe very much more efficient for problems
where very high accuracy is a requirement. Those methods are the
high-strung racehorses. Runge-Kutta is for ploughing the fields.

You may wonder why fourth-order and not eighth- or twenty-third-order Runge-
Kutta? Well, the higher-order methods have better truncation error but also re-
quire mere computation, that is, more evaluations of f(a,t). There is a trade-off
between doing more steps with a smaller T using a low-order method as opposed

78 CHAPTER 3. ODES II: ADVANCED METHODS

Table 3.3: Outline of function rk4, which evaluates a single step using the
fourth-order Runge-Kutta method.

o Inputs: x(8), t, 7, f(x,¢; A), and A,
o Output: x(t + 7).
¢ Evaluate Fi, Fs, F3, and F; using (3.29).

¢ Compute x(¢ + 7) using fourth-order Runge-Kutta, (3.28).

See pages 92 and 99 for program listings.

Table 3.4: Outline of function gravrk, which is used by the Runge-Kutta rou-
tines to evaluate the equations of motion for the Kepler problem.

o Inputs: x(¢), t {not used), GM.
o Cutput: dx(t)/di.
» Compute acceleration a = —(GM/|r?|)r.

o Return dx(t)/dt = [ve, vy, ay, agy].

See pages 93 and 100 for program listings.

to doing fewer steps with a larger 7 using a high-order method. Because higher-
order Runge-Kutta methods are quite complicated, the fourth-order scheme
given above is favored. By the way, the local truncation error for fourth order
Runge-Kutta is O(7%).

To implement the fourth-order Runge-Kutta method for our orbit problem,
we use the function rk4 (Table 3.3). This function takes as inputs: the current
state of the system, x(t); the time step to be used, 7; the current time, ¢; the
function f(x(t),%;A); and a list of parameters A used by f. The output is the
new state of the system, x(t +), as computed by the Runge-Kutta method.
Using fourth-order Runge-Kutta gives the results shown in Figure 3.7, which
arc much better than those obtained using Euler-Cromer (Figure 3.5).

Passing Functions to Functions

The Runge-Kutta function rké is very simple, but introdnces one programming
element that we’ve not used before. The function f(x,#; X) is passed as an input
parameter to rk4. This allows us to use rk4 to solve different problems by

3.2. RUNGE-KUTTA METHODS 79

S —
- -+ Kinetic
--- Potential
— Toial]

270 0 0.2 04 " Tos 0.8 1
Distance (AL) Time {yr)

Figure 3.7: Graphs of trajectory and energy from the orbit program using
fourth-order Runge-Kutta. Initial radial distance is 1 AU, and the initial tan-
gential velocity is # AU/yr. The time step is 7 = 0.005 yr; 200 time steps are
computed. Compare with Figure 3.5.

simply changing the definition of [{as we’ll do in later sections). For the Kepler
problem, the function gravrk {Table 3.4) defines the equations of motion by
rekurning dx/dt, Equation (3.17).

In the MATLARB version, a text string containing the name of the function
f(x, ¢ A) is passed to rk4. The orbit program calls rk4 as

state = rk4{state,time,tau,’ gravrk’ ,GM);

where the vector stateis x = [r, r, v vy |. Within rk4, the variable derivsRK
receives the input function name as a text string. MATLAB's feval (function
evaluation) command is used by rk4 to call this function. For example, when
derivsRK contains the string ’gravrk’, then

F1 = feval(derivsRK,x,t,param);
is equivalent to calling gravrk as
F1 = gravrk(x,t,param);

Notice that param is used to pass any extra parameters (for the Kepler problem,
the value of GM).

In C++, the pointer to the function £(x,# A) is passed to rk4. The orbit
program calls rk4 as

rk4(state, nState, time, tau, gravrk, param);

where the vector stateis x == [, ry v, vy, |. At the top of the file, the function
gravrk is declared with the prototype

void gravrk(double x[], double t, double param[], double deriv[]

The first line of rk4 is

80 CHAPTER 3. ODES II: ADVANCED METHODS

'void rk4(double x[], int nX, double t, double tau,
void (*derivsRK)(double x[1, double t, double param[],
double deriv[]}, double param[]}) {

~
When called by orbit, this function receives a pointer to gravrk in the variable
derivsRK. Within rk4, the statement

(¥derivsRK}{ x, t, param, F1);
is equivalent to
gravrk{ x, t, param, F1);

since derivsRK points to gravrk.

EXERCISES
8. Prove that any nth-dérder ODE of the form

d" % _; dz A1z
dtn A AT

may be written as a system of first-order ODEs. [Pencil]

(a) Write a program to reproduce Figure 3.6 using the second-order Runge Kutta
formulas (3.19) and (3.20). Take f(z,t) = —z and 7 = 1. (b) Write a program, as in
part (a), but use the second-order Runge-Kutta formulas (3.23) and (3.24). (c) Write
a program, as in part (a}, but use the fourth-order Runge-Kutta formulas (3.28) and
(3.29). [Computer]

10. (a) Use Equation (3.25) to show that a second-order Runge-Kutta formula requires
that w1 +wy = 1, aws = 3, and o« = 3. (b) Show that

sl « 10f f of

7 {(E_g)(at“q) f+6r933(o)J
is the truncation error for second-order Runge-Kutta. [Pencil|
11. Modify the program used in Exercise 3.6 to uge the fourth-order Runge-Kutta
method, and repeat that exercise. Compare the Fuler-Cromer and Runge-Kutta meth-
ods. [Computer]
12. Suppose that our comet is subjected to a constant force in one direction (e.g.,
gravitational attraction of a large but distant object).[85] Modify the orbit program
to simulate this system, Set the strength of the perturbing force to be 1% of the initial
gravitational force. Using fourth-order Runge Kutta, show that an initially circular
orbit is transformed into an elliptical orbit with the semimajor axis perpendicular to
the perturbing force. Produce a graph of the angular momentum as a function of
time. [Computer]
13, The Wilberforce pendulum [17]; a popular demonstration device, is illustrated in
Figure 3.8. The penduium has two modes of cscillation: vertical and torsional motion.
The Lagrangian for this system is

| dzN® 1 _/diN? 1, . 1., 1
L=gn(G) vl (F) —g 00 - e

33 ADAPTIVE METHODS 81

Figure 3.8: Wilberforee pendulum.

where 1 and I are the mass and rotational inertia of the bob, k and ¢ are the longitu-
cdinal and torsional spring constants, and e 1s the coupling constant, between the modes.
Some typical values are m = 05 kg, f =10 * kg -m*, k=5 N/m, § = 107°N . m,
and € = 1077 N. (a) Find the equations of motion. [Pencil] (b) Write a program to
compute z(t) and 8() wvsing fourth-order Runge-Kutta. Try the initial conditions
2(0) = 10 e¢m, 8(0) = 0 and z(0) = 0, #{0) = 27, Show that when the longitudinal
frequency, f. = [ZW)_IVW, equals the torsional frequency, fo = (Qﬂ)’l\/m ,
the motion periodically aliernates between being purely longitudinal and purely tor-
sional. [Computer]

3.3 ADAPTIVE METHODS

Adaptive Time Step Prograims

Becaise the fourth-order Runge-Kutta method is more accurate (smaller trun-
cation error), it does a better job with highly clliptical orbits. And yet, for an
initial aphelion distance of 1 AU and an initial aphelion velocity of #/2 AU/yr
using a time step as small as 7 = 0.0005 yr (= 4% hr}, the total energy varies
by over 7% per orbit. If we think about the physics, we come to realize that the
small time steps arc only needed when the comet males its clogest approach,
where it velocity is maximum. Any small error in the trajectory as it rounds
the Sun causes a large deviation in the potential energy.

The idea now is to dedign a program that would use smaller time steps when
the comet is near the Sun and larger time steps when it is far away. As it
is, we normally have only a rough idea of what 7 should be; now we have to
select a Tmin ahd ey and a way to switch between them. If we have to do
this by manual trial and crror, it could be worse than just doing the brute force

82 CHAPTER 3. ODES II: ADVANCED METHODS

calculation with a small time step. Ideally, we wish to be completely freed of
having to specify a time step. We want to have the trajectory computed from
some initial position up to some finial time with the assurance that the solution
is correct to a specified accuracy.

Adaptive programs continuously monitor the solution and modify the time
step to ensure that the user-specified accuracy is maintained. These programs
may do some extra calculation to optimize the choice of 7, but in Many cases
this extra work is worth it. Here is one way to implement this idea: Given the
current state x(¢), the program computes x(¢ 4+ 7) as usual, and then it repeats
the calculation by doing two steps, each with time step %T. Visually, this is

big step

@ p X (HTD)
N 2) ——— X,(#+7)

small step small step

The difference between the two answers, x,(t + 7) and x.(t + 7), estimates
the local truncation error. If the error is tolerable, then the computed value is
accepted and a larger value of 7 is used on the next iteration. On the other hand,
if the error is too large, the answer is rejected, the time step is reduced, and the
procedure is repeated until an acceptable answer is obtained. The estimated
truncation error for the current time step can guide us in se]ectmg a new time
step for the next iteration.

Adaptive Runge-Kutta Function

Here is how such an adaptive iteration can be implemented for our fourth-order
Runge-Kutta scheme: Call A the local truncation crror; we know that A oc 1
for fourth-order Runge-Kutta. Suppose that the current time step 7,4 gave an
error of A¢ = Xy — X,; this is our estimate for the truncation error. Given that
we want the error to be less than or equal to the user-specified ideal error, call
it Aj; then, the estimate for the new time step is

A

A (3.30)

Test = T

Since this is only an estimate, the new time step is Tpew = S1 Test, where §) < 1.
This makes us overestimate the change when we lower 7 and underestimate the
change when we raise it. We waste computer effort every time we reject an
answer and need to reduce the time step, so it is better to set Thew < Tegt.

We should also put in a second safety factor, Sy > 1, to be sure that the
program is not too enthusiastic about precipitously raising or lowering the time
step. With both safeguards, the new time step is

Satorg if S17est > Sotord
Thew — Told/SQ if SlTest < Told/S2 (331)
S1Test Otherwise

3.3, ADAPTIVE METHODS 83

Table 3.5: Outline of function rka, which cvaluates a single step using the
[ourth-order adaptive Runge-Kutta method.,

Inputs: x(t), £, 7, Ay, f(x, £;4), and A,

Outputs: x(1), ', and Tew.

Set initial variables.

¢ Loop over maximum number of attempts to satisfy error bound.

— Take the two small time steps.

-+ Take the single big time step.

— Compute the estimared truncation error.

— Estimate new 7 value {including safety factors).

— If error is acceptable, return computed values.

o Issue error message if error bound never satisfied.

See pages 93 and 100 for program listings.

These constraints ensure that our new estimate for = never increases or de-
creases by more than a factor of 55. Of course, this new + may be found to be
insufficiently small, and we may have to continue reducing the time step; but
at least we know it will not happen in an uncontrolled way.

This procedure is not bulletproof—round-off error becomes significant at
very small time steps. For this reason the adaptive iteration may fail to find a
time step that gives the desired accuracy. Keep this limitation in mind when
vou specify the ideal error.

An adaptive Runge-Kutta function, called rka, is outlined in Table 3.3.
Notice that the inputs in the calling sequence are the same as for rzd, except
for the addition of A;, the specified ideal error. The outputs from rka are the
new state of the system, x(t'); the new time, ¢'; and the new time step, Thew.
which should be used the next time rka is called.

Using the adaptive Runge-Kutta method, the orbit program gives the re-
sults shown in Figure 3.9 for a highly elliptical orbit. Notice that the program
takes many more steps at perihelion (closest approach) than at aphelion. Coimn-
pare with the results using nonadaptive Runge-Kutta (Figure 3.7) in which the
steps at perihelion are widely spaced. A plot of time step versus radial dis-
tance (Figure 3.10) shows that 7 varies by nearly three orders of magnitude.
Interestingly, this graph reveals an approximate power law relation of the form
7 ox 132, Of course this dependence reminds us of Kepler’s third law, Equation
(3.100. We expect sorme scatier in the points since our adaptive routine only

34 " CHAPTER 3. ODES Il: ADVANCED METHODS

120 60 : 1500

. Kiretic
Prremial
Tola\

270 0.1 93 . {).4 0.
Distance 1AU) Tlme)

5
Figure 3.9: Graphs of trajectory and energy from the orbit program using
adaptive Runge-Kutta. The initial radial distance is 1 AU, and the initial
tangential velocity is /2 AU/yr. The initial time step is 7 = 0.1 yr; 40 time
steps are computed. "

10 ‘ 3
N
Tt
,
+A
o .
107 o R
+ +
= o
= + +
13 N +
N +
5 N
10 L. . .!+ +
LA
+of
+
N
_4 ; —
10 -2 -1 (]
10 10 10

Distance (AU)

Figure 3.10: Time step, 7, as a function of radial distance from the orbit pro-
gram, using adaptive Runge-Kutta. Parameters are the same as for Figure 3.9.

3.3 ADAPTIVE METHODS 85

Figure 3.11: Double pendulum.

estimates the optimum time step.

EXERCISES

14. Consider the central force

Flr) = _GMm (1 _ g)r

T3 r

where « is a constant. Modify the orbit program to compute the motion of an object
under this force law. Using adaptive Runge-Kutta, show that the orbit precesses
360(1—a)/a degrees per revolution, where o = /1 + GMm2a/L? and L is the angular
momentum. [Computer]

15. Modify orbit to add a drag force on the comet, Fq = C|v|v (see Section 2.1).
Take the drag force to be small relative to the gravitational force Fy by fixing the
constant. ' such that [Fy(r1)| = 100|Fg(v1)|, where ri and vy are the initial position
and velocity, respectively. Show that the average kinetic energy (averaged over an
orbit) increases with time. [Computer]

16. In Rutherford scattering, an alpha particle is deflected as it passes near the
nucleus of a heavy atom. Write a program using adaptive Runge-Kutta to simulate
Rutherford scattering. Find the scattering angle for a 5-MeV alpha particle striking
a gold nucleus at an impact parameter of 10 femtometers. [Computer]

17. The adaptivé Runge-Kutta routine, rka, uses a generic method for estimating
the error. Write a modified version of rka that accepts a user-specified function that
computes A.. For the comet problem, write a function that evaluates the absolute
fracticnal error in the total energy. Test your routines and compare with the original
version of rka for the case considered in Figures 3.9 and 3.10. [Compurer]

18. Write an adaptive Runge-Kutta program to simulate a pendulum system con-
sisting of a bob of mass m and a massless rod with rest length L. The rod acts like a
stiff spring with spring constant k. Assume that the motion is in the zy plane. Obtain
plots of the motion for the values m = 0.1 kg, L = 1.0 mn, and spring constants in the
range k = 10° N/m (rubber) to & = 10° N/m (metal wire). How does the average
time step adopted by the algorithm vary with the spring constant? [Computer]

86 CHAPTER 3. ODES II: ADVANCED METHODS

19. Consider a double pendulum, as shown in Figure 3.11. Its Lagrangian is

wlﬁéf + %Lgéé + maglLa cos s

+ maLi Lafi6 cos(fy — B2} + (1 + ma)gLlycos d;

where = df/dt. (a) Use the Lagrangian to find the equations of motion. [Pencil] (b)
Write a program that uses adaptive Runge-Kuttato simulate the motion of the double
pendulum. Take g = 9.81 m/s®, my = mo, and L1 = Ly = 0.1 m; compute examples
of the motion for vawious initial conditions. Show that in some cases, the lower mass
sping completely around with an aperiodic motion. [Computer]

3.4 *CHAOS IN THE LORENZ MODEL

Optional sections, marked with an asterisk, moy be omitted without loss of continuity.

Unwinding the Mechanical Universe

Newton's success in solving the Kepler problem had effects far beyond physics.
It inspired the mechanistic picture of the universe, a philosophy developed by
Laplace and others. The orbits of the planets had the regularity of a well-made
clock. Even long-term events, such ag solar eclipses and comet returns, were
predictable to high accuracy. For centuries it was believed that other physical
phenomena, such as weather, were only unpredictable due to the large number
of variables in the problem. With the arrival of modern computers it was hoped
that long-range weather prediction would soon be within our grasp.

In the early 1960s, however, an MIT meteorologist named Ed Lorenz saw
that it would not be so. He found that the weather was intrinsically unpre-
dictable, not because of its complexity, but because of the nonlinear nature
of the governing equations. -Lorenz formulated a simple model of the global
weather, reducing the problem to a 12-variable system of nonlinear ODEs. What
he observed was aperiodic behavior that was extremely sensitive to the initial
conditions.’ '

To study this effect more easily, he introduced an even simpler model with
only three variables. The Lorenz model [117] is

dz

P aly — «)

dy

o T re-y-wz {3.32)
dz

il xy — bz

where o, 7. and & are positive constants. These simple equations were origi-
nally developed as a model for buoyant convection in a fluid. Their derivation

TFor a historical account of Lorenz’s discovery, see Gleick [56].

g, *CHAOS IN THE LORENZ MODEL 87

Table 3.6: Qutline of program lorenz, which computes the time series for the
Lorenz model (3.32).

Set initial state [z,y,z] and parameters [r,a,b].
¢ Loop over the desired number of steps.

— Record values of z, y, 2, t, and 7 for plotting.

— Find new state using rka, the adaptive Runge-Kutta function.

Print maximum and minimum time step returned by rka.

Graph the time series x().

Graph the (z,y,) phase space trajectory.

See pages 94 and 102 for program listings.

Table 3.7: Outline of function Yorzrk, which is used by the Runge-Kutta rou-
tines to evaluate the Lorenz equations. :

o Inputs: x(t), ¢ (not used), [r,o,b).
o Outpui: dx{t)/dt.
e Compute dx(t)/dt = [dz/dt dy/dt dz/dt] (see (3.32)).

See pages 96 and 104 for program listings.

is beyond the scope of this text, hut, briefly, x measures the rate of convec-
tive overturning, and y and » measure the horizontal and vertical temperature
gradients. The parameters ¢ and & depend on the fluid properties and the ge-
ometry of the container; commonly, the values ¢ = 10 and b = 8/3 are used.
The parameter r is proportional to the applied temperature gradient.

Lorenz Model Program

A program, called lorenz, which solves the Lorenz model using our adaptive
Runge-Kutta method is outlined in Table 3.6. This program does little more
than repeatedly call rka and graph the results. The function lorzrk (see Ta-
ble 3.7) specifies Equations {3.32) for use in the Runge-Kutta routines.
Although an adaptive scheme has many advantages, it may not always be
the best method to use for a particular probletn. Note that for the runs of the

88 CHAPTER 3.- ODES II: ADVANCED METHODS

Lorenz model time series Lorenz model tima serigs
20, .
15} f . ’ 15| & [i
] |‘ ol Lo I cq ! il
[| [T \-l I || ! ‘l‘ I i ‘\
| | T - 1
10“ |‘ II|\|| “lllll\ ‘l 0|| | |“\II || I“ |
5!' il ,“.H A - 5—.“ ,“ HHH Ll
_ ST A I R
g0/ P -2 R
Vi -y 3l - . n ‘“'I‘ RN
LR 1 b | i ! P
-5 ! s Ll _] | R
SO T T TN IR R I
[[1 i
-10 ‘I‘ | dali |‘ l | ‘|| -0 | | vy | i IR
Ul B I 'y [L byl | [
15 ! I T ! !
20 2 4 e 8 1w 1 4 % 2 4 3 8 10 1z 14
Time Time

Figure 3.12: Time series z(t) for the Lorenz model as computed by lorenz.
The parameters are 0 = 10, b = 8/3, and r = 28. The initial condition is [z y
z] = [1 1 20] for the plot on the left and [# y 2] = [1 1 20.01] for the plot on the
right.

lorenz program described below, the value of the time step 7 does not vary by
much more than one order of magnitude. This is one argument for returning to
our nonadaptive metheds. Another is that nonadaptive methods automatically
produce data points that are evenly spaced in time, the form required by most
data analysis techniques. In an exercige, you are asked to make a comparison
between simple and adaptive Runge-Kutta for the Lorenz problem and judge
for yourself.

Two examples of time series obtained by the lorenz program are shown in
Figure 3.12. The values of z(#) oscillate in a fashion that does not seem much
more complicated than simple harmonic motion; results for y(t) and z(t) are
similar. However, in Chapter b we analyze the power spectra for these time
series and find they have a complex structure. More importantly, Figure 3.12
shows that slightly different initial conditions will produce significantly different
time series. Comparing the two plots of (t) shows that the evolution is initially
very similar, but later the two time series are completely different. This extreme
sensitivity to initial conditions led Lorenz to speculate that, if weather obeyed
similar dynamics, long-term prediction was impossible. He termed this the
butterfly effect: Even a single butterfly flapping its wings could, in the long run,
influence the world’s weather. Because the trajectories of the Lorenz model are
extremely sensitive to initial conditions, the motion is considered chaotic.

Figure 3.13 shows the trajectory in the three dimensional space of the vari-
ables @, y, and ». Now the motion looks far more interesting. The trajectory is
said to lie on an attractor; you may think of this motion as a sort of aperiedic
orbit. This picture helps us understand the butterfly effect and the origin of the
chaotic motion. The center portion of the attractor mixes trajectories, send-
ing some to the left lobe, some to the right. Trajectories with nearly identical
initial conditions are eventually separated in much the same way as adjacent
particles of flour are separated in the kneading of bread.[63] The three points
marked by asterisks in Figure 3.13 are the steady states of the Lorenz model;

o4 *CHAOS IN THE LLORENZ MODEL 89

Lorenz mode! phase space

Figure 3.13: Phase space trajectory for the Lorenz model. The initial condition
is [z y z] = [1 1 20]; parameters are the same asg in Figure 3.12. Steady states
are indicated by asterisks.

their definition is discussed in the next chapter. :

Although many celestial mechanics problems are accurately modeled using
two-body interactions, objects moving in our solar system experience a gravi-
tational attraction to all the planets. Specifically, the orbits of highly elliptical
comets can be significantly influenced by the gas giants, especially Jupiter, and,
given these perturbations, their motion may actually be chaotic![32, 97]

EXERCISES

20, Try running the lorenz program with the following values for the parameter r:
(a) 0, (b) 1, () 14, (d) 20, (e) 100. Use the initial condition [z 2] = [1 I 20]. Describe
the different types of behavior found and compare with Figure 3.13. [Computer]
21. For r = 28, txy the following initial conditions: [z y 2] = (a) [0 0 0]; (b) [0 0 20];
{c) [0.01 0.01 0.01]; (d) [100 100 1€0]; (e) [8.5 8.5 27]. Describe the different types of
behavior found and compare with Figure 3.13. [Computer]
22, The following set of nonlinear ODEs is known as the Lotka-Volterra model:

Z—? = (a — bz — ey)z; % ={—d+ex)y
where a, b, ¢, d, and e are positive constants. (a) These equations model a simple
ecological system of predators and prey.[99] For example, the variables # and y could
represent the number of hares and foxes in a forest. Describe the physical meaning of
each of the five parameters. {Pencil] (b} Write a program using adaptive Runge-Kutta
to compute the trajectory (z(¢),y(t)) and plot y(t} versns x(¢) for a variety of initial
conditions using a = 10, b = 107, ¢ = 0.1, d = 10, and e = 0.1. Take z(0) > 0,
y(0) > 0, since the number of animals should be positive. [Computer]

90 CHAPTER 3. ODES II: ADVANCED METHODS

23. Consider the Hopf model, given by the nonlinear ODEs:

%=w+y—m(w2+y2); %=wm+ay—y(m2+y2)

(a) By transforming these equations Into polar coordinates show that when a < 0,
trajectories spiral toward the origin, and when ¢ > 0 they spiral toward a circle of
radius /@ centered at the origin. [Pencil] (b) Write a program that uses the adap-
tive Runge-Kutta routine to compute the trajectories of the Hopf model. Plot these
trajectories and confirm the result proven in part (a). [Computer]

24, Write a nonadaptive version of the lorenz program that uses rk4. Run the
ronadaptive version using the minimum time step used by the adaptive version. Re-
member that rka is effectively nsing a time step of %T, since this is the step size for
the small steps. Modify the main loop so that the iteration stops at t = 10. Determine
the relative efficiency of the two methods (nse the MATLAB flops command to count
floating-point operations or the C++ timing routines in the <time.h> library). [Com-
puter]

25. One characteristic of chaotic dynamics is sensitivity to initial conditions. Using
k4, write a nonadaptive version of the lorenz program that simultaneously computes
the trajectories for two different initial conditions. Use initial conditions that are
very close together (e.g.. {1 1 20} and [1 1 20,001]). Plot the distance between these
trajectories as a function of time, using both normal and logarithmic scales. What
can you say about how the distance varies with time? [Computer] .

26. Repeat the previous exercise using the: (a} Lotka-Volterra equations (see Exercise
3.223: (1) Hopf model {see Exercise 3.23). [Computer] :

BEYOND THIS CHAPTER

While adaptive fourth-order Runge-Kutta is a good general-purpose algorithm,
for some problems it is useful to employ more advanced methods. Specifi-
cally, if the solution is smooth and you want to minimize the number of evalu-
ations of f(z), you should consider trying Bulirsch-Stoer or predictor-corrector
methods.[118] These are high-accuracy methods that, under the right condi-
tions, allow von to use very large time steps. I especially recommend that you
try Bulirsch-Stoer if your computational budget is limited and the routine is
available in a library package.

On some problems you may find that the adaptive Runge-Kutta method
demands an extremely small time step. For example, suppose that you wanted
to simulate a pendulum consisting of bob of mass m at the end of a massless
rad of stiffness k& and rest length L (see Exercise 3.18). The period of oscillation
for a simple pendulum is T, = 2m/L,/g, where L, ~ L ig the length of the
pendutum. The period of vibration for a spring is Ty = 2« \/m. Tf the rod is
very stiff (large k), then T, < Tp. The time step will have to be less than the
period of vibration so 7 < Tp. As you discover in Exercise 3.18, we may need
10 evaluate 10* time steps to simulate a single swing of the pendulum. :

Systems of ordinary differential equations arising from physical problems
with vastly different time scales, such as this spring-pendulum system, are said

APPENDIX A: MATLADB LISTINGS 91

to be stiff. Another common example of such a system is a chemically reacting
llow. The relaxation rates for the chemistry are often many orders of magnitude
faster than the hydrodynamic time scales. Stiff ODEs are commonly solved
using implicit schemes.{54] MATLADB bhas several routines {odel5s, ode23tb,
ete.) for solving stiff ODEs.

APPENDIX A: MATLAB LISTINGS

Listing 3A.1 Program orbit. Computes the orbit of a comet about the Sun
using the Euler, Euler-Cromer, fourth-order Runge-Kutta, or adaptive Runge-Kutta,
method. Uses rk4 (Listing 3A.2), gravrk (Listing 3A.3), and rka (Listing 3A.4).

% orbit - Program to compute the orbit of a comet.
clear all; help orbit; Y% Clear memory and print header

%* Set initial position and velocity of the comet.

r0 = input{’Enter initial radial distance (AU): ’);

v0 = input{(’Enter initial tangential velocity (AU/yr): ’};
r=[r00]; v = [0v0];

state = [r(1) r(2) v(1) v(2) 1; % Used by R-K routines

%% Set physical parameters (mass, G#*M)

GH = 4*pi~2; % Grav. const. * Mass of Sun (au"3/yr~2)

mass = 1.; % Mass of comet

adaptErr = 1.e-3; ¥ Error parameter used by adaptive Runge-Katta
time = 0;

%* Loop over desired number of steps using specified

% numerical method.

nStep = input(’Enter number of steps: ’);

tau = input(’Enter time step (yr): ?);

NumericalMethod = menu{'Choose a numerical method:’,
’Euler’,’Euler-Cromer’, ‘Runge-Kutta’,’Adaptive R-K’);

for iStep=1:nStep

%* Record positicn and energy for plotting.

rplot (iStep) = norm(r); % Record position for polar plot
thplot (iStep) = atan2{xr(2),r(1)};

tplot (iStep) = time;

kinetic(iStep) = .G#mass*norm(v)~2; % Record emergies

potential (iStep) = - GM#mass/norm{r);

%* Calculate new position and velocity using desired method,
1f{ NumericalMethod == 1 }

accel = -GM+r/norm(r)"3;

r = r + tau*v; % Euler step

v = v + taukaccel;

time = time + tau;

92 CHAPTER 3. ODES [I: ADVANCED METHODS

elseif (NumericalMethod == 2)
accel = —GM*r/norm(xr)~3;
v = v + tau*accel;
r = T + tawkv; % Euler-Cromer step

time = time + tau;
elseif (NumericalMethod == 3)
state = rz4{state,time,taun,’gravrk’,GH);
r = [state(1) state{2)]; % 4th order Runge-Kutta
v = [state(3) state(4)];
time = time + tau:;

else
[state time tan] = rka(state,time,tau,adaptErr,’gravrk’,GM);
r = [state(1) state(2)]; % Adaptive Runge-Kutta
v = [state(3) state(4)];

end

end

%#* Graph the trajectory of the comet.

figure(1); clf; % Clear figure 1 window and bring forward
polar (thplot,rplot,’+'); ¥ Use polar plot for graphing orbit
xlabel(’Distance (AU}?); grid;

pause(l) % Pause for 1 second before drawing next plot

%* Graph the energy of the comet versus time.

figure(2); clf; % Clear figure 2 window and bring forward
totalE = kinetic + potential; % Total en=srgy
plot(tplot,kinetic,’—.’,tplot,potential,’——’,tplot,totalE,’—’)

legend(’Kinetic’,’Potential’,’Total’);
xlabel(’Time (yr)’); ylabel{’Energy (M AUT2/yr~2)’);

Listing 3A.2 Function rk4. Fourth-order Runge-Kutta routine,

function xout = Tk4(x,t,tau,derivsRK,param)

% Runge—Xutta integrator (4th order)

% Input arguments =

% x = current value of dependent variable

% t = independent variable (usually time)

% tau = step size (usually timestep)

% derivsRK = right hand side of the ODE; derivsRK is the
% name of the function which returns dxz/dt
% Calling format derivsRK(x,t,param).

% param = extra parameters passed to derivsRK

% Output arguments -

% xout = new value of x after a step of size tau
half_tau = O.b*tau;

Fi = feval(derivsRX,x,t,param);

t_half = t + half_tau;

xtemp = x + half_ tauxFi;

APPENDIX A: MATLARB LISTINGS 03

F2 = feval(derivsR¥,xtemp,t_half,param);
xtemp = x + half_tauxF2;

F3 = feval(derivsRK,xtemp,t_half,param);
t_full = t + tau;

xtemp = x + tauxF3;

F4 = feval{derivsRK,xtemp,t _full,param);
xout = x + tau/6.#(F1 + F4 + 2_#{F24F3));
return;

Listing 3A.3 Function gravrk. Used by rk4 (Listing 3A.2) to define the equations
of motion for the Kepler problem.

function deriv = gravrk(s,t,GM)
% Returns right-hand side of Kepler ODE; used by Runge-Kutta routines
% Inputs

% s State vector [r{1) r(2) v(1) v(2}]

% t Time (not used)

% GHM Parameter G#*M (gravitational const. * solar mass)
% Dutput

% deriv Derivatives [dr(1}/dt dr(2}/dt dv(l)/dt dv(2)/dt]

yA Cbmpute acceleration

r = [s(1) s(2)]; ¥ Unravel the vector s into positicn and velocity
v = [s(3) s(4)];
accel = -GM#r/norm(r)~3; % Gravitatiomal acceleration

%* Return derivatives [dr{1)/dt dr(2)/dt dv(l)/dt dv(2)/dt]
deriv = [v(1) v(2) accel(l) accel{2)];
return;

Listing 3A.4 Function rka. Adaptive Runge-Kutta routine. Uses rkd (Listing
3A.2).

function [xSmall, t, tau] = rka(x,t,tau,err,derivsRK,param)
% Adaptive Runge-Kutta routine

% Inputs

%oz Current value of the dependent variable
ot Independent variable {usually time)

% tau Step size (usually time step)

4 err Desired fractional local truncation error
% derivsRK Right hand side of the ODE; derivsBRK iz the
% name of the function which returns dx/dt
% Calling format derivsRK(xz,t,param).

% paramn Extra parameters passed to derivsREK

% Dutputs

% x8mall New value of the dependent variable

4ot New value of the independent variable

4 tau Suggested step size for next call to rka

94 ' CHAPTER 3. ODES II: ADVANCED METHODS

Y*% Set initial variables
tSave = t; xBave = X; % Save initial values
safel = .9; safe2 = 4.; V% Safety factors

%* Loop over maximum number of attempts to satisfy error bound
maxTry = 100;
for iTry=Ll:maxTry

%# Take the two small time steps

half_tau = 0.5 * tau;

xTemp = rk4 (xSave,tSave,half_tau,derivsRK,param);
t = tSave + half_tau;

x8mall = rk4(xTemp,t,half tau,derivsRK,param);

%* Take the single big time step
t = tSave + tau;
#Rig = rk4(xSave,tSave,tau,derivsBK,param);

%* Compute the estimated truncation error
scale = err * (abs{xSmall) + abs(xBig))/2.;
¥Diff = xSmall - xBig;

errorRatio = max(abs{(xDiff) ./(scale + eps) };

%% Estimate new tau value (including safety factors)
tau_cld = tau;

tau = safel*tau_old*errorRatio~(-0.20);

max (tan,tan_old/safe?) ;
mia{tau,safel*tau_old);

taun

tau

Y% If error is acceptable, return computed values
if (errorRatio < 1) return; end
end

%* Issue error message if error bound never satisfied
error(’ERROR: Adaptive Runge-Kutta routine failed’);
return;

Listing 3A.5 Program lorenz. Computes the time evolution of the Lorenz model.
Uses rka (Listing 3A.4) and lorzrk (Listing 3A.6).

% lorenz - Program to compute the trajectories of the Lorenz
% equations using the adaptive Runge-Kutta method.
clear; help lorenz;

%#* Set initial state x,y,z and parameters r,sigma,b
state = input(’Enter the initial position [x y z]: ’);
r = input(’Enter the parameter r: ’);

gigma = 1¢.; % Parameter sigma

b =28./3.; % Parameter b

APPENDIX A: MATLADB LISTINGS

param = [r sigma bl; ¥ Vector of parameters passed to rka
tau = 1; % Initial guess for the timestep
err = 1.é-3; % Error tolerance

%* Loop over the desired number of steps
time = Q;

nstep = input (’Enter number of steps: ’};
for istep=1:nstep

%* Record values for plotting
x = state(l); y = state{(2); z = state(3);
tplot{istep) = time; tauplot{istep) = tau;
xplot(istep) = x; yplot{istep) = y; zplot(istep) = z;
if(rem(istep,50) < 1)

fprintf (’Finished %g steps out of %g\n’,istep,nstep);
end

#* Find new state using adaptive Runge-Kutta
[state, time, tau] = rka(state,time,tau,err,’lorzrk’,param);

end

%* Print max and min time step returned by rka
fpriantf (' Adaptive time step: Max = g, Min = ¥g \n’,
max{tauplot(2:nstep)), min(tauplot{2:nstep)));

4* Graph the time series x(t)

figure(1); clf; ¥ Clear figure 1 window and bring forward
plot{tplot,xplot,’-*)

xtabel(’Time’); ylabel('x{t)’)

title(’Lorenz model time series’)

pause(1) % Pause 1 second

%* Graph the x,y,z phase space trajectory

figure(2); clf; ¥ Clear figure 2 window and bring forward
% Mark the location of the three steady states

x_ss(1) = 0; y.es(l1} = 0; z_ss5(1) =0
x 88(2) = sqrt(b*(z-1)); y_ss(2) = x_ss3(2); z_ss(2) = r-
x_85(3) = -sqrt(b+(x-1)); y_ss(3) x_ss(3); z_ss(3) = r
plot3{xplot,yplot,zplot,’~’,x_ss5,y_s5,z_ss,'%%)

view([30 201); V¥ BRotate to get a better view

grid; % Add a grid to aid perspective
xlabel{’x’); ylabel(’y’); =zlabel{’z’);

title(’Lorenz model phase space’);

96 CHAPTER 3. ODES II: ADVANCED METHODS

Listing 3A.6 Function lorzrk. Used by program lorenz (Listing 3A.5}; defines
equations of motion for the Lovenz model.

function deriv = lorzrk(é,t,param)
% Returns right-hand side of Lorenz model [DEs

% Inputs

% 5 State vector [z y =zl
% t Time (not used)

% param Parameters [r sigma b]
% Dutput

% deriv Derivatives [dz/dt dy/dt dz/dt]

%* For clarity, unravel imput vectors
x=s(1); y=535@); z=28(3);
r = param(1); sigma = param(2); b = param(3);

%* Return the derivatives [dx/dt dy/dt dz/dt]
deriv(1l) = sigma*(y-x);

deriv(2) = r*x - y - x%*z;
deriv(3) = x*y - b#*z;
return;

APPENDIX B: C++ LISTINGS

Listing 3B.1 Program orbit. Computes the orbit of a comet about the Sun
using the Euler, Euler-Cromer, fourth-order Runge-Kutta, or adaptive Runge-Kutta
method. Uses rk4 (Listing 3B.2), gravrk (Listing 3B.3), and rka (Listing 3B.4).

// orbit - Program to compute the orbit of a comet.
#include "NumMeth.h"

void gravrk{ double x[], double %, double param[], double deriv[});
void rk4(double x[}, int nX, double t, double tau,
void (*derivsRK) (double x[], double t, double paraml[], double deriv[]),
double param[]);
void rka(double x[], int n¥X, doublek t, double& tau, double err,
void (*derivsBRK) (double x[], double t, double param[], double deriv[]),
double param[]};

veid main() {

//* Set initial position and velocity of the comet.

double rl, v0;

cout << "Enter initial radial distancé (AUY: "; cin >> rO;

cout << "Enter initial tangential velocity (AU/yr): "; cin >> vO0;

APPENDIX B: C++ LISTINGS 97

double r[2+1], v[2+1], state[4+1], accel[2+1}:

r[1) = r0; r[2] = ©; +v[1]l = 0; v[2] = +0;

state[1] = r[1l; statel[2] = r[2]; // Used by B-K routines
state[3] = v[1]; statel4] = v[2]:

int nState = 4; // Number of elements in state vector

//* Set physical parameters (mass, GxM)
const double pi = 3.141592654;

double GM = 4#pis*pi; /{ Grav. comst. * Mass of Sun (au"3/yr-2)
double param[i+1i]; param[1] = GM;
double mass = 1.; // Mass of comet

double adaptErr = 1.e-3; // Error parameter used by adaptive Runge-Kutta
double time = O;

//*% Loop over desired number of steps using specified
// numerical method.
cout << "Enter number of steps: ";
int nStep; <c¢in >> nStep;
cout << "Enter time step (yr): ";
double taw; cin >> tau;
cout << "Choose a numerical method:" << endl;
cout << "1) Euler, 2) Enler-Cromer, " << endl
<< "3) Runge-Kutta, 4) Adaptive R-K: ";
int method; cin >> method;
double *rplot, *thplot, #tplot, *kinetic, *potential; // Plotting variables
rplot = new double [nStep+1]; thplot = new double [nStep+l];
tplot = new double [nStep+l];
kinetic = new double [nStep+l]; potential = new double [nStep+il;
int iStep;
for(iStep=1; iStep<=nStep; iStep++) {

//% Record position and energy for plotting.

double nornR = sqrt(r[11+r(1] + r[2]*r[2]);

double normV = sqrt(v[1]+v[1] + v[2]*v[2]);

rplot[iStep]l = normR; // Record position for plotting
thplot[iStep] = atan2(r[2],r[1]1);

tplot [iStep] = time;

kinetic[iStep] = O.B*mass*normV+normV; /{ Record energies
potential [iStep] = - GM+*mass/normR;

//* Calculate new position and velocity using desired method.
if{ method == 1) {

accell[1] = -GM*r[1]/ (normR*normR*normR) ;

accell2] ~GM*r[2] / (normR*normR*normR) ;

r[1] += tauxv[1]; /{ Euler step

r[2] += tauxv[2];

v[1] += tauxaccel[l];

v[2] += tau*accell[2];

time += tau;

98 CHAPTER 3. ODES II: ADVANCED METHODS

else if(method == 2) {
accell1] ~GM#r [1]/ (normR*normR+normR) ;
accel[2] -GM*r [2]/ (normR*normR*normR) ;
v[1] += tau*accel[1l:
v[2] += tantaccel[2}:
r[1] += tausviil; // Euler-Cromer step
r[2] += tauxv[2];
time += tau;

}
else if(method == 3) {
rkd(state, nState, time, tau, gravrk, param);
r[1] = state[l]; r{2] = state[2]; // 4th order Rumge-Kutta
v[1] = state[3]; v[2] = state[4];
time += tau;

T
else {
rka(state, nState, time, tau, adaptirr, gravrk, param) ;
r[1] = state[1l; r[2] = state[2]; // Adaptive Rumge-Kutta
v[1] = state[3]; v[2] = state[4];
}
¥

//* Print out the plotting variables:
' thplot, rplot, potential, kinetic
ofstream thplotOut ("thplot.txt"), rpletOut("rplot.txt"),
tplotOut ("tplot.txt"), potentialOut("potential.txt"),
kineticOut ("kinetic.txt");
int i;
for(i=1; i<=nStep; it++) {
thplotOut << thplet[i] << endl;
rplotDut << rplot[i] << endl;
tpletDut << tplot[i] << endl;
potentialQut << potential[i] << endl;
kineticOut << kinetic[i] << endl;
}

delete [] rplot, thplot, tplot, kinetic, potential;

}

/#%%%% To plot in MATLAB; use the SCript belowr #H%kkkkkiokikrkkakstkkk
load thplot.txt; load rplet.txt; load tplot.txt;

load potential.txt; lcad kinetic.txt;

%* Graph the trajectory of the comet.

figure(1); e¢lf; ¥ Clear figure I window and bring forward
polar (thplot,rplot,’+’); % Use polar plot for graphing orbit
xlabel{’Distance (AU)’); grid;

pause(1) ¥ Pause for 1 secend befere drawing next plot

%* Graph the energy of the comet versus time.

figure(2); clf; % Clear figure 2 windovw and bring forward

APPENDIX B: C++ LISTINGS 99

totalE = kinetic + potential; % Total energy

plot (tplot,kinetic,’-.?,tplot,pstential, ’—-’,tplot,totalE,’-*)
legend (’Kinetic’, ’Potential’,*Total’);

xlabel (*Time (yr)’); ylabel(’Energy (M AU~2/yr~2)');

********************************8*********************************/

Listing 3B.2 Function rk4. Fourth-order Runge-Kutta routine.
#include "NumMeth.h"

veid rkd4(dowble x[], int nX, double t, double tau,
void (*derivsRK) (double x[], double t, double param[], double derivl[]),
double param[])} {

// Runge-Kutta integrator (4th order)

// TInputs

/o x Current value of dependent variable

[/ nX Number of elements in dependent variable x
/ot Independent variable (usually time)

/f tau Step size (usually time step)

// derivsRK Right hand side of the (DE; derivsRK is the
7/ name of the function which returns dx/dt
// Calling format derivsRK{x,t,param,dxzdt).
// param Extra parameters passed to derivsREK

// Dutput

/o ox New value of x after a step of size tau

double *F1, *F2, *F3, *F4, *xtemp;

Fl1 = new double [nX+1]; F2 = new double [nX+1];
F3 = new double [nX+1]; F4 = new double [nX+1];
xtemp = new double [nX+1];

//+* Evaluate F1 fix,t).
(#derivaRK) (x, t, param, F1);

//* Evaluate F2 = f£(x+tautF1/2, t+tau/2).
double half_tau = O.5%tan;
double t_half = t + half_tau;
int i;
for(i=1; i<=nX; i++)

xtemp[i] = x[i] + half_tausF1[i];
(*derivsREK) (xtemp, t_half, param, F2):

//* Evaluate F3 = £f{ x+tauxF2/2, t+tau/2).
for(i=1; i<=aX; i++)

xtemp[i] = z[i] + half_tauwsF2[i];
(*derivsRK) (xtemp, t_half, param, F3);

//* Evaluate F4 = f{ x+tau*F3, t+tau).
double t_full = t + tau;

100 CHAPTER 3. ODES II: ADVANCED METHODS

for(i=1; i<=nX; i++)
ztemp[i] = x[il + tauxF3[il;
(*derivsRK) (ztemp, t_full, param, F4 };

//*% Return x(t+tan) computed from fourth-order R-K.
for(i=1; i<=nX; i++)

x[i] += taw/6.*(F1[1i] + F4[i] + 2.*(F2[i]+F3[il});

delete [} F1, F2, F3, F4, xtemp;

Listing 3B.3 Function gravrk. Used by rk4 {Listing 3B.2) to define the equations
of motion for the Kepler problem.

#include "NumMeth.h"
void gravrk(double x[], double %, double param[], double deriv[]) {

// Returns right-hand side of Kepler ODE; used by Runge-Kutta routines
// Inputs

// x State vector [r(1) r(2) v(1) v(2}]

// t Time (not used)

/ param Parameter G#M (gravitatiomal const. * solar mass)
// Dutpat ’

// deriv Derivatives [dr(1)/dt dr(2)/dt dv(1)/dt dv(2)/dt]

//* Compute acceleration

double GM = param[1];

double Tl = x[1], r2 = x[2]; // Unravel the vector s into

double vl = z[3], v2 = x[4]; // position and velocity

double normR = sqrt(risrl + r2+x2);

double acceli = -GM#rl/{(normB*normR*normR); // Gravitational acceleration
double accel? = -GM#r2/(normR+normR+normR) ;

//% Return derivatives [dr[1]1/dt dr[2]/dt dv[1]/dt dv[2]/dt]
deriv[i] = v1; deriv[2] = v2;
deriv[3] = accell; deriv[4] = accell;

Listing 3B.4 Function rka. Adaptive Runge-Kutta routine. Uses rk4 (Listing
3B.2).

#include "NumMeth.h"
void rk4{double x[], int nX, double t, double tau,
void {*+derivsRK) (double x[], double t, double param[], donble deriv[]),

double param[]);

void rka(double x[1, int nX, doublek t, double& tau, double err,

APPENDIN B: (4 4 LISTINGS 101

void (rderivsRK) {double x[], double t, double param[], double deriv[]),
double param[]) {
// Adaptive Runge-Kutta routine

// Inputs

/lox Current value of the dependent variable

// nX Number of elements in dependent variable x
P/ Independent variable (usually time)

// tau Step size (usually time step)

/f err Desired fracticnal local truncation error
/7 derivsRK Right hand side of the ODE; derivsRK is the
// name of the function which returns dx/dt
// Calling format derivsRK(x,t,param).

// param Extra parameters passed to derivsRE

// Outputs

/0 x New value of the dependent variable

/ot New value of the independent variable

// tau Sugpested step size for next call to rka

//%¥ Set initial variables
double tSave = % // Bave initial value
double safel = 0.9, safe? = 4.0; // Safety factors

//* Loop over maximum number of attempts to satisfy error bound
double #xSmall, #*xBig;

xSmall = new double [nX+1]; xBig = new double [nX+i];

int i, iTry, masTry = 100;

for{ iTry=1; iTry<=maxTry; iTry++) {

//* Take the two small time steps
double half_tau = 0.5 =» tau;
for{ i=1; i<=nX; i++)

x8mallli]l = x{i];
rk4(xSma11,nX,tSave,half_tau,derivsRK,param);
t = tSave + half_tau;
rk4{xSmall,nX,t,half_tau,derivsRK,param);

//* Take the single big time step
t = tSave + tau;
for{ i=1; i<=nX; i++)
xBiglil = x[i];
rk4(xBig,nX,tSave,tau,derivsRK,param);

//* Compute the estimated truncation arror
double errorRatio = 0.0, eps = 1.0e-18;
for(i=1; i<=nX; i++) {
double scale = err * {fabs(zSmall[i]} + fabs (xBig[i]))/2.0;
double xzDiff = xSmalll[i] - xzBigli];
double ratio = fabs(xDiff)/(scale + eps) ;
errorRatio = (errorRatio > ratio) 7 errorRatio:ratioc;

}

102 CHAPTER 3. ODES II: ADVANCED METHODS

//% Estimate new tau value (including safety factors)
doukle tau_old = tau;

tau = safel*tau_old*pow{errorRatio, -0.20);

tan {tau > tan_old/safe2} 7 tau:tau_old/safe?;

tau = (tau < safe2+tau_old) T tau:safe2#*tau_cld;

//* If error is acceptable, return computed values
if (errorRatio < 1) {
for(i=1; i<=nX; it++)
x[i] = x8malllil;
return;
X
}

//* Issue error message if error bound never satisfied
cout << "ERROR: Adaptive Rumge-Kutta routine failed" << endl;
} .

Listing 3B.5 Program lorenz. Computes the time evolution of the Lorenz model.
Uses rka (Listing 3B.4) and lorzrk (Listing 3B.6).

// lorenz - Program to compute the trajectories of the Lorenz
// equations using the adaptive Runge-Kutta method.
#include "NumMeth.h"

void lorzrk(double x[], double t, double param[], double deriv[]);

void rka(doubkle x[], int mX, doublek t, double& tau, double err,
void {*derivsRK) (double x[], double t, double param[], double deriv([]),
double param[]);

void main{) {

//* Set initial state x,y,z and parameters r,sigma,b
cout << "Enter initial state (x,y,z)" << endl;

double x; cout << "x = "; cin >> x;
double y; cout << "y ="; cin >> y;
double z; cout << "z = '"; c¢in >> =;
const int nState = 3; // Humber of elements in state

double state[nState+l];
state[1] = x; state[2] = y; statel[3] = z;
cout << "Enter the parameter r: ";

double r; cin >> r;

double sigma = 10.; // Parameter sigma

double b = 8./3.; // Parameter b

double param[3+i]; // Vector of parameters passed to rka
param[1] = r; param[2] = sigma; param[3] = b;

double tau = 1.0; // Initial guess for the timestep
double err = 1.e-3; // Error tolerance

APPENDIX B: C++ LISTINGS 103

//* Loop over the desired number of steps

double time = Q;

cont << "Enter number of steps: ";

int iStep, nStep; cin >> nStep;

double *tplot, *tauplot, *xplot, *yplot, *zplot;

tplot = new double [nStep+1]; tauplot = new double [nStep+1];
xplot = new double [nStep+1l; // Plotting variables

yplot = new double [nStep+l]; =zplot = new double [nStep+1];
for(iStep=1; iStep<=nStep; iStep++) {

//% Record values for plotting
x = statel[il; vy = state[2]; z = statef[3];
tplot[iStep] = time; tauplot[iStep] = tau;
xplot[iStep]l = x; yplot[iStep] = ¥i zplot[iStep] = z;
if((iStep % 50) < 1) . :
cout << "Finished " << iStep << " steps out of "
<< nStep << endl;

//* Find new state using adaptive Runge-Kutta
rka(state,nState,time,tau,err,lorzrk,param);

}

//* Print may and min time step returned by rka
double maxTau = tauplot[2], minTau = tauplot[2];
int 1i;
for (' i=3; i<=nStep; i++)} {
maxTan = (maxTau > tauplot[i]) ? maxTau:tauplot[il;
minTau = (minTau < tauplot[i]) 7 minTau: tauplot[i];
}
cout << "Adaptive time step: Max = " << maxTau <<
" Min = " << minTau << endl;

// Find the location of the three steady states

double x_ss[3+1], y_ss[3+1], z_sa[3+1];

x_ss[1] = 0; y_ss[1] = 0; z_ss[1] = 0;
x_ss[2] = sqrt(b*{(r-1)); y-ss[2] x_ss[2]; z_ss[2] r-1;
x_s3[3] = -sqre(b*(x-1)); y_ss[3) = z_ss(3]; z_es[3] = r-1;

n
1

//% Print out the plotting variables:
/7 tplot, zplet, yplot, zplot, x_ss, y_S8, Z_ss
ofstream tplotOut ("tplot.txt"), xplotDut ("xplot.txt"),
yplotOut ("yplot.txt"), zplotDut("zplot.txt"),
x_ssOut("x_ss.txt"}), y_ss0ut{"y_ss.txt"),
z_ssDut("z_ss.txt");
for(i=1; i<=nStep; i++) {
tplotOut << tplot[i] << endl;
xplotDut << xplet[i] << endl;
yplotOut << yplot[i] << endl;
zplotDut << zplot[i] << endl;

104 CHAPTER 3. ODES II: ADVANCED METHODS

T

for{ i=1; i<=3; i++ } {
x_ssOut << x_ss[i] << endl;
y_ssOut << y_ss[il << endl;
z_ss0ut << z_ss[i] << endl;

}

delete [1 tplot, tauplot, xplot, yplot, zplot; // Release memory

}

/**xxxx To plot in MATLAB; use the script below kskkmsiicksokikikxt ik
load tplot.txt; load xplot.txt; load yplot.txt; load zplot.txt;
load x_ss.txt; load y_ss.tx%; load z_ss.txt;

Y%#* Graph the time series x(t}

figure(l); clf; % Clear figure 1 window and bring forward

plot (tplot,xplot,’-')

xlabel (’Time’); ylabel(’x(t)’)

title (’Lorenz model time series’)

pause(1) % Pause 1 second

%* Graph the z,y,z phase space trajectory

figure(2); clf; ' Clear figure 2 window and bring forward
plot3(xplot,yplot,zplot,’—’,x_ss,ydss,z_ss,’*’)

view([30 201); % Rotate to get a better view

grid; % Add a grid to aid perspective

xlabel(’x’); ylabel(’y’); zlabel(’z’};

title(’Lorenz model phase space’);

oAk o ko Rk S AR RO R A IOk RSk ok Rk R

Listing 3B.6 Function lorzrk. Used by program lorenz (Listing 3B.5); defines
equations of motion for the Lorenz model.

#include "NumMeth.h"

void lorzrk(deuble X[], double t, deuble param[], deuble deriv[I1} {
// Returns right-hand side of Lorenz model ODEs

// Inputs

/! X State vector [x y =]
/7 % Time (not used)

7/ param Parameters [r sigma bl
// Qutput

17 deriv Derivatives [dx/dt dy/dt dz/dt]

//* For clarity, unravel input vecters
double x = X[1]; double y = X[2]; double z = X[3];
double r = param[1]; double sigma = param[2]; double b = param[3];

//* Return the derivatives [dx/dt dy/dt dz/dt]
deriv[1] = sigma*(y-x);
deriv[2] = r*x - y - x*z;

APPENDIX B: C++ LISTINGS 105

deriv[3] = x*y - b*z;
return;

}

Chapter 4

Solving Systems of
Equations

In this chapter we learn how to solve systems of equations, both linear and
nonlinear. You already know the basic algorithm for linear systems: Eliminate
variables until you have a single equation in a single unknown. For nonlinear
problems we develop an iterative scheme that at each step solves a linearized
version of the equations. To maintain continuity, the discussion is motivated
by the calculation of steady states, an important topic in ordinary differential
eguations.

4.1 LINEAR SYSTEMS OF EQUATIONS

Steady States of ODEs

Tn the last chapter we saw how to solve ODEs of the form

dx

— =f{(x,t 4.1

il {x.) (4.1)
wherex = &1 2 ... xn |. Given the initial condition for the N variables,

z;(t = 0), we can compute the time series @;(t) by a variety of methods (e.g.,
Runge-Kutta).

The examples we have studied so far have been autonomous sysiems where
f(x,t) = f(x), that is, f does not depend explicitly on time. For autonomous
systems, there often exists an important class of initial conditions for which
2;(#) = x;(0) for all 4 and ¢. These points in the N-dimensional space of our
variables are called steady states. If we start at a steady state we stay there
forever. Locating steady states for ODEs is important since they are used in
bifurcation analysis.[115]

It is easy to see that x* = [} #5 ... =z |isasteady state if and only

108 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

if
f{ix*) =0 (4.2)

or
Jilel, o 2%) = 0; for all ¢ {4.3)

since this implies that dx*/dt = 0. Locating steady states now reduces to the
problem of solving NV equations in the N unknowns z7. This problem is also
called “finding the roots of f(z).”

As an example, consider the simple pendulum; the state is described by the
angle 6 and the angular velocity w (see Section 2.2). The steady states are found
by solving the nonlinear equations

g

~Zsin =0, w*=0 (4.4
L

The roots are #* = 0,%x,£2r,... and o* = 0. Of course not all systems of

equations are so easy to solve,

It should be clear that root finding has many more applications than the
computation of steady states. In this chapter we consider a variety of ways ta
solve both linear and nonlinear systems. In this section and the next we consider
linear systems, leaving nonlinear systems to the latter part of the chapter.

Gaussian Elimination

The problem of solving f;{{«;}) = 0 is divided into two important classes. In
this section we consider the easier case of when fil{z;}) is a linear function.
The problem then reduces to solving a linear system of N equations with N
unknowns

@111 + aiexs + ... + A NTN — by = 0
@211+ aprs + ... + aayIn — b = 0
| (4.5)
an1Z1 + ane¥s + ... —+ aNNrn — by = 0
or in matrix form
Ax-—b=10 (4.8)
where ,
a1 12 Ty by
A=| 82 G x| T2 i b= b (4.7)

You learned how to solve linear sets of equations in grade school.* Combine
equations to eliminate variables until you have an equation with only one un-
known. Let's do a simple example to review how this procedure works. Take

*These problems usually start with something like, *Johnny hag twice as many apples as
Suzy, and?)

1.1, LINEAR SYSTEMS OF EQUATIONS 109

the equatious

xr - ®x + s 6
—r; + 2z = 3 (48)
2x + x3 = 5

We want to eliminate @, from the sccond and third equations. To accomplish
this we add the first equation to the second and subtract twice the first equation
from the third. This gives us

£+ e + x3 = 6

Jrz + x3 = 9 (4.9)
—229 — x3 = =T

Next, we eliminate 22 from the last equation by multiplying the second equation
by —2 (the ratio of the x2 terms) and subtracting it from the third, giving

r + x3 + ry = 6
3xs + *y 9 (4.10)
—%Iﬁg e —1

This procedure is called forward elimination. For N equations, we eliminate z;
from equations 2 through N, eliminate x4 and zo from equations 3 through N,
and so on. The last cquation will only contain the variable zpy.

Returning to the example, it is now trivial to solve the third equation for
x5 = 3. We can now substitute this value into the second equation to get
370 + 3 = 9 s0 z = 2. Finally, plug the values of 22 and z3 into the first
equation to get z; = 1. This second procedure is called backsubstitution. It
should be clear how this works with larger systems of equations. Using the
last equation to get z v, this is plugged into the penultimate equation to obtain
2n -1 and so forth.

This method of solving systems of linear equations by forward elimination
and backsubstitution is called Gaussian elimination.[50] It is a rote sequence of
steps that is simple for a computer to perform systematically. For N equations
in N unknowns, the computation time for Gaussian elimination goes as N3
Fortunately, if the system is sparse (most coeflicients are zero), this calculation
time can be greatly reduced (see Section 9.3).

Pivoting

Gaussian elimination i3 a simple procedure, yet vou should be aware of its
pitfalls. To illustrate the first possible source of problems, consider the set of
equations

eri + x3 + x3 = B
T+ X2 3 (411)
r + &y = 4 '

In the limit € — 0, the solution is #; = 1,22 = 2,23 = 3. For these equations,
the forward elimination step would start by multiplying the first equation by

110 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

(1/¢) and subtracting it from the second and third equations, giving

ery + Ty + Iy o= 5
(1-1/e)zs — (1/e)xs = 3-—5/¢ (4.12)
—(1feyzs + (1—1/e)as = 4-5/¢

Of course, if € = 0 we have big problems, since the 1/e factors blow up. Even if
€ # 0, but is small, we are going to have serious round-off problems. Suppose
that 1/¢ is so large that (C' — 1/¢) = —1/¢, where ' is of the order of unity.
Our equations, after round-off, become

cry + a2 T+ Ty = a
—(1/e)za — (Lfe)xs = —5/¢ (4.13)
—(Y/e)wes — (l/e)xz = —5/e

At this point it is clear that we cannot proceed since the second and third
equations in {4.13) are now identical; we no longer have three independent
equations. The next step of forward elimination would transform the third
equation in (4.13) into the tautology 0 = 0.

Fortunately, there is a simple fix: Inferchange the order of the equations
before performing the forward elimination. Exchanging the first and second
equations in (4.11),

r; + Ia = 3
€F7 + & + T3 = 5) (4.14)
r + T3 = 4

The first step of forward elimination gives us the equations

& + o = 3
(1—€)xs + x3 = B—3¢ (4.15)
—&z + Tz = 4—3

Round-off eliminates the e terms, giving

r + g = 3
Tz + ¥z = 5 (416)
-z + x3 = 1

The second step of forward climination removes &9 from the third equation in
(4.16) using the second equation,

T + T =
Ty + r3 =
2I3 =

(4.17)

[oLRE] g]

You can easily check that backsubstitution gives 2y = 1,22 = 2 and 23 = 3,
which is the correct answer in the limit « — 0.

Algorithms that rearrange the equations when they spot small diagonal el-
ements are sald to pivot. Even if all the elements of a matrix are initially of

1.1 LINEAR SYSTEMS OF EQUATIONS 111

comparable magnitude, the forward elimination procedure may produce small
clements on the main diagonal. The price of pivoting is just a little extra book-
keeping in the program, but it is essential to use pivoting for all but the smallest
matrices. Even with pivoting, you cannot guarantee being safe from round-off
problems when dealing with very large matrices.

Determinants

Tt is casy to obtain the determinant of a masrix using Gaussian elimination.
After completing forward elimination, one simply computes the product of the
coefficients of the diagonal elements. Take our original example, Equation (4.8);

the matrix is
1

11
A=| -1 2 0 (4.18)
2 0 1 .

At the completion of forward elimination, Equation (4.10}, the product of the
coefficients of the diagonal elements is (1)(3)(—4) = —1, which, you can check
to confirm, is the determinant of A. This method is slightly more complicated
when pivoting is used. If the number of pivots is odd, the determinant is the
negative of the product of the coefficients of the diagonal elements. It should
now be obvious that Cramer’s tule is a computationally ineflicient way to solve
sets of linear equations.

Gaussian Elimination in MATLAB

We do not need to write a MATLAB program to perform Gaussian elimination
with pivoting. Instead we can use MATLAB’s built-in matrix manipulation
capabilities. In MATLAB, Gaussian elimination is a primitive routine, much like
the sine and square root functions. As with any “canned” routine, you should
understand, in general, how it works and recognize possible pitfalls, especially
computational ones (e.g., does sqrt(-1) return an imaginary number or an
error?).

MATLAB implements Gaussian elimination using the slash, / , and back-
slash, \ , operators. The linear system of equations, xA = b, where x and
b are vow vectors, is solved using the slash operator as x = b/A. The linear
systemn of equations, Ax = b, where x and b are column vectors, is solved using
the backslash operator as x = A\b. As an example, take Equation (4.11) with
€ == (0, written in matrix form

01 1 1 5
1 10| |z |=]|3 (4.19)
1 01 & 4

Using MATLAR interactively, the solution is illustrated below:

>>A=[0 1 1;1 1 0;1 0 1];

112 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

>>b=[5; 3; 41;
>>x=A\Db;
>>disp(x});

1

2

3

Clearly, MATLAB uses pivoting in this cage. The elash and backslash operators
may be used in the same way in programs. If MATLAB “thinks” that the com-
putation is of questionable accuracy (for example, due to round-off), a warning
message 1¢ igsued. The MATLAB command det (A) returns the determinant of
a matrix.

Gaussian Elimination with C++4 Matrix Objects

Using multi-dimensional arrays in C4++ is awkward. The standard ways to
declare an M x N array of double precision floating-point numbers are

const int M = 3, N = 3;
double A[N][N];

for static allocation and

int i, M, N;
. // Assign values to M and N
double **A;
A = new double *[M]; // Allocate vector of pointers

for(i=0; i<M; i++)
Ali] = new double [N]; // Allocate memory for each row

for dvnamic allocation (don’t forgei to deallocate each row with a delete [1).
Static allocation is simple but rigid, since the dimensions are fixed constants.
When a static array is passed to a function, that function must declare an array
with the same number of columns in order for the array to be indexed properly.
Dynamic allocation is flexible but clumsy, although the details can be hidden
within separate functions. Accessing elements outside the array bounds is a
common programming bug and one that is difficult to track down with dynamic
arrays.

C++ allows us to correct these deficiencies by creating our own variable
type. These user-defined variables are called object clzsses. From here on we’ll
use the Matrix class for declaring one- and two-dimensional arrays of floating-
point numbers. This class is entirely defined within the Matrix.h header file
{(sce Appendix 4.C). Some examples of declaring Matrix objects are

int M = 3, N = 3;
Matriz A(M,N), b(W), x(3);

A1 TINEAR SYSTEMS OF EQUATIONS 113

Although this resembles static array allocation notice that the dimensions are
nol fixed constants. Both one-dimdnsional vectors and two-dimensional matrices
van be declared; the former are treated as single column matrices. The values
it these variables can be set by the assignment statements

A{1,1) = 0; AC(1,2) =1; A(1,3) = 1;
AC2,1) = 1; A(2,2) =1; A(2,3) = 0;
A(3,1) = 1; A(3,2) = 0; A(3,3) = 1;

B(1) = 5; b(2) = 3; b(3) =4;

The format for Matrix objects is A(i,j), rather than A[1i][j], to distinguish
them from comventional C++ arrays.

A Matrix object knows its dimensions, and you can get them by using the
nRow () and nCol () member functions. For example

int m = A.nRow(), n = 4.nCol();

sets m and n to the dimensions of 4. Bounds checking is performed whenever a
Matrix object is indexed. The lines

Matrixz newA(3,7); // Non-square matrix (3 by 7)
newh(4,5) = 0; // Dut-of-bounds error

produce the error message’
Assertion failed: i > 0 &% i <= nRow_

when the program is run. This means that at least one index i did not satisfy
the condition 0 < ¢ < N. Matrix ohjects antomatically deallocate their memary
when they go out of scape, so it is not necessary to invoke delete.

To set all the elements of a Matrix object to a given value use the set (double x)
member function, for example A.set(1.0). An entire matrix can be assigned
to cqual another of the same size {e.g., Matrix C(3,3); C=4;). However, un-
like MATLAB matrices, arithmetic operations (A+C, 2+4, etc.) are net allowed.
These operations must be carried out element by element, typically using for
loops. '

The Gaussian elimination routine ge, which uses Matrix objects, is outlined
in Table 4.1. Declaring and assigning the matrix 4 and the vectors b and x as
above, a program can call this routine as

double determ = ge(4,b,x); // Gaussian elimination
cout << x{1) << ", " << x{2) << ", " <« x(3) << emndl;

cout << "Determinant = " << determ << endl;

to solve the linear system Ax = b and compute the determinant of A.

tDepending on your C-+ compiler, the wording of this crror message may differ slighsly.

114 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Table 4.1: Outline of function ge, which solves a systemn of linear equations
Ax =b by Gaussian elimination. The function also returns the determinant of
A .

o Inputs: A b,

s Oulputs: x, det A.

Set scale factor, s; = max;{|A4; ;|), for each row.
e Loop averrows k=1,...,(N —1).

— Select pivot row from max; ([4; 4] /5;).
— Perform pivoting using row index list.

— Perform forward elimination.

Compute determinant, det A, as product of diagonal elements.

Perform backsubstitution.

See page 134 for the program listing,

EXERCISES

1. Find the steady states of the one-variable Ginzburg-Landan equation,
da . 3
d_t = —I+ AI‘

where z is a real number and) is a real parameter. Sketch the right-hand side of
this equation as a function of & for positive and negative values of A. Notice that the
number of steady states varies with A. [Pencil]

2. Show that the three steady states of the Lorenz model [Equation (3.32)] are:
't =y =" =0, and 2" = y* =£4/b{r—1), 2" =r —1if ¢ # 0. What are the
steady states when o = 07 [Pencil]

3. (a) Find the steady states of the Lotka-Volterra equations (see Exercise 3.22). [Pen-
cil] (b). The trajectories in the Lotka-Volterra model are periodic cycles called limst
cycles. Modify your program from Exercise 3.22 to compute the time-averaged values

of z and y as,
N

1 7 1
{w) = T[o (1) dt ~ —rzlz-n
and similarly for {y). Show that (z) = =*, () = y" as N — co. [Computer]
4. The Brusselator is a simple model for oscillatory chemical systems such as the
Belousov-Zhabotinski reaction.[92] The time evolution of the concentration of two
chemical species, @ and g, is described by the ODEs,

dx

= A+a’y — (B+ e

o LINEAR SYSTEMS OF BEQUATIONS 115

R, R,

AN AN

e I3 5 R} T Eq 1
1 —— E
3 ®
R, _—I—"E

A

(n) (b)

Fignre 4.1: (a) A simple resistor network. (b) Wheatstone bridge.

% By — x2y

A > 0, B > 0 are constants. (a) Find the single steady state of this model. [Pen-
h) Write a program to compute () and y{#) for a given initial condition 2(0) >0
(1) > 0. Plot a few trajectories in the zy plane, and mark the location of the
wly slite, Investigate cases where B/ (1 + A?) is less than, greater than, and equal
‘oue. [Cowmputer]

Tl lest way to understand an algorithm is to work out an example by hand. (a)
fg Caussian elimination solve

1 11 x1 6
3 1 0 2 | = | 11
-1 0 1 Ta -2

w Lhe intermediate steps. Compute the determinant of the matrix using your
Brwir climination results. (b) Interchange the second and third equations and repeat
i1 (). [Pencil]

Using Kirchhoff’s laws in circuit problems involves solving a set of simultaneous
wntions. Consider the simple circuit illustrated in Figure 4.1a. Write a program that
Ipites the currents given the resistances and voltages as inputs. Be sure to check
ir program by working out a simple case by hand. Have your program produce a
puph of the power delivered to resistor 5 as a function of B for the range of values
= 0 V to E» = 20 V. For the other values, use Ry = Rs = 12, Ry = Ry = 28},
g 8, By =2V, By =5 V. [Compuber]

o Clousider the Wheatstone bridge illustrated in Figure 4.1b. There is no current flow
hrough the ammeter when Ry = ByRz/Fa, allowing us to measure R if the other
mlslances are known (Ra is a variable resistor). At first glance this suggests that it
wikes no difference whether B3 = R4 = 1€, 10052, or 10°€2. Graph the current through
ht snneeter as a function of Rz for each of these cases. Take E = 6V, B, = 19, and
he internal resistance of the ammeter to be 107362, Given that the sensitivity of the
‘Whineter is 107" amps, approximately how accurate is each bridge? [Computer]

A problem you probably remember from freshman physics is the resistor cube
{(Figure 4.2). If the resistances are all equal, then the equivalent resistance of the

116 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Figure 4.2: Resistor cube.

cube may be obtained by making use of the symmetry. {a) Write a program that uses
Kirchhoff’s laws to solve the resistor cube problem for the case where all the resistors
are 1 except the resistor besween vertices 5 and 7. Plot the equivalent resistance
as a function of this variable resistor. (b) Repeat using 1-3 as the variable resistor.
(¢) Repeat using 37 as the variable resistor. [Computer]

4.2 MATRIX INVERSE

Matrix Inverse and Gaussian Elimination

In the previous section we reviewed how to solve a set of simultaneous equations
by Gaussian elimination. However, if you are familiar with linear algebra, you
would probably write the solution of

Ax =D {4.20)
as
x=A"'b (4.21)

where A~! is the matrix inverse of A. It should not be surprising that the

caleulation of a matrix inverse is related to the algorithm for solving a set

of linear equations. Usually the inverse of a matrix is computed by repeated

applications of Gaussian elimination (or a variant called LU decomposition).
The inverse of a matrix is defined by the equation

AATT =1 (4.22)

where I is the identity matrix

o o=
[B A
- O

(4.23)

4.2, MATRIX INVERSI ' 117

Delining the column vectors,

1 0
0 1 ; |
er=|0|; e=|0|; - en= 8 (4.24)
1

we may write the identity matrix as a row vector of colurmn vectors,
I= [er e ... ey | C4.23)
If we solve the linear set. of equations,
Ax; =e . (4.25)

The solution vector x; is the first coluinn of the inverse A~!. If we proceed this
way with the other e’s we will compute all the columns of A~ In other words,
our matrix inverse equation AA™" = T is solved by writing it as

Alxt x ... xv|=[e e ... ex] (4.27)

After computing the x’s, we build A~ as

(X1 (X2;)1 s (®ah
T) It IR G S TP
(xi)v (x2)n -+ (xNn)N

where (x;); is the jth element of x;.

Table 4.2 outlines the function inv for computing the inverse of a matrix; a
C++ version of it is given in the appendices. In MATLAB, inv(4) is a built-in
function that returns the inverse of matrix 4. It is possible to solve a system
of linear equations using the matrix inverse, but doing so is usually overkill.
An exception would be the case where you want to solve a number of similar
problems in which the matrix A is fixed but the vector b takes many different
values. Finally, here’s a handy formula to keep around: The inverse of a 2 x 2
matrix is

Afl — . 1 |: OG22 —a12 :|) (429)

2116322 — G209 | 921 11

For larger matrices the formulas very quickly become very messy.

Singular and Ill-Conditioned Matrices

Before getting back to physics, let’s discuss another possible pitfall in solving
linear systems of equations. Consider the equations

1tz =1 (430)
201+ 230 =2

118 CHAPTER 4. SOLVING SYSTEMS OF E(QUATIONS

Table 4.2: Outline of function inv, which cornputes the inverse of a matrix and
its determinant.

e Inpuis: A.

Outputs: AL, det A.

e Matrix b is initialized to the identity matrix.

Set scale factor, s; = max;(|4; ;]), for each row.
e Loop overrows k=1,...,(IN - 1).

— Select pivot row from max; (14, x]/s;)-
— Perform pivoting, using row index list.

— Perform forward elimination.

Compute determinant as product of diagonal elements.

Perform backsubstitution.

See page 135 for the program lsting.

Notice that we really don’t have two independent equations, since the second 1s
just twice the first. These equations do not have a unique solution. If we try to
do forward elimination, we get

0=0

and are stuck.
Another way to look at this problem is to see that the matrix

A:[; ;] (4.32)

has no inverse. A matrix without an inverse is said to be singular. A singular
matrix also has a determinant of zero. Singular matrices are not always trivially
spotted; would you have guessed that the matrix

12 3
4 5 6
789

was singular?
Here is what happens in MATLAB when we try to solve (4.30)

4.2. MATRIX INVERSE 119

»>2A = [1 1;2 2];
>>b = [1; 2]1;
>>x = A\b;

Warning: Matrix is singular to working precisiomn.

Depending on your compiler, the C++ routine inv will probably return infinity
or issue an error message. In some cases the routine calculates an inverse for a
singular matrix, but naturally the answer is spurious.

Sometimes a matrix is not singular but is so close to being singular that
round-off may “push it over the edge.” A trivial example would be

[el } | (4.33)

where ¢ is a very small number. The condition of a matrix indicates how close it
is to being singular; a matrix is said to be ill-conditioned if it is almost singular.
If you suspect that you are dealing with an ill-conditioned matrix when solving
Ax = b, then compute the absolute error, |[Ax — b|/|b|, to check if x is an
accurate solution.’

Formally, the condition number is defined as the normalized “distance” be-
tween a matrix and the nearest singular matrix.[33] There are a variety of ways
to define this distance, depending on the kind of norm used. The MATLAB
function cond{4A) returns the two-norm condition number of a matrix A. The
MATLAB function rcond(4) returns an estimate of the reciprocal of the one-
norm condition number of a matrix A. The latter function is more efficient but
less reliable. A matrix with a large condition number is ill-conditioned. As
a rule of thumb, log;,(cond(4)) is the number of significant (decimal) digits
that you can expect to lose in Gaussian elimination. A small determinant can
sometimes tip us off that a matrix might be ill-conditioned, but the condition
nummber is the real criterion.[59]

Coupled Harmonic Oscillators

At the beginning of this chapter, I discussed the problem of finding the steady
states of ODEs. A canonical example of a system with linear interactions is the
case of coupled harmonic oscillators. Consider the system shown in Figure 4.3;
the spring constants are ki, ...,ks. The positions of the blocks, relative to the
left wall, are xq, x2, and x3. The distance between the walls is L., and the
unstretched lengths of the springs are Lq,...,Ly. The blocks are of negligible
width.
The equation of motion for block ¢ is
dz; duy 1

- _ 1. 4.34
v & om (4.34)

where Fj; is the net force on block ¢. At the steady state, the velocities, v;, are
zero and the net forces, Fj, are zero. This is just stavic equilibrium. OQur job

120 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Figure 4.3: System of blocks coupled by springs anchored between walls.

now is to find the rest positions of the masses. Explicitly, the net forces are

Fy, = ks — L)+ koo —o0 — La)
o o= *k‘g(ﬂfz — & — Lz) + k3($3 — &2 = L3) (435)
Fo = kaes—m— Ls) 4 kally 75— Lo

or in matrix form,

Fl —k]_ - k‘:z kg O T
F2 = kg Ak‘g - kg k:g Lo
F,] ks —k3 —ky T3
—k Ly + kol
- —koLlo+ kals (4'36)

—ksLg + ka(Ls — Ly)

For convenience, we abbreviate the above equation as F = Kx — b. In mafrix
form the symmetries are clear, and we see that it would not be ditficult to extend
the problem to larger systems of coupled oscillators. As static equilibrium the
net forces are zero, so we obtain the rest positions of the masses by solving
Kx = b, which you are asked to do in the exercises.

EXERCISES

9. To help you understand how the matrix inversion algorithm works, find K™ by
hand [see Equation (4.36)]. Take ki = ko = ka = k4 = 1. Check your result by
showing that KK~ = I. [Pencil]
10. Write a program to solve for the rest positions of the masses in the harmonic
oscillator system described above. Try your program with the following values:

(a) k=[1234; L=01111: L.=4

(b) k=71234]; L=[1111]; L.«=10

(¢) k=[1111; L=[2211; Ly,=4

(dy k=[1110; L=[2211]; Lu=4

ey k=[0110; L=[2211; L,—4
Using general physical arguments, explain the results in each case. [Computer]
11. The force on the right wall is Frw = —ka(Lw — z3 — Ls). Write a program to
solve Kx = b, evaluate Fi,,, and plot it as a function of L. For the other parameters,

4.2, MATRIX INVERSHE 121

om mnu(mmr ﬂ

mu IURIGITRT

u‘ ATELELE LR L R

vvvvvvv

NHH

(*..l)

.'.‘.‘.‘.'.'.

Figure 4.4: Spring-mass system with next-nearest neighbor couplings.

select any nontrivial values. Verify numerically that the force on the right wall is
Fo = ““k(](Lw - LO)

where Lo = Ly + Lo + La + L, and

This is the law of equivalent springs. Since the matrix K is fixed, it is more efficient
to use matrix inverse rather than Gaussian elimination. [Compitter]

12, Gaussian elimination is not the only way to compute the inverse of a matrix.
Consider the iterative scheme,

Xpy1 =2X, — X, AX,

where X is the initial guess for A™'. Write a computer program that uses this scheme
to compute the inverse of a matrix. Test your program with a few matrices, including
some that are singular, and comment on your results. How good does your initial
guess have to be? When might this scheme be preferable to Gaussian elimination?
For more details, see Exercise 4.22. [Computer]

13. Consider the spring-mass systern in Figure 4.4 (a simple model of a short poly-
mer molecule}. The blocks are free to move but only along the z-axis. The springs
connecting adjacent blocks have spring constant k1, while the two outer springs have
stiffness k2. All the springs have a rest length of one. {a) Write the matrix equation
for the equilibrium positions of the blocks. [Pencil] (b) Write a program that plots the
total length of the system as a function of ki /ko. [Computer]

14. Counsider a system of coupled masses {such as in Figure 4.3) with v — 1 blocks.
The spring constants are

(a) k1:k2:k3:...:k‘;\-’:1

(b) ki =2k:=3ks=. .—Nk\r—l

((,‘) kl :4k2 :gk‘;j = _Nzkj\l =

(d) ki =2k =4k3=... =2<‘*l)lm =1

Compute the condition number of K using MATLAB’s cond function, and plot it as a
function of N. Estimate the value of N for which cond{K) exceeds 102, [MATLAB]

122 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

15. For a set of data points (z;,y:) with i =1,..., N, one can find the polynomial

p(x)=a1 +ase+... +avz™

that passes through these points (i.e., p{®;) = yi) by solving the linear system

2 —1

1 T £y Ei\ a- Y1
2 -1

1 23 oz ... mg\r az Y2
2 -1

1 v xn ... CL’% an UN

or Va = y where V is the Vandermonde matriz. Write a program to compute v
taking x; = i (evenly spaced data). Plot the error E = max{|D;;|} versus N where
D = VvV~ ! —I. Vandermonde matrices are very ill-conditioned, 50 the error will grow
quickly with N. [Computer]

4.3 *NONLINEAR SYSTEMS OF EQUATIONS

One—Variable Newton’s Method

Now that we know how to solve systems of linear equations, we proceed to
the more general (and more challenging) case of solving systems of nonlinear
equations. This problem is difficult enough that it is worthwhile to first consider
the single variable case. We want to solve for a* such that

flz*) =0 i (4.37)

where f{z) is now some general function. There are a number of different meth-
ods availahle for one-variable root finding. If you've had a numerical analysis
course you are probably familiar with bisection, the secant method, and per-
haps other algorithms. There are also specialized algorithms for when f(z) is
a polynomial (e.g., MATLAB’s roots function). Instead of going through all
of these schemes, we will concentrate on the single most useful method for the
general N-variable cage.

Newton’s method [3] is based on the Tavlor expansion of f(x) around the
root z*. Suppose that we make an initial guess as to the location of the root;
call this guess z;. Our error may be wristen as dz = ¥, — ¢* or ¢* = z; — dz.
Writing out the Taylor expansion of f{z*),

df (z1)
:r: dx +

Ja*) = flo1 ~dz) = f(z1) =48 O(dz?) (4.38)

Notice that since z* i3 a root. f{z*) = 0, so we may solve for dx as

o fla)
o= f{za)

) (4.39)

4.3, *NONLINEAR SYSTEMS OF EQUATIONS 123

fx)

Figure 4.5: Graplical representation of Newton's method.

We drop the O(8z*) term (this will be our truncation error) and use the resulting
expression for dx to “correct” our initial guess. The new guess is

, fe1)
a=x —dx =12 — 4.4
Ty =z —dr =2z Flay) (4.40)
This procedure may be iterated as
flzs)
T, = - 4.41
Tntl = &n () ()

to improve our guess further until the desired accuracy is obtained.

The iterative procedure described above may best be understood graphically
(Figure 4.5). Notice that at each step we use the derivative of f(x) to draw the
tangent line of the function. Where this tangent line intersects the x-axis is
our next guess for the root. Effectively, we are linearizing f(z) and solving the
linear problem. If the function is well behaved, then it will be approximately
linear in some neighborhood near the root z*.

A few notes about Newton’s method: First, when it converges, it finds a root
very quickly; but, unfortunately, it sometimes diverges (e.g., f'(z,) ~ 0) and
fails. For well-behaved functions, Newton’s method is guaranteed to converge
if we get “close enough” to the root. For this reason it is sometimes combined
with a slower but surer root-finding algorithm, such as bisection. Second, if
there are multiple roots, the root to which the method converges depends on
the initial guess (and it may not be the root you wani}., There are procedures
(e.g., “deflation”) for finding multiple roots using Newton’s method. Finally,
the method is slower when finding tangent roots, such as for f(z) = 22.

124 _ CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Multivariable Newton’s Method

It is not difficult to generalize Newton’s method to N-variable problems. Now

our unknown x = [T Xz ... IN] is a row vector, and we want to find
the zeros (roots) of the row vector function
I(x) = [filx) folx) ... fa(x)] {4.42)

Again, we make an initial guess as to the locaticn of the root, calling this guess
xi. Our error may be written as dx = x; — x* or x* = x; — dx. Using the
Taylor expansion of £{x,),

£(x") = f(x1 — 0%) = f{x1) — xD(x) + O(6x?) (4.43)

where the Jacobian matrix, D, is defined as

D) = 52 (4.41)

Since x* is a root, f(x*) = 0, we may solve for dx as before. Dropping the error
term, we may write (4.43) as

f(X}_) =dx D{Xl) (445)
or
dx = f(x) D~ {x,) {4.46)
Qur new guess is
Xy =X — dx = x; ~ f(x)D~ 1(x;[) _ (4.47)

This procedure may be iterated to improve our guess further untll the desired
accuracy is obtained. Since D changes at each iteration, it would be wasteful
to compute its inverse. Instead, use Gaussian elimination on (4.43) to solve for
dx, and compute the new guess as x; = x; — dx.

Newton’s Method Program

To demonstrate Newton’s method, we’ll use it to compute the steady states of
the Lorenz model (3.32). A program that finds the roots of a system of equations
using Newton’s method, called newtn, is outlined in Table 4.3, This program
calls the function fnewt (Table 4.4), which given x = [z 2] returns

aly —x) -0 r—-z y
f=|re—y—az |; D=1 ¢ -1 =z {4.48)
Ty — bz 0 —~r —b.

For » = 28,0 = 10, and b = 8/3, the three roots are [z y 2] = [00 0],
[6+/2 64/2 27], and [—6v2 —6+/2 27].

An example of the output from the MATLAB version of newtn is given
below; notice that the program obtains the root [6+/2 6/2 27).

LA *NONLINDAR SYSTEMS OF EQUATIONS 125

Table 4.3: OQutline of program newtn, which finds a root for a set of cquations.

Set initial gress x; and parameters { A }.

Loop over desired number of steps.

— Evaluate funetion £(x,; {}) and its Jacobian matrix D.
— Find éx by Gaussian climination [see (4.43}].

— Update the estimate for the root as X, = %, — 0%

Print the final estimate for the root.

Plot the iterations from initial guess to final estimagse.

See pages 129 and 131 for program listings.

>rnewtn

newtn - Program to solve a system of nonlinear equations
using Newton’s method. Equations defined by function fnewt.

Enter the initial guess (row vector): [50 50 53]
Enter the parameter a: [28 10 §/3]
After 10 iterations the root is

8.4853 8.48b3 27.0000

The graph showing the convergence 1o the root for this run is illustrated in
Figure 4.6. Notice the difference between the iterative approach to the root
aud the trajectory for the Lorens ODEs. Other initial conditions converge to
other roots. For example, starting from [2 2 2], we converge to [0 0 0]; starting
from [5 5 3], we converge to [76\/5 — 6v2 27). Interestingly, starting from
[14 15], the method converges to a toot only after making an incredibly distant
excursion away from the origin.

Continuation

The primary difficulty with Newton’s method is the necessity of providing a
good initial guess for the root. Often our problam is of the form

£(x";\) = 0 (4.49)

where A is some parameter in the problem. Suppose that we know a root x})
for the valie A, but need 1o find a root for a dillerent value A,. Intuitively, if
Ay & Ay, then x) would be a good initial guess for finding x! using Newton's
method. But what if A, 5 As: is there anv way to make nse of our known root?

126 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Table 4.4: Queline of function fnewt, which is used by newtn to find the steady
states of the Lovenz equations.

Inputs: x = [=,3,2], A =[r,0.b].

Outputs: £, D.
e Evaluate f for the Lorenz model [see (4.48)].

e Fvaluate the Jacobian matrix D for the Lorenz model.

See pages 131 and 133 for program listings.

Figure 4.6: Graph of successive estimates of the root, as obtained by newtn using
the initial guess [y 2] = [50 50 50] and the parameters [+ o B] = [28 10 &/3].
Also shown is the trajectory from the lorenz program. :

4.3. *NONLINEAR SYSTEMS OF EQUATIONS 127

The answer is yes, and the technique is known as continuation. The idea is to
sucak up on Ay by defining the following sequence of As:

M=&HM—M% (4.50)

for i = 1,...,N. Using Newton’s method, we solve f(x3;) = 0 with x} as
the initial guess. If N is sufficiently large, then X; & A, and the method should
converge quickly. We then use x7 as an initial guess to solve f(x3; A2) = 0; the
sequence continues until we reach our desired value of A,. Continuation has the
added benefit that we can use it when we are interested In knowing not just a
single root, but knowing how x* varies with A,

EXERCISES

16. Write a program that uses Newton’s method to find the roots of functions, Test
your program on the following cases:

a) fiz)=sin{z); x;=1 (b) fle)=sin(z); =z =2

(e fly=2'" x1=1 (d) flz)=tanh(z); z,=1

() flz)=tash(z}; 2.=3 (f fl@)=l(z) = =3
Have the program make a plot of z; versug ¢. Think carefully about how you want the
program to decide when to stop the iteration process. [Computer]
17. One of the fundamental problems in celestial mechanics is solving the Kepler
equation 37],

E —esin(E)=M

where F is the eccentric anomaly, M i3 the mean anomaly, and ¢ is the eccentricity.
Write a program to find B using Newton's method. Run your program for a variety
of values 0 < e < 1, and plot E as a function of M for 0 < M < 27. [Computer]
18. Consider a particle in a quantum square well potential of depth V' < 0 and hali-
width a. The energy eigenvalues, E >V, are given by the transcendental equation

VoE =VE—V tan (—%w/Zm(E - V))
for the even states and
vV—E=—vVE-Vectn (%\/Zm(E— V))

for the odd states.[111] Write a program to obtain the first 10 energy eigenvalues of
an electron for ¥V = —13.6 eV and o = 20ag, where ag is the Bohr radius. [Computer]
19. For blackbody radiation, the radiant energy per unit volume in the wavelength
range A to A+ dA is [108]

8r he

w(A) dA = A5 exp(he/ AT — 1

dx

where T is the temperature of the body, ¢ is the speed of light, b is Planck’s constant,
and % is Boltzmann’s constant. Show that the wavelength at which w(A) is maximmm
may be written as Amax = ahe/kT, where a is a constant. Determine the value of o
numerically from the resulting transcendental equation. [Computer]

128 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

Figure 4.7: Mass hanging from two springs.

20. (a) Modify fnewt to solve for the steady states of the Lotka-Volterra model
(see Exercise 3.22). Try a variety of initial conditions. (b) Modify fnewt to solve for
the steady state of the Brusselator model (see Exercise 4.4}, Try a variety of initial
conditions. [Computer|

21. The program newtn is not very sophisticated because it always perforins the
same number of iterations. Modify the program so that it stops when the answer
is within some user-specified tolerance or if the procedure appears to be diverging
hopelessly. [Computer] '

22 Newton’s method gives us an iterative technique for fnding the inverse of a
matrix. Consider the function F(X) = A — X™*; the root is X* = A~ Show that
Newton’s method gives us the iterative schemne ‘

XT},+1 = 2Xn - X?LAX‘H

where X, is the initial guess for A™'. When might this scheme be preferable to
Gaussian elimination? [Pencil,

93. Write a version of newtn that does not require the user to supply the matrix D.
Instead, the program estimates it from f{x) by centered finite difference. The program
should determine the appropriate value for the grid spacing f {possibly with the user
supplying an initial estimate). [Computer]

24. For the simple, two-dimensional spring-mass systen illustrated in Figure 4.7, the
potential energy may be written as

1 1 .
Viz,y) = ghi(V/s2 +y? =)+ ghe(Vi{e = D)y’ = L) — gy

where &y and k» are the spring constants, L1 and L2 are the rest lengths of the springs,
m is the mass of the object, and g = 9.81m/52. At static equilibrium, F = =¥V = 0.
Write a program to solve for the positions & and y at static equilibrinm. What is the
equilibrium position for k1 = 10 N/m, k2 = 20 Nfm, Ly = Lz = 01m, D =0.1 m,
m=0.1kg, and g = 9.81m /s>? [Computer]

25. Modify your program from the previous exercise to use continuation. Using the
spring constant ke as the variable parameter (ks = 0 Lo 20 N/m), obtain a graph of
the equilibrium position for ky = 10 N/m, Ly = Ls = 0.l m, D=01m,m=0.1kg,
and g = 9.81m/s’. [Compnter]

BEYOND THIS CRHAPTER 129

BEYOND THIS CHAPTER

As von will see in the latter half of this book, many numerical schemes make use
of lincar algebra. For this reason it is one of the richest branches of numerical
analysis, Many facets of matrix computations are covered by Golub and Van
Loan [59]. Gaussian climination and pivoting strategies are discussed in detail
by Forsythe and Moler [50]. Three principal concerns in numerical linear algebra
are storage, speed, and singnlarity. In computational physics we often employ
very large natrices and memory allocation can be a concern. Often these nia-
trices are sparse (that is, most o the slements are zero), and full storage can be
avoided. The compurtational expense of Gaussian climination increases quickly
with the size of the matrix. Again, if & inatrix is sparse. ihe computation cost
can often be reduced gignificantly. Sparse matrix techniques are discussed in
Seetion 9.3,

For solving very large systems ol cquations, izerative techniques, such as
Ganss-Seidel, provide alternatives to Gaussian climination. These iterative
techniques are described in the context of solving clliptic partial differential
cqualions in Section 8.1, For further discussion, see Varga [129].

IM-conditioned matrices are common in numerical analysis {e.g., Vander-
monde malrices in least squares curve fitting). Singular value decomeposition
(SVD) is a gencral lechnique for solving ill-conditioned problems.[49] Tt may
also he used 1o solve overdetermined (more equations than unknowns) or un-
derdetermined (more unknowns than equations) problens.

There are many schemes besides Newton’s method for finding roots; you’lt
lind them described in practically any numerical analysis textbook, If you are
linding the roots of the characteristic polynomial of a matrix to get the eigen-
values, you're barking up the wrong tree. There are much better ways to get
cigenvalues and eigenvectors. One complicasion in using Newton's moethod is the
necessity of supplying the derivative, f'{x). A natural solution is to cvaluate
this derivative numerically; the secant method is a variant based on this idea.
FFor muliidimensional problems, secant methods are not always suitable, since
the resulting estimated Jacobian matrix can be singular. An alternative is a sct
of schemmes known as quasi-Newton metheds: see Broyden [28] for a survey.

APPENDIX A: MATLAB LISTINGS

Listing 4A.1 ’rogram newtn. Finds steady states of the Lorenz model using
Newton’s method. Uses fnewt (Listing 14.2),

% newtn - Program to solve a system of nonlinear equations
% using Wewton’s method. Equations defined by function fnewt.
clear all; help newtn; % Clear memory and print header

%* Set initial guess and parameters

x¥C = input{’Enter the initial guess {row wvector): '};

130 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

x = x0; % Copy initial guess
zp(:,1) = x(:); ¥ Record initial guess for pletting
a = input{’Enter the parameter a: °};

%* Loop over desired number of steps
nStep = 10; % Number of iterations before stopping
for iStep=1:nStep

%* Evaluate function f and its Jacobian matriz D

[f D] = fnewt(x,a); % fnewt returns value of f and D
%* Find dx by Gaussian elimination

dx = £/D;

%* Update the estimate for the root

x = x - dx; ¥ Newton iteration for new x

xp(:,iStep+l) = x{:}; ' Save current estimate for plotting

end

%* Print the final estimate for the root
fprintf(’After %g iterations the root is\n’,nStep);
disp(x);

%* Plot the iterations from initial guess to final estimate
figure{l); clf; % Clear figure 1 window and bring forward
subplot(1,2,1) ¥ Left plot
plotS(xP(i,:),xp(2,:),1p(3,:),’o—’,...
x(1),x(2),x(3),°47);
xlabel(’x’); ylabel(’y’); zlabel(’z');
view([-37.5, 301); % Viewing angle
title(sprintf{’Initial guess is Yg Hg %g’,x0(1),x0(2),x0(3)));
grid; drawnow;
subplot(1,2,2) % Right plot
plot3(zp(l,:),xp(2,:),xp(3,:), 70", ...
x(1),x(2) ,x(3},7%7); _
xlabel(’x’); ylabel(’y’); zlabel(’z’};
view([-127.5, 30]); % Viewing angle
title{sprintf(’After %g iterations, root is g ¥g %t ...
nStep,x(1),x(2),x(3)));
grid; drawnow;
Plot data from lorenz (if available). To write lorenz data, use:

O

>>save xplot; save yplet; save zplot;
4 after running the lornez program.
flag = input (’Plot data from lorenz program? (1=Yes/O=No}: ’);
if(flag == 1)
figure(2); clf; % Clear figure 1 window and bring forward
load xplot; load yplot; load zplot;
plot3(xplot,yplot,zplot,’=? ,xp{l,:},xp(2,:),xp(3,:), 0-=");
xlabel(’z’); ylabel(’y’}; =zlabel(’z’);
view([40 10]1}; Y% Rotate to get a better view
grid; % hdd a grid to aid perspective
end

APPENDIX I3: C++ LISTINGS 131

Listing 4A.2 Function fnewt. Used by program newtn; defines the equations of
the Lorenz model along with the Jacobian mabtrix.

function [£,D] = fnewt(x,a)
4 Function used by the N-variable Newton’s method

% Inputs

% x State vector [x y z]

% a Parameters [r sigma b]

% Outputs

% £ Lorenz model r.h.s. [dz/dt dy/dt d=z/dt]
% D Jacobian matriz, D(i,j) = df(j)/dx{i)

% Evaluate f(i)

£{1) = a(D*(x(D-x(1));

£(2) = a(D)#x(1)-x(2)-x(1)%x(3);
£(3) = x(1)*x(2)-a(3)*+x(3);

1

% Evaluate D(i,j)

D{1,1) = -a{2); % df (1) /d=x(1)
D(1,2) = a{1)-x(3); % df(2) /ax(1)
D(1,3) = x{2); % df(3)/dx(1)
D(2,1) = a(2); % df (1) /dx(2)
D(2,2) = -1; % df£(2)/dx(2)
D(2,3) = x{1); K df(3)/ax(2)
D(3,1) = 0; % df{1)/dx(3)
D(3,2) = -x{1); % df£(2)/dx(3)
D(3,3) = -a(3); % df(3)/dx(3)
return;

APPENDIX B: C++4 LISTINGS

Listing 4B.1 Program newtn. Finds steady states of the Lorenz model using
Newton's method. Uses fnewt (Listing 4B.2) and ge (Listing 4B.3).

// newtn - Program to solve a system of nonlinear equaticns
// using Newton’s method. Equations defined by function fnewt.

#include "NumMeth.h™

void ge(Matrix a, Matrix b, Matrix& x);
void fnewt{Matrix x, Matrix a, Matrixk f, Matrixk D);

void main() {

//% Set initial guess and parameters
int iStep, nStep = 10; // Number of iterations before stopping

132 CHAPTER 4. SOLVING SYSTEMS OF E¢ UATIONS

1

int nVars = 3, nParams = 3; // Humber of variables and parameters
Matrixz xz(nVars), zp{nVars,nSteptl);

cout << "Enter the initial guess: " << endl;
int i,j; .
for({ i=1; i<=nVars; ive) {

cout €< " x(" << i << ") = "5 cin »? x(i);

xp(i,1) = x{i); // Record initial guess for plotting
}
Matrix a(oParams);
cout << "Enter the parameters: " << endl;
for(i=1; i<=nParams; i++) {
cout << "al" << i << ") = "; cin >> a(i);
}

//* Loop over desired number of steps
Matrix f(nVars), D{nVars,nVars), dx{nVars);
for(iStep=1; iStep<=n3tep; iStep++) {

//% Evaluate function f and its Jacobian matrix D
fnewt(x,a,f,D}; // fonewt returns value of f and D
for(i=l; i<=nVars; it+)
for{ j=i+l; j<=nVars; j++ y 4
double temp = D{i,3);
D(1,j) = D{j,1i); // Transpose of matrix D
D{j,1) = temp;
}

//% Find dx by Ganssian elimination
ge(D,f,dx);

//% Update the estimate for the root
for(i=h; i<=nVars; i++) {
x(i) -= dx(i); // Newton iteration for new X
xp(i,iStep+1) = x(1); // Save current estimate for plotting
}
¥

//% Print the final estimate for the root
cout << "After " << nStep << % jterations the root ig:" << endl;
for(i=1; i<=nVars; i++)

cout << "r(" << i <« M) =" &L x (i} << endl;

//* Print out the plotting variable: xp
ofstream xplut{"xp.txt");
for(i=1; i<¢=nVars; it++ 3 {
for(int j=1; j<=nStep; j++)
xpOut << xp(i,j) << ™, ™
xplut << xp(i,nStep+l) << endl;
3

APPENDIX B: C++ LISTINGS 133

/e%%4% To plot in MATLAB; use the script below #k##kkkksksdkkdkkkxskokk
load xp.txt;
%* Plot the iterations from initial guess to final estimate
figure(1); clf; % Clear figure 1 window and bring forward
subplot (1,2,1) ¥ Left plot
plot3(xp(l,:).xp(2,:),2p(3,:),%0~");
xlabel(’x’); ylabel(’y’); zlabel(’z’);
view([-37.5, 301); Y% Viewing angle
grid; drawnow;
subplot(1,2,2) % Right plot
plot3(xp(l,:),xp(2,:),xp(3,1),70-");
xlabel(’x'); ylabel(’y?); zlabel(’z’};
view([-127.5, 30]); ¥ Viewing angle
grid; drawmow;
Plot data from lorenz (if available}.
flag = input{('Plot data from lorenz program? {(1=Yes/O=No):);
if{ flag == 1)
figure(2); <lf; % Clear figure 1 window and bring forward
load xplot.txt; load yplot.txt; load zplot.ixt;
plot3(xplot,yplot,zplot,’-?,xp(1,:),xp(2,:),xp(3,:), 0--");
xlabel(’x’); ylabel(’y?); zlabel(’z’);
view([40 10]); % Rotate to get a better view
grid; % Add a grid to aid perspective
end
ok ek o e o o s o R S ok o o ok ok o o o o o SRR S KKK ok ok R ok

=z

Listing 4B.2 Function fnewt. Used by program newtn; defines the equations of
the Lorenz model along with the Jacobian matrix.

#include "NumMeth.h"

void fnewt (Matrix x, Matrix a, Matrix& £, Matrix& D) {
// Function used by the N-variable Newton’s methed

// Inputs

/ X State vector [x y z]

/7 a Parameters [r sigma b]

// Outputs

/7 f Lorenz model r.h.s. [dx/dt dy/dt dz/dt]
// D Jacobian matrix, D(i,j) = af (j)/dx(i)

// Evaluate f(i)

£(1) = a(@y*(x(2)=x{1));

£(2) = a(lY*x(1)-x(2)-x(1)+x(3);
£(3) = x(1)*x{(2)-a(3)*x(3);

// Evaluate D(i,j)

D(1,1) = -a{2); /7 df{1) /ax (1)
D{L,2) a(1)-x(3); /7 dE{2)/ax (1)
D(1,3) x{(2); // dE(3) /dx (1)

134 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

D{2,1) = a(2); /7 df(1) /A= (2)

D(2,2) = -1; // A£(2)/dx(2)

D{(2,3) = x{1); // df(3)/ax(2)

D{3,1) = Q; /7 af(1)/dx(3)

D(3,2) = -z{1); J/ df(2)/dx(3)

D(3,3) = -a(3); /7 df(3)/dx(3)
}

Listing 4B.3 Fuuction ge. Performs Gaussian elimination with pivoting,
#include "NumMeth.h"

// ge - Functior to perform Gaussian eliminatiom to solve A#x = b

/7 using scaled celumn pivoting

// Inputs

/7 A - Hatriz & (K by W)

/7 b - Vector b (N by 1)

// Dutputs

// X - Vector x (N by 1)

// determ - Determinant of matrix A <{return value)

double ge{Matriz A, Matrix b, Matriz& x) {

int N = A.nRow{);
assert(N == A.nCol{) && N == b.nRow() && N == x.nRow());

int i, j, k;
Matrix scale(N); // Scale factor
int *index; index = new int [N+1]; // Row index list

//+ et scale factor, scale(i} = max{ JA(i,j)|), for each row
for{ i=1; i<=N; i++) {
index[i] = i; // Initialize row index list
double scaleMax = 0.0;
for(j=1; j<=N; j++)
scaleMax = (scalelax > Ffabs{A(i,j))) 7 scaleMax : fabs (A(i,j));
scale(i) = scaleMax;

}

//* Loop over rows k = 1, ..., (N-1)
int signDet = 1;
for{ k=1; k<=(N-1); k++) {
//* Select pivot row from max([4(3. % /s{3)1)
double ratiomax = 0.0;
int jPivet = k;
for(i=k; i<=N; i++) { :
double ratio = fabs(A(index[i],k))/scale{index[i]);
if(ratio > ratiomax) {
jPivet = i;
rationax = ratio;

APPENDIX B: C++ LISTINGS 135

¥
¥
//* Perform pivoting using row index list
int indexJ = index[k];
if{ jPivot != k) { // Pivot
indexJ = index[jPivot];
index[jPivot] = index[k]; // Swap index jPivet and k
index[k] = indexJ;
signDet *¥= ~1; // Flip sign of determinant
} .
//* Perform forward elimimation
for(i=k+l; i<=N; i++) {
double coeff = A{indexfi],k)/A({indexJ k);
for(j=k+1; j<=N; j++)
Alindex[i].j) -= coeff*A(index],j);
A(index[i] k) = coeff;
b{index[i]) -= A{index[i],k)*b(indexJ);

}
}
//* Compute determinant as product of diagonal elements
double determ = signDet; // Sign of determinant

for(i=1; i<=N; i++)
determ *= Alindex[i],i);

//* Perform backsubstitution : -
x(N) = b(indez[N])/A{index[N],N);
for(i=N-1; i>=1; i—-)} {
double sum = b(index[i]);
for(j=i+l; j<=N; j++)
sum -= A(index[i],j)*x(j);
x(i) = Sum/A(index[i],i);

}
delete [] index; // Release allocated memory
return{ determ);

}

Listing 4B.4 Function inv. Computes the inverse of a matrix with pivoting,
#include "NumMeth.h"

// Compute inverse of matrix
double inv{(Matrix A, Matrixk Ainv)

// Input

/! A - Matrix A (N by N)

// Outputs

/! Ainv - Inverse of matrix A (N by N)

// determ - Determinant of matrix A& (return value}

{

136 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

int ¥ = A.nRow();
assert{ N == A.nCol() J;

Ainv = 4; // Copy matrix to ensure Ainv is same size
int 1, j, k;
Matrix scale(N), b(N,H); /{ Bcale factor and work array

int *index; index = new int [W+1];

//* Matrix b is initialized to the identity matrix

b.set(0.0);
for(i=1; i<=N; i++)
b(i,i) = 1.0;

//* Set scale factor, scale{il) = max(|a(i,j)|), for each row
for(i=1; i<=N; i++)} {
index[i] = 1i; // Initialize row index list
double scalemax = 0O.;
for(j=1; j<=N; j++)}
scalemax = (scalemax > faba(A(i,j))) 7 scalemax : fabs(4(i,j));
scale(i) = scalemax;

i

//* Loop over rows k = 1, ..., (N-1)
int signDet = 1;
for{ k=1; k<=N-1; k++) {
//#* Select pivot row from max(|a(j,k)/s(j)|)
double ratiomax = 0.0;
int jPFivot = k;
for(i=k; i<=N; i++) {
double ratio = fabs(A(index[i],k))/scale{index[i]);
if{ ratio > ratiomax) {
jPivot=i;
ratiomax = ratio;
}
}
//* Perform pivoting using row index list
int indexJ = index[x];
if{ jPivot !'= k } { // Pivot
indexJ = index[jPivot];
index [jPivot] = index[k]l; // Swap index jPivot and k
index[k] = indexJ;
signDet *= -1; // Flip sign of determinant
}
//* Perform forward elimination
for{ i=k+1; i<=N; i++) {
double coeff = A{index[il,k}/A{index]J,k};
for(j=k+1; j<=N; j++)
A(index[i], i} -= coeff*iA{index],j);

APPENDIX C: C++ MATRIX CLASS 137

A{index[i] ,k) = coeff;
for(j=t1; j<=N; j++)
b{index[il,j) -= A{index[i] ,k)*b(index],j};

}
}
//* Compute determinant as product of diagonal elements
double determ = signDet; // Sign of determinant

for{ i=1; i<=N; i++)
determ *= A(index[i],i);

//* Perform backsubstitutiocn
for{ k=1; k<=N; k++) {
Ainv(N,k) = b(index[N],k)/A(index[N],N);
for(i=l-1; i>=1; i-—-) {
double sum = b{index[i].k);
for(j=i+l; j<=K; j++ 2
sum -= A(index[il,j)*Ainv(j,k);
Ainv(i,k) = sum/A(index[i],i);
}
¥

delete [] index; // Release allocated memory
return(determ J;

APPENDIX C: C++ MATRIX CLASS

Listing 4C.1 Header file Matrix.h. Defines the C++ Matrix class.
#include <assert.h> // Defines the assert function.
class Matrix {
public:

// Default Constructor. Creates a 1 by 1 matrix; sets value to zero.
Matrix O {

nlow_ = 1; nlol_ = 1;

data_ = new double [1]; // Allocate memory

set(0.0); // Set value of data_[0] to C©.0
¥

// Regular Comstructor. Creates an nR by nC matrix; sets values to zero.
// If number of columns is not specified, it is set to L.
Matrix(int nR, int nl = 1) {

assert(nk > 0 && nC > 0); // Check that nC and nR both > 0.

138 CHAPTER 4. SOLVING SYSTEMS OF EQUATIONS

nRow_ = nR; nCol_ = nl;

data_ = new double [nR#nCl; // Allocate memory

assert{data_ !'= 0); // Check that memory was allocated
set(0.0); // Set valuves of data_[] to 0.0

// Copy Comnstructor.
// Used when a copy of an object is produced
// (e.g., passing to a function by value)
Matrix(const Matrix& mat) {

this->copy{mat); // Call private copy function.
}

// Destructor. Called when a Matrix object goes out of scope.
*Matrix() {

delete [] data_; // Belease allocated memory
}

// Assignment operator function.
// Overloads the equal sign operater to work with
// Matrix objects.
Matrix& operator={const Matrix& mat) {
if(this == gmat) return #this; // If two sides equal, do nothing.

delete [] data_; // Delete data on left hand side
this->copy (mat) ; // Copy right hand side to l.h.s.
return *this;

// Simple "get" functions. Return number of rows or columms.
int nRow() const { return nRow_; }
int nCel() comst { return nCol_; }

// Parenthesis operator functiom.

// Allows access to values of Matrix via- (i,j) pair.

// Example: a(1,1} = 2%b(2,3);

// If column is unspecified, take as 1.

double& operator() (imt i, int j = 1) {

assert(i > 0 && i <= nRow_); // Bounds checking for rows
assert(j > 0 && j <= nCol.); // Bounds checking for columms
returrn data_[nCol_*(i-1) + (j-1)]; // Access appropriate value

}

// Parenthesis operator function (const versiomn).

const doublef& cperator(} (int i, int j = 1) comst{
assert(i > O && i <= nRow_); // Bounds checking for rows
assert(j > 0 && j <= nCol_); // Bounds checking for columns

return data_[nCol_#(i-1} + (j-1) }; // Access appropriate value
}

/f/ Set function. Sets all elements of a matriz to a given value.

APPENDIX C: C++ MATRIX CLASS

void set{double value) {
int i, jiData = nRow_¥nCol_;
for{ i=0Q; i<iData; i++)
data_[i] = value;

139

AR A ek o ok ook ok R kR SR ok ok ok sk ok bk ok sk etk stob koo ok ok

private:

// Matrix data.
int nRow_, nCol_; // Number of rows,

double* data_; // Pointer used to allocate memory for data.

// Private copy function.

// Copies values from one Matrix object to another.

void copy(const Matrix& mat) {
nRow_ = mat.nRow_;
nCol_ = mat.nCol_;
int i, iData = nRow_#*nCol_;
data_ = new double [iData];
for(i = 0; i<iData; i++)
data_[i] = mat.data_[il;

}; // Class Matrix

Chapter 5

Analysis of Data

It is often remarked that simulating physical gystems on a computer is similar
to experimental work. The resson this analogy is made is because computer
simulations produce data in much the same way as laboratory experiments. We
know that in experimental work one often needs to analyze the output, and it
is the same with some numerical simulations. This chapter covers several topics
in data analysis, inclnding curve fitting and Fourler transforms.

5.1 CURVE FITTING

Global Warming

At present, it appears that accurate long-range weather prediction will never be
achieved. The reason is because the governing equations are highly nonlinear
and their solutions are extremely sensitive to initial conditions (see the Lorenz
model discussed in Section 3.4). On the other hand, general predictions of
Earth’s climate are still possible. Forecasters can predict whether or not there
will be drought conditions in Africa next year, although not the amount of
precipitation on any given day.

Global warming is an important and hotly debated topic in climate research.
The warming is blamed on greenhouse gases, such as carbon dioxide, in the
atmosphere. These gases warm Earth by being transparent to the short-wave
radiation arriving from the Sun but opaque to the infrared radiation from the
ground. Scientists and policy makers are still debating the threat of global
warming.[60} However, no one questions that concentrations of greenhouse gases
are increasing. Specifically, carbon dioxide levels have been rising steadily since
the Idustrial Revolution. Figure 5.1 shows the increase in the carbon dioxide
concentration during the 1980z, as measured in Mauna Loa, Hawaii.

The study of global warming has produced vast amounts of data, from both
measurements in the ficld and computer simulations of the world’s climate. In
this chapter we study some basic techniques for analyzing and reducing such
data sets. For example, for the data shown in Figure 5.1, what is the estimated

CHAPTER 5. ANALYSIS OF DATA

142
360
®
355- F
5
A
= AN
5350- SRR b
& Ao 2
& , R i
0345 M 1
: T S . T -
R N I
e B _g . *;j Ed
340 L b
oo
k3 E
3 I - L . Il
3‘1?380 1982 1984 1986 1988 1980
Year

Figure 5.1: Carbon dioxide (in parts per million) measured at Mauna Loa,
Hawaii from 1981 to 1990. Estimated ervor bar is o, = 0.16 ppm.

rate of increase in COy concentration per year? This first question motivates

our study of curve fitting.

General Theory

The simplest type of data analysis is curve fitting. Suppose that we have a data
set of N points {z;, ;). We wish to fit this data to a function Y'(z; {a;}), where
{a;} is a set of M adjustable parameters. Our objective is to find the values
of these parameters for which the function best “fits” the data. Intuitively,
we expect that if our curve fit is good, then a graph of the data set (w;,1;)
and the function Y'{x; {a;}) will show the curve passing “near” the points (see
Figure 5.2). We can quantify this statement by measuring the distance between

a data point and the curve
(5.1

A =Y(zi;{a;}) -y
Our curve firting criterion will be that the sum of the square of the errors be a
minimum; that is, we need to find {a;} that minimizes the function

N N
D{{ai}) = 3 A7 =3 Y (wii{ag}) — wil? (5.2)

i=1

This technique will give us the least squares fit; it is not the only way to obtain
a curve fit, but it is the most common. The least squares method was first used
by Gauss to determine the orbits of comets from chservational data.

Often, our data points have an estimated error bar (or confidence interval),
which we write as y; = 0;. In this case we should modify our fit criterion so as

S CURVIE FTTTING 113

Figure 5.2: Fitting data to a curve.

Lo give less weight to the points with the most ervor. In this spirit we definc

NOANT N Vi Tl a2

J; o2
¢ i=1 i

i=I
The chi-square function is the most commonly used fitting function because, if
the errors are Gaugsian distributed, we can make statistical statements concern-
ing the goodness of the fit.

Before continuing, I should remark that we will only briefly discuss the
validation of our carve fit. You can fit any curve to any data set, but this does
not mean that the results are meaningful. To establish significance we have to
ask the following statistical question: What is the probability that the data,
given the experimental error associated with each data point, are described by
the curve? Unfortunasely, hypothesis testing occupies a significant portion of a
statistics course and is outside the scope of this book.[88]

Linear Regression
We first consider fitting the data set with a straight line,
Yie{a,02}) = ay + sz (5.4)
This type of curve fit is also known as linear regression. We want to determine
ayp and ay such that
Ny
5 .9 oo
Xlar,ay) = 7Z|: ;-g(m @t — Y (0.9
is minimiged. The minimum is found by differentiating (5.5) and setting the
derivatives to zero:

N
N |
= 2 Z F(al + o — y;) =0 3 (5.6)

T

ayt

Ha
1 i=1

144 CHAPTER 5. ANALYSIS OF DATA

N

o _ QZL(Q +am; —ys)wg = 0 (5.7
6(12 - '7':] O‘? 1 2-bq Yi)2; = :
or
aS+a¥r—-Zy = 0 {5.8)
mIe +ax¥z’ —Sey = O (5.9)
where
N I o N »
S=) = Te=)y o4 my=3 A (5.10)
im1 7 i=1 i =1 i
5 02 N iy '
— i. 15
E;TZ = Z ;, ET’y = Z 5
=1 * i=1 t

Since the sums may be computed directly from the data, they are known con-
stants. We thus have a linear set of two simultancous equations in the unknowns
oy and az. These equations are easy to solve:

o = Ty¥a® — YxXay o — SEay — Dyte
LS (Tz)? 7 T 93a? - (Do)

(5.11)

Notice that if ¢; is & constant, that is, if the error is the same for all data points,
then the o’s cancel out in Equations (5.11). In this case, the parameters, a,
and ay, are independent of the error bar. It is not uncommon that a data set
will not include the associated error bars. We may still use Equations (5.11) to
fit the datz if we take o, to be constant (o; = 1 being the simplest choice).

Next, we want to obtain an associated error bar, 74y, for the curve fit pa-
rameter a;. Using the law of the propagation of errors, [18]

N da 2
2 _ Z i 2 \
te T i=1 (ayi) 7 (5-12.J

and inserting Equations (5.11), after a bit of algebra we obtain

o Y2) _ S T
s T e om0

Notice that a,; is independent of y;. If the error bars on the data are constant
(05 = o4), the error in the parameters is

— % (532} . T 1 .
TV e e T e e O

{z) = % me (%) = %ng (5.15)

where

a1l CURVE FITTING 145

IMinally, if our data set does not have an associated set of error bars, we may
estimmate o from the gsample variance of the data,

N

. . 1 ‘
r.rj ~ 57 =) Z[% —f{a; + O}Qﬁ}'i)]z {5.16)
i=1

where s is the sample standard deviation. Notice that this sample variance is
normalized by N — 2, since we have already extracted two parameters, ¢; and
iy, fTrom the data. :

Many nonlinear curve-fitting problems may be transformee into linear prob-
lems by a simple change of variable. For example,

Ziz: {a, f}) = ae’® (5.17)
may be written as Equation (5.4) using the change of variable
mZ=Y; Ina=a; f=a (5.18)
Similarly, to fit a power law of the form
Z{t; o, A1) = at? o (5.19)
we use the change of varidble
InzZ=Y, Int=z; lha=a; [=a (5.20)
These transformations should be familiar because vou are using thern whenever

you plot data using semilog or log-log scales.

General Linear Least Squares Fit

The least squares fit procedure is easy to generalize to functions of the form

Y(zi{a;}) = aYi(@) +aYela) +... + e V(o) (5.21y
M

> a¥5(z)

j=1

To find the optimum parameters we proceed as before by finding the minimum
of x?,

2

N
N .
Yil(a =0 22
Baj Oaj Z; gy {Zak } (5-22)
Qar

Al

> — ¥ {Zakh(az myl}—U (5.23)

i=1 ¢ —

S50

N M N
Ty M wo= Y Blad (5.24)

i=1 k=1 i—=1 t

146 CHADPTER 5. ANALYSIS OF DATA

for j =1,..., M. This set of equations is known as the normal eguations of the
least squares problem.,

The normal equations are easier to work with in matrix form. First, we
define the design matrix, A, as

Yi{za)/ar Yalza)/ow
A= | Yilm)/oe Yalma)foz - | 4

(5.25)

Notice that the design matrix does not depend on y;, the data values, but does
depend on z;, thas is, on the design of the experiment {where the measurements
are taken). Using the design matrix, we may write (5.24) as

N M N '
SO3 AuAuar =3 Ay (5.26)

i=1 k=1 i=1
or in mairix form, _
(ATA)a=A"b (5.27)
where the vector b is defined as b; = y; {o; and AT is the transpose of the design
matrix. This equation is easy to solve for the parameter vector a,

a=(A"A)T'ATb (5.28)

Using this resuls and the law of the propagation of errors, Equation (5.12), we
£nd the estimated error in the parameter a; to be

da; = VCjj (5.29)

where C = (ATA) L.
A common application of this general linear least squares fit formulation is
the fitting of data to polynomials, '

Yir;{a;}) = a1 + aaz +asa® + ... +aye™ (5.30)

The design matrix has elements 4;; = a,jac"g -1 /a;, which is a type of Vander-
monde matrix (see Exercise 4.15). Unfortunately these matrices are notoriously
ill-conditioned, so be careful if A4 > 10.

Goodness of Fit

We can easily fit every data point if the number of parameters, M, equals the
number of data points, N. In this case we have either built & Rube Goldberg*
theory or have not taken enough data. Instead, let’s assume the more common
scenario in which N » M. DBecause each data point has an error, we don’t

*Ag a cartoonist, Rube Goldberg created absurdly elsborate machines that performed
trivial tasks.

Al CURVE FITTING 147

expect the curve 1o pass exactly through the data. However, we agk, “With the
given error bars, how likely is it that the curve actually describes the data? Of
course, if we are not given any error bars there is nothing we can say concerning
the goodness of the fit.

Common sense suggests that if the fit is good, then on average the difference
should be approximately equal to the error bar,

ly: = Y (2:)| ™ 03 (5.31)

Putting this into our definition for x?, Equation (5.3), gives x* ~ N. Yet we
know that the more parameters we use, the easier it is to get the curve to match
the data; the fit can be perfect if M = N. This suggests that we take our rule
of thumb for a gooed fit to be

RN M (5.32)

Of course, this is only a crude indicator, but it is better than just “cye-balling”
the curve. A complete analysis would use the y-statistic to assign a probability
that the data are fit by the curve.

If we find that ¥* > N — M, then either we are not using an appropriate
function, ¥ (z), lor our curve fit or the error bars, ¢y, are too small. On the
other hand, if ¥? « ¥ — M, then the fit is so spectacularly good that we may
suspect. that the error bars are actually too large.

Curve Fit Routines

Having worked out the general least squares problem, let’s step back for a mo-
ment to the special case of fitting a straight line. Linear regression is such a
common task that it is worth having a function especially designed to perform
it. The function linreg, which fits a straight line to a data set, is outlined in -
Table 5.1. To demonstrate this routine, we’ll use the program lsfdemo, outlined
in Table 5.2. A data set is generated by lsfdemo using the equations

X = i gp = (5.33)
Y = ¢+ cor;+ C3:Ef + aﬂ%f*

where R® is a Gaussian distributed random number with unit variance (see
Chapter [1). Note that all the data points have the same estimated error, o.

Figures 5.3 and 5.4 show some typical curve fits for linear and quadratic
curves. The datais marked by the circles; the I-bars on the data points indicate
the estimated error bars. The solid line is the curve fit to the data. In the
former figure the curve fit is good, and x2 = N — 2. In Figure 5.4 the function
is attempting to ft a quadratic; the fit is poor and y* » N — 2. Notice that the
estimated ervor in the parameters, o, , is the same in the two cases. Looking
at Equations (5.13), you will see that o,, is independent of the values of the
data veetor y;. The moral of the story is to use yv? to judge the fit and not the
estimated errors, ...

148 CHAPTER 5. ANALYSIS OF DATA

Table 5.1: Outline of function linreg, which performs linear regression (i.e.,
fits a straight line).

Inputs: {z;}, {v:}, and {o;}.

Outputs: {a1, a2}, {0ay, 00z}, 1Yi}, and x°.

» Evaluate various sums (5.10).

Compute intercept a; and slope as using (5.11).

Compute error bars for intercept and slope using (5.13).

e Evaluate curve fit at cach data point, ¥; = Y (r;), and compute x* using
(5.5).

See pages 171 and 177 for program listings.

Table 5.2: Qutline of program 1lsfdemo, which computes the least squares fit of
a randomly generated data set.

o Initialize data to be fit using (5.33).
s Fit the data to:

— Straight line using linreg function or;

— Polynomial using pollsf function.

Print out the fit parameters, including their error bars.

Graph the data, with error bars and fitting function.

See pages 172 and 178 for program listings.

1
—

CURVE FITTING 149

32 =46.084 N-M=48

o 4o 20 80 40 50 60
X,
1
Figure 5.3: Curve fit result from lsfdemo using linreg (straight line curve
fit). Input values are ¢ = [2.0, 0.5, 0.0], @ = 2.0. The fit gave the parameters
a = [2.46 £ 0.57, 0.485 L 0.020] with y® = 46.1. The fit is good since x? =~
N —2 =48,

¥* = 262.8427 N-M =48

60

Figure 5.4: Curve fit result from Jsfdemo using linreg (straight line curve fit).
Input values are ¢ = {2.0, 0.5, —0.02], « = 2.0. The fit gave the parameters
a = [11.30 + 0.57, — 0.535 £ 0.020] with y? = 262.8. The fit is poor since
X2 > N -2=48,

150 CHAPTER 5. ANALYSIS OF DATA

Table 5.3: Outline of function pollsf, which performs polynomial least squares
fit.

Inputs: {z;}, {yi}, {o:}, and M.
Outputs: {az}, {0,}, (¥}, and x2.

e Form the vector b and design matrix A using (5.27).

o Compute the correlation matrix C = (ATA)~1

Compute the least squares polynomial coefficients, a = CATh.

Compute the estimated error bars, o,, = /Cj;.

Evaluate curve fit at each data point, ¥; = Y (x;), and compute x* using
{(5.3).

See pages 173 and 179 for program listings.

The function pollsf, which uses the general formulation [Equations (5.27)
to (5.29)] to fit a polynomial to a data set, is outlined in Table 5.3. Figure 5.5
illustrates that pollsf produces a good fit to the data generated by 1sfdemo.

Power corrupts; having a function like pollsf tempts us to fit data with all
sorts of functions. However, we should not be too ambitious using too many
parameters. First, the matrices encountered in curve fitting are notoriously ill-
conditioned. The problem is rapidly aggravated if we try to fit a large number
of parameters (e.g., a high-order polynomial]. Second, although the function
may pass near the data points, it may oscillate wildly between the data points
(Figure 3.6). Finally, can you really justify a theory that has 30 free parameters?
In brief, you have better ways to spend your time.

EXERCISES

1. Derive Equations (5.13) using (5.11) and (5.12). [Pencil|

2. Two scientists want to measure the resistivity, R(7T), of a material as a func-
tion of temperature. They assumne that R{(T) = a1 + a:T, where ¢; and a2 are
the constants to be determined. The first scientist measures R for temperatures T =
0°,10°,20°,...,100°. The second performs the measurement at T = 0°, 100°, . .., 400°.
Assuming that they use the same instruments and that the measurement error is con-
stant, which scientist will cbtain the more accurate estimate for the intercept? For
the stope? [Pencil]

3. Given a set of measurements y; = o, find the least squares fit for the constant
function ¥ = o and the error bar o, for the fit parameter o. Since the fitting function
is a constant, the values of x; are irrelevant. What is the relation between this least

5.1, CURVE FITTING ' 151

¥% = 433644 N-M=47
15 . ; .

t

y. and Y(x)

o 10 20 30 40 50 60

Figura 5.3: Curve fit result from lsfdemo using pollsf (polynormial curve fit).
Input values are ¢ = [2.0, 0.5, — 0.02], &« = 2.0. The fit gave the parameters
a = [1.35 & 0.88, 0.613 £ 0.080, —0.0225 + 0.0015] with x? = 43.4. The fit is
good since x* s N -~ 3 = 47.

¥=1211 N-M=0

Figure 5.6: Curve fit of a 10th-order polynomial to 11 data points. Notice that
the fit is good at the data points but oscillates wildly between the points. The
data were generated as y; = x; + R, where R is a Gaussian distributed random
number with unit variance.

152 CHAPTER 5. ANALYSIS OF DATA

squares fit and the sample average {y). = Z:’:l y:/N7T Pencil]
4. Suppose that we want to fit a data set to the function Y'(z;) = ax, that is, a
straight line that passes through the origin. Using the method of least squares, obtain
an expression for o and its estimated error, o,. [Pencil]
5. Write a version of linreg that fits data sets that do not include exror bars. What
value do you get for ¥2? Have the function also return the sample standard deviation.
Testing your function with 1sfdeme, compare this standard deviation with the errors
in the data. [Computer]
6. Consider the following stock market data of Dow Jones Averages:

Day | 1 2 3 4 3

DJA | 2470 2510 2410 2350 2240
Assuming constant error bars, fit this data to polynomials from a straight line to a

quartic (which will exactly fit the five data points). Plot these polynomials from day
1 to 6; the sixth day is October 18, 1987, when the market dropped 500 points. [Com-
puter]

7. (a) Repeas Exercise 2.2 using linear regression to confirm numerically that the
truncation errors for the right first derivative goes as h. (b) Repeat Exercise 2.12
using linear regression to confirm numerically that the truncation exrrors for the cen-
tered first derivative goes as h”. (c) Repeat Exercise 2.13 using linear regression to
confirm numerically that the truncation error for the centered second derivative goes
as h?. [Computer]

8. Repeat Exercise 2.17 and fit a quadratic to T(#) for angles in the range 0 < § < 90°.
Compare your results with Equation (2.38). [Computer]

9. In Pigure 3.10 we see that the time step selected by the adaptive Runge-Kutta
routine varies with distance roughly as 7 o r2/%, Use linear regression to fit this data
to obtain a numerical estimate for the exponent, including its estimated error. [Com-
puter]

10. In some problems we know, from physical grounds, that the curve must intercept
the origin. Write a function that fits a data set to the equation

Y{zja1,a2) = a1r + tzg:L"~>

Use it to fit the trajectories obtained from balle for the initial condition 31 =0 (see
Section 2.1). Try a variety of values for the initial velocity, keeping the initial angle
equal to 453°; include cases where air resistance is significant (see Figure 2.3). What is
the largest velocity for which a parabola accurately fits the data? [Computer]

11. Polynomial approximations are often used to evalnate special functions. For
example, the Bessel function Jy(x) in the inferval 0 < z < 3 is accurately approximated
as, [2]

Jolz) =1 — 2.2499997(z/3)° -+ 1.2656208(x/3)* — 0.3163866(x/3)°
+ 0.0444479(z/3)* —~ 0.0039444(x/3)'° - 0.0002100(z /3)"*

Generate 300 points in the interval 0 < 1 < 3 using this equation, and fit this data
to polynomials from quadratic up to 12th order (i.e., M = 3 to 13). Tabulate the
estimated maximum error, max(¥ (@) —), versus the number of fitting parameters,
M. You will encounter some interesting effects in computing the high-order polyno-
mials. [Computer|

SPECTRAL ANALYSIS 153

365
3601 ﬁﬁt
f#ﬂ; N
356} PR
" S + +
— #®oL T oF + o+ + +
E 350 . D S
o # ++ o+ f + oo+ |
VN It f—‘.F +;+ f + t 4+ T4 St + R
S35 FLiT e Tl s
R
3401 e Yoo vz
+ . o + *
+ + * e +
3351 oot
+ + s
+ + *
3 * . Lo . H
31%80 1982 1984 1986 1888 19580
Year

Figure 5.7: Carbon dioxide {in parts per million) measured at Barrow, Alaska,
from 1981 to 1990. Estimated error bar is o, = 0.27 ppm.

Carbon dioxide concentration in parts per million {(ppm) as measured in Mauna

12,
Loa, Hawaii (Figure 5.1), and Barrow, Alaska (Figure 5.7), is tabulated in Appendix
(a) Using linear iegres-

(b)

3B. The data were taken every 14 days, starting in 1981.
sicn, find the raté of increase of COs in ppm per vear at the two locations.
Approximately when will the carbon dioxide concentration be 10% above its 1981

level? [Computer]

5.2 SPECTRAL ANALYSIS

Discrete Fourier Transform

The carbon dioxide time series shown in Figure 5.1 has a general upward trend
but also a significant periodicity due to the annual seasonal cycle. If our data
set exhibits periodic oscillations, we probably want to fit: it using trigonometric
funetions. This class of problems moves us from the regime of curve fitting to
that of spectral analysis. Spectral analysis is a rich field that can easily fill a
semester course (usually offered by engineers under the title “signal processing”).
This section introduces some of the basic concepts, including the discrete Fouriar
transform and the power spectrum. For a more complete treatment, see Jenkins

and Watts [77].

Take a vector of NV data points,y = [1n e
set a time series because transform methods are often used in signal analysis.

The data is evenly spaced in time, so ;41 = 7j, where 7 is the sampling interval,
that is, the time increment between data points, and y = 0,..., N -1, We define

¥y |; we call this data

154 CHAPTER 5. ANALYSIS OF DATA

the veetor Y, the discrete Fourier transform of y, as

N-—1
Yier =) yjpe 298N (5.34)

=0

where i = /—Land k =0,..., N — 1. The inverse transform is
=
Y1 = :A}) Yjoy 162N (5.35)

Note that texts (and numerical libraries) will vary slighitly in how they define this
transform, especially how it is normalized. If you use a library function from a
numerical analysis package to evaluate a Fourier transform, check carefully how
the transform is defined by that routine.

Each point Y1 of the transform has an associated frequency,

k
frar= = (5.36)

The lowest (nonzero) frequency is fo = 1/7N = 1/T, where T is the length of
the time series. To measure very low frequencies, we need to analyze leng time
series. The highest frequency is fa & 1/7, so to measure very high frequencies
we need to use a short sampling rate.t

The program ftdemo [Fourier transform demonstration) ig outlined in Ta-
ble 5.4. The program creates a, time series

Yir1 = sin(@mf i + ¢s) ' (5.37)

This signal is a sine wave of frequency f, and phase ¢. The program evaluates
the transform Y341 and plots both the signal and its transform. Note that
although ¥ is real, ¥ is complex, so we separately consider its real and imaginary
parts.

Let’s walk throngh a few examples using ftdemo; in each case the sampling
interval 7 = 1. For N = 50 data points, a signal frequency of f; = 0.2, and
phase of ¢, = 0, we cbtain the sine wave and transform shown in Figure 5.8.
The discrete sampling of the sine wave is evident from its jaggedness in the
time series plot. Notice that the real part of the transform is zero and that
the imaginary part has spikes at the frequencies f = 0.2 and 0.8 (k = 10 and
40). Using N = 50 data points, a signal frequency of fi = 0.2, and phase
of &5 = /2, we obtain the cosine wave (because of the phase) and transform
shown in Figure 5.9. Notice thai the imaginary part of the transform is zero
and that the real part has spikes at the frequencies f = 0.2 and f = 0.8,

Next, let’s try a frequency that does not fall on a grid point; that is, fs # fe41
for all k. Using the values N = 50, f; = 0.2123, and ¢; = 0, we obtain the results

TFor a real time series, the highest frequency is actually 1/{27); see the discussion in this
section on the Nyquist frequency.

82, SPECTRAL ANALYSIS

Table 5.4: Outline of program ftdemo, which computes the Fourier transform

of a sine wave time series.

— Direct summation using (5.34) or;

— Fast Fourler transform (FFT) algorithm.

Compute the transform using desired method:

Initialize the sine wave time series y; 1 = sin{2w fij7 - @g).

Graph the time series, y;11, and its transform, Yz11.

Compute and graph the power spectrum Py = |V |2

See pages 174 and 180 for program listings.

Original time seriss ® Fourigr ttanstorm
1 . -
TR : ,
AL T S A B R 20- T fea ;
A A IR B L L [--:_ Iméginery !
A B i
R [N I 10- o
g |1y Ly E n
o I | | I (! I [| 5 -
2 4 [l | Loyl 2 : ‘
5 Pyt b Lpp by 8 o
E oLty Py B ¥
= P \‘lll‘l“l‘ .
I‘\||\||I‘Hi‘|ll|‘ e D
5 || bt “ I / ‘l ! "
T T T T T P L TR -20 N
Uy Wy {
VI I [
! oy Y e o
o 10 20 30 40 50 b 0.2 0.4 0.6 0.8
Time Frequency

Figure 5.8

Time series and its Fourier transform from ftdemo for ¥ = 50 data
points, signal frequency f; = 0.2, and phase ¢; = 0.

T . Feurier transform
Criginal tima sariss 30
A
! H - I“| ot ,“I | 25
O L A S A T O A S L ' — . {
O A A S R E
[Il g |
CE T g |
@ i = 15] !
AR AR | |
g oo (I RSN [|
BN B | d
SRR ININIRTY | N
IR TR TR IR T I
~05 || |‘ |||‘ |‘\ |‘| I ‘l ‘I I ‘I I ‘\
TR R TR R TR T TR B
o 10 2 40 50 0 0.2 Toa4 0.8 0.8
Tima Frequency

Figure 5.9: Time series and its Fourier transform from ftdemo for N = 50 data,

points, signal frequency f; = 0.2, and phase ¢y = 7/2.

156 ' CHAPTER 5. ANALYSIS OF DATA

Original time series 5 __!:‘3"‘"'9' "?"i‘ii_ o
T T T T T [‘
R R T B
'||| [‘| |\ ' ||\ \II‘ |‘ “ Il || ‘,‘ | I‘l P ﬁv?:g‘;mar” |
I R R =Bl
, (T VT g = i
i | o----77 maemsms=z=s pmm
50,\“|||||‘\"|‘|"‘ g v b 1
2 [| [| | ‘ | | | 1 H 5* 1/ Y
S .
[| |
\.|‘ﬂ‘| |\|‘||‘ |||"Hl _mr II |
et | P
Lol ‘,‘l‘ '.\J‘ \ ‘”| ﬂl‘ 1 b ‘ _15[\ I
I J | I
9 M T U A o G A
o 10 20 30 40 50 0 0.2 04 06 048 1
Time Frequency

Figure 5.10: Time series and its Fourier transform from Itdemo for N = 50 data
points, signal frequency f. = 0.2123, and phase ts = 0.

shown in Figure 5.10. Notice that we still have a peak around the frequency of
the sine wave, but the structure Is more complicated. In this example, because
the frequency of the signal is not equal to a multiple of 1/7N = 1/50, our
Fourier transform is not a simple spike. For this reasom, it is often useful to
compute the (unnormalized) power spectruin,

Py = |Yiga|? = Ve V3o (5.38)

where Y is the complex conjugate of Y. The power spectrum from our previous
example (N = 50, f; = 0.2123, and ¢, = 0) is shown in Figure 5.11. This
spectrum shows two well-defined spikes; the first peak in the spectruim is between

£ =0.20 and f = 0.22. If you are wondering about the second spike at f = 1—f;,
read on.

Aliasing and Nyquist Frequency

For our next example let’s try a higher signal frequency, say fs = 0.8. Using
N = 50 data points and ¢, = 0, we obtain the results shown in Figure 5.12.
Comparing these results with Figure 5.8, we see that the results for fi = 0.2
and f; = 0.8 are almost identical; the time scries differ only by a phage shift
of 7. But how is this possible since these sine waves have completely different
frequencies?

To belp you understand why we obtain similar Fourier transforms, consider
Figure 5.13. The two sine waves have frequencies f; = 0.2 and f; = 0.8; the
former is shifted by ¢ = 7. When the sampling interval is 7 = 1, the two
data sets for these sine waves (the circles in Figure 5.13) are identical. This
phenomenon is known as aliasing.

Not surprisingly, because of aliasing there is a limit as to how high a fre-
quency we may resolve for a given sampling interval 7. This upper bound, called
the Nygquist frequency, is

fiv = o (5.39)

3.2, SPECTRAL ANALYSIS 157

Power spectrum (unnormalkized)

10°
fﬂﬂ\ IIA\\
2 I 1
107 ¢ 4" x lf
[|
! I\ !
-] |
o ; /
£10' | /A /
o / i /
- \ VNG
i ' /
o4 Y
10 \ /
107" \/ i
0 0.2 0.4 0.5 0.8 1

Frequency

Figure 5.11: Plot of the power spectrum for NV = 50 data points, signal frequency
fo = 0.2123, and phase ¢, = 0. Compare with the Fourler transform shown in
Figure 5.10.

Oviginal time sariss 30 Faurler ransfom
[P —— T P — : T
i "‘I Iy b ! i I‘i‘ ! 5
| N I 20} .
.‘l "\ ||| .‘| i ' ||| | o I : T
05 ‘ | | | | ‘ | ‘ | | | ‘ | ‘ | I | L In’?aaginary
[ey R | [19 :
o Pepr by £
| L1 Ly | 2 -
£ o || [il % 0 i
s oty ey g -
g] REEEEEEERENEE ;
N TRIRIRI RN ‘
|\| ‘|‘I\|||\I‘H‘i‘|| 40!» i
08| | AR ¥ \‘l ‘ll ‘| ‘I‘ i B
o l.‘ l"‘ N T \\" I ‘u‘l -EOi-
o e !
R N N an
o 10 20 30 a0 50 o 02 0.4 0.6 0.8 1
Time Frequency

Figure 5.12: Time series and its Fourier transform from ftdemo for V = 50 data
points, signal frequency f; = 0.8, and phase ¢, = 0. Compare with Figure 5.8,
where f; = 0.2.

158 CHAPTER 5. ANALYSIS OF DATA

R i VR) W
' I A i I o
T T VA S R R AT
B I Y h | T
A L
o5 1) iyt o oy
‘ | |e‘" | S ‘| | ! I | |y
o |, || |f| |
g ‘ | ‘ Pl ‘\‘ ‘| l‘ li1 [y
E ' T
A S U U U A N A A AR R B
€ Wb I T
= Vo ‘ ‘.“ | | | [| |
L (O L A
VEL AN TR
A VDo |
otV
“I‘ Pl YR O I R
W I b
k! 1 I Pl Yl I " I
AT TN "/H T
_1‘ I/ J U‘ ! & '\V\ i U‘
2 4 6 8 10
Time

Figure 5.13: Tllustration of aliasing. The two sine waves have frequencies f; =

0.2 and f; = 0.8; the former is shifted by ¢ = 7. When the sampling interval is
7 =1, the two data sets {circles} are identical.

For our examples above, fxy = 1/2, since 7 = 1. Truncating our Fouricr
transform at this upper bound means that we discard the upper half of the
vector Y.

Another way to understand this upper bound is to consider the following
“information” argument. The (real) time series y contains N data points, but
its Fourier transform contains N complex data points. However, the information
content of the signal and its transform must be the same. Since the transform
contains twice as many data values (a real and an hmaginary value for each
poeint), it must contain a duplicate of the signal. This is why the Nyquist
frequency cutoff truncates the transform vector by half.

Fast Fourier Transform

Clonsider again the definition of the discrete Fourier transform, as given by
Equation (5.34). The number of operations required to compute Yy for a
single value of k is O(N), where N is the number of data points in our time
series. To compute Y for all values of & (from 0 to N — 1), thus requires
O(N?) operations. For many years spectral work was hobbled because it was
computationally prohibitive to analyze large data scts.

Tn 1965, Cooley and Tukey introduced an algorithm that later became known
as the fast Fourier transform {or FFT).[34! They showed that by cleverly rear-
ranging the order in which the calculation was performed, the number of opera-
tions could he reduced to O(N log, N). Their original algorithm was limited to
the case where N = 27: that is, the number of data points in the time series is a
power of two. Sophisticated implementations of the FFT (such as MATLAB’s

haailt in varciend cran handla any smlie af N bt are still most officient wwhen WV

4.2, SPECTRAL ANALYSIS 159

is a power of two. If N is a prime number, the number of operations returns to
O(N?).

We won't write an FFT routine in MATLAB because there is a powerful,
built-in version. Given a data vector y,

Y = £ft(y); % MATLAB’s built-in FFT routine

gives the transform vector Y. For C++, we will use the function f£ft cutlined in
Table 5.5. In the ftdemo program, this function is called as

ytReal = y;
ytInag.set(0.0); // Copy data for input to fft
fft(ytReal, ytImag);

where y is & Matrix object containing the time series. The Matrix objects
ytReal and ytImag contain the time series on entering the £ft function and
the real and imaginary parts of the transform on exiting the function. This FF'T
function requires the number of data points to be a power of two.

Comparing the results obtained using the direct summation with those from
the FFT algorithm you should notice that the outputs are identical but the
run time is significantly shorter using the FFT. As long as you understand that
the FFT does nothing more than evaluate the discrete Fourier transform in an
efficient way, you don't really need to know how it works. If you're satisfied
knowing what it does and don’t care how, go on and skip to the next scction.
On the other hand, if you’re one of those who can't stand using a black box
without having some idea of what’s inside, read on. The rest of this section
works through an example illustrating the fast Fourier transform algorithm.
The discussion is adapted from Brigham [27]; see that excellent refercnce for a
complete coverage of the FFT algorithm.

How the FFT Works

The discrete Fourier transform is defined as

N-1

}/}H_l = Z y,HIVk:’ (540}
=0

where W = e 279/, The easiest way to understand the FFT algorithm is to
work through a simple example; we take N = 8,50 j.k =0,...,7. It is useful
to decompose j and & into binary form,

7 = Aj2+ 21 Jo (5.41)
E = 4ky+ 2k + kg (542)
where jz,j1,...,%1, k0 = 0 or 1. To make the notation easier to read, define

yi+1 =y, 1, jo); Yit1r = Yka, k1, ko) (5.43)

160 CHAPTER 5. ANALYSIS OF DATA

Table 5.5: Qutline of function f£ft, which computes the Fourier transform of a
data vector.

Inputs: Real(y) and Imag(y).

Qutputs: Real(Y) and Imag(Y).

e Determine size of input data, and check that it is power of 2.

Bit-scramble the input data by swapping elements.
e Loop over number of layers, M = log,(N).

— Compute lowest, nonzero power of W for this layer.
— Loop over elements in binary order (outer loop).
¥ Loop over elements in binary order (inner loop).
. Compute the y(-)W* factor for this element.
- Update the current element and its binary pair.
= Increment the power of W for next set of elements.

See page 185 for program listing.

Table 5.6: Outline of function ifft, which computes the inverse Fourier trans-
form of a data vector using (5.53).

Inputs: Real(Y) and Imag(Y).

OQutputs: Real(y) and Imag(y).

Take complex conjugate of inpui transform Y

Evaluate the fast fourier transform of Y*.

e Take complex conjugate and normalize by N.

See page 186 for program listing.

5.2, SPECTRAL ANALYSIS 161

Using the binary notation defined above, the discrete Fourier transform may be
written as

1 1 1
Yiko ko) = 30 S0 ST ylja, jr, jo)W itk 2hutko)ith=2ji4io) (5 44)

F0=0 j1=0 =0

The first simplification comes from noticing that W8 = W16 — | = 1 since
=2 = - g0
pv(‘lk2+2k1+ko)4j2 — Artkodz (545)
Wtk +2k1+koi2i H/'(2k1+ko]2j1 (5.46)
and
1 1
Yiko ko ko) = 37 Wkt 3 2k ko 2
Jo=0 f1=0
L
X3 ylha, g do) WS (5.47)
je=0

The sums may be further simplified by using W = 1.
The nested sums are usually processed in layers. The inner sum over 7 is
evaluated in the first layer as

w1 (Ko, 1, do) = y(0, g1, do) + y(1, 41, Jo) W (5.48)
for kg, 51, and jo = 0,1, The subsequent layers are
ya(ko, k1, o) = y1(ka, 0, jo) + y1 ko, 1, jo)W Hhat2ko) (5.49)
for kg, k1, and 75 = 0,1, and
yalko, ki, ko) = ya(ko, ki, 01 + y2(ka, by, 1) (dka+ 2k +ho) (5.50)
for kg, k1, and k2 = 0, 1. Finally, the vector y3 is “bit unscrambled” o give,
Yika, by, ko) = ys(ko, by, ke) (5.51)

where Y is the desired Fourier transform of 3.

Note that processing each layer requires eight complex multiplications and
eight complex additions. Since there are three [= log, (8)] layers, the total num-
ber of operations is 24 multiplications and additions. Tt is not difficult to extend
the above example to any value N that is a power of 2. The number of layers
will be logs{N) so the number of operations will be O[N log, (N)]. Another at-
tractive feature of the FFT is that the operations may be performed “in place”;
that is, the vector Y may be created In the same space in memory originally
occupied by the time series y. This feature can be important if memory is
congtrained.

162 CHAPTER 5. ANALYSIS OF DATA

The inverse transform can be defined in terms of the direct transform as,

Amiki/ N
yirt = w2, Vet

1 N-1 . * ’
N (Z (Yk+1€2“k”N)) (3.52)
1 ’

k=0

where asterisk denotes complex conjugate. This result allows us to compute
the inverse transform by applying a complex conjugate before and after calling
the direct transform FET routine. MATLAB has a built-in inverse tranform
function, ifft, and a C4++ version, with the same name, is outlined in Table 5.6.

EXERCISES

13. Consider the time series yj+1.= cos(2m fejr) with f = £/7N and £=10,...,N—1.
Show that the discrete Fourier tramsform is

Vi i = N2 f=korf=N-k
LanE otherwise

by using the definition (5.34). [Pencil]

14. Show that sin(3Fj + m) = sin(57 4}, which is the resalf iNlustrated in Fig-
ure 5.12. [Pencil]

15. Watching a Western on television, you may have noticed that sometimes the
wheels on a fast stagecoach appear to be rotating backward. Explain how aliasing
causes this effect. [Pencil]

16. A good way to understand how an algorithm works is to work a small example by
hand. Evaluate the discrete Fourier transform of y = [0 1 ¢ — 1] using: {a) the direct
summation (5.34); (b) the FFT algorithm. Be sure to show the intermediate steps in
the caleulation. [Pencil]

17. Maodify ftdemo to compute the Fourier transform and power spectrum for the
function:

(a) y = 9;/2m (sawtooth wave)
. 1 0<0; <w
&y = —1 otherwise (square wave)
1 0<8; < '
() w = { 0 otherwise (square pulses)
o 8/ 0<8; < L
@ w = { (2r — @;)/m otherwise (triangle wave)

5.3. ANORMAL MODIS 163

where §; = 2n fi 37 modulo 27, Find the transform and spectrum for fi = 0.2, 0.2123,
amd 0.8, taking v = 1 for N =50, 512, and 4096 data points. [Computer]

I5. The fast Fourier transform is most cfficient when the number of data points is
a power of two. Unfortunately, we cannot always control the number of points in
our time series. A common workaround is to “pad” the time series with zeros; that
is, add to the end of the data extra points whose value is zero. Write a program to
demonstrate the effect of padding a time series, comparing the spectra from padded
and nonpadded data. Use the time series y; 41 = sin(2x foj7) with fu =0.2and 7 = 1.
livaluate the tirwe scries for N = 150, 200, and 251 points, and in each case pad it to
256 points. [Computer]

19. The ftdeme program prints the number of flops (floating-point operations) exe-
cuted in computing the Fourier transform. Modifying the program to graph flop count
versus [V, the number of points in the time series. Show that using the FET the lower
bound goes as N log, (V) while the upper bound goes as N7, [MATLAB]

20. (a) Consider the following simple digital filter, 69] We may smooth our time series
y; by averaging adjacent data points to crcate a new time series z;,

1
Z = E(yj +ui11)

where yyi1 = ¢ Write a program that applies this simple smoothing to a signal
composed of a sum of sine waves of various frequencies. Show that the averaging
serves as a digital low-pass filter by plotting the power spectra of both ¢ and 2. (b)
Repeat part {a), but use the difference filter

2 = (05~ yit+1)

Show that this is a high-pass filter. [Computer]

21. Carbon dioxide concentration (in parts per million} as measured in Barrow,
Alaska, and Mauna Loa, Hawail, is tabulated in Appendix 5C. Besides the linear
trend, the data shows an annual cycle in COy concentration. (a) Write a program
that removes the annual cycle from the data. Remove the cycle by transforming into
the frequency domain, zeroing the appropriate valies, and transforming back. For
comparison, plot the filtered and unfiltered data together on one graph. (h) Repeat
part (a), but remove the linear trend from the data beforc filtering, and then replace
it after filtering. Compare and comment with your results from part (a). [Computer]

53 *NORMAL MODES

Coupled Mass System

In this section we use Fourier transforms to study oscillations in a gimple spring-
mass systern. Recall the system introduced in Section 4.2 (see Figure 4.3). It
consists of three blocks {of mass m) coupled together and to opposite walls
by four springs. To simplify the analysis, we assume the springs are identical
and take the spring constants and rest lengths of the springs equal to k and L,
respectively. Given the distance between the walls as Ly, the rest position of

164 CHAPTER 5. ANALYSIS OF DATA

the masses are 27 = fz' jLw. In Chapter 4 we studied the more general problem
for which finding z* was more complicated.

We now want to analyze the oscillatory motion when the masses are not at
rest. The equation of motion is

d? ‘ .
m&t_?x(t) =Kx(t) —hb (5.53)

2 -1 0 0
Ke=—k| -1 2 =1]; b=-kls|0 (5.54)
0 -1 2 1

Physical intuition suggests the periodic trial solution,

where

x(t) = ae™* L x* (5.55)

where a is the (complex) amplitude vector. Inserting this trial solution into
(5.53) gives us
-mw’a = Ka (5.56}

This is an eigenvelue problem; Equation (5.56) will have solutions only for
certain values of w.
We may write equation (5.56) as

2 -1 0
-1 2 -1lja-Jla=90 (5.37)
0 -1 2
where A = mw?/k. If we further rearrange it as
2—-x -1 0
-1 2-Xx -1 Ja=0 (5.58)
0 -1 2-A

it is clear that we have a nontrivial solution (i.e., a 7 0) only if the matrix has
no inverse.
The matrix is singular if its determinant is zero,

2-x -1 0
-1 2-x -1 |=0 (5.59)
or
@-0{2-N-1}1-2-1=0 (5.60)

This equation is easy to factor,

- A2 +v2) - N[(2-V2) - A =0 (5.61)

5.3, *NORMAL MODES 165

The three eigenvalues are thus A = 2, 2 + /2, and 2 — +/2. T should point out
that while this analysis is suitable for small martrices, it is not the recommended
way of computing eigenvalues numerically.

Our spring-mass system has three normal modes of oscillation; their angular

frequencies are .
k
Wo = /2£; wy = A2+ V2)— (5.62)
\) m

Some further calculation gives us the associated eigenvectors,

1/v?2 1/2
ag = 0 ; ap = | F1/v/2 {(5.63)
-1/v2 1/2

Notice that the three vectors are orthogonal and normalized to unit length. Our
final solution

x(t) = cpage™’ + ey et fe_a_ et 4 x* (5.64)

is a linear combination of the three normal modes. The constants, ¢y, c—, and
c_, are specified by the initial condition x(t = 0).

Numerical Results

Now that we have done the problem analytically, let’s solve the equations of mo-
tion numerically and compare the results. The program sprfft {Table 5.7) simn-
ulates the coupled mass-spring system using fourth-order Runge-Kutta. Since
we want our time series to have a constant time increment, 1 chose not to use
the adaptive routine.t The equations of motion are defined in the function
sprrk (Table 5.8). Notice that the program computes the displacements from
the steady states, which are zero when the system is at rest.

If the initial displacement, is one of the normal modes, then we have a simple
uniform oscillation with a single frequency (Figure 5.14). On the other hand,
for an arbitrary initial displacement of the masses we have a linear combination
of the three modes {Figure 5.15). To the untrained eyve, the masses appear to
oscillate in a chaotic fashion with no discernible pattern.

While the time series in Figure 5.15 may appear chaotic, the power spectrum
{Figure 5.16) clearly reveals the three eigenfrequencies of the system. The peaks
arc not sharp because the length of our time series, I' = N7, is not equal
to an integer number of periods of any of the modes. This effect is called
leakage. Figure 5.17 illustrates how leakage is produced by the discontinuity
in the periodic extension of the time series. We saw the same phenomenon in
Figure 5.11; although the input is a pure tone, the output is a broad spike.

YHowever, with just a hit of extra coding, you can modify the adaptive routine to deliver
data that is evenly spaced in time.

166 ' CHAPTER 5. ANALYSIS OF DATA

Table 5.7: Outline of program sprfft, which computes the evolution of a cou-
pled mass-spring syster; uses Fourier transforms to obtain the eigenfrequencies.

e Set parameters for the systern (initial positions, etc.).
¢ Loop over the desired number of time steps.

— Use Runge-Kutta to find new displacements of the masses.

— Record the positions for graphing and to compute spectra.

Graph the displacements, #;(t) — z*, of the three masses.

Calculate the power spectrum of z (t) — z*.

Apply the Hanning window (5.65) to the time series and calculate the
resulting power spectrim,

Graph the power spectra for original and windowed data.

See pages 175 and 182 for program listings.

Table 5.8: Outline of function sprrk, which is used by the Runge-Kutta routines
to evaluate the spring-mass equations of motion (5.53).

o Inputs: x(t), t (not used), k/m.

Output: dx(t)/dt.

Set dm@/dt = V.

Evaluate dv;/dt from (5.53).

Return state vector x = [duy /dt, dzs/dt, ..., dvs/dt]

See pages 176 and 184 for program listings.

5.3. *NORMAL MODES 167

Displacement of masses (relative to rest positions)

0.2 -,\ o -
7 o Ik .“ \\ / \\ LI :
0.15 Sl A0 Messe |
I vl i Mzss 42 [;

\ : [Lo | f‘ | . Mzss #3
ol 10 v L * ;
S | [B BN ST
N \Iﬂ v \," "\? Vo i
€ 005 |/ L‘f ! f \]
£ ! 5 T | ! g
8 (]W7‘—+—77+\{|‘77777|7—Jﬁff|f+f—7r\f—+—4)— E
g S S A
[+ i & V) [\ \ h
& -0.05} f\ [y ~ ' /]
a . I o j \ ‘
'l / ' l‘ \ ﬂ f ’\
8 | T A T ' / “
i | ﬂ ‘\ ! !) |
| ' . [| | ll [
! / b | 1 / '
—oast; U 0 L
‘ 4 h | ! '
—0.2% VARVERYERYE \/
o 2 4 6 8 10 12 14
Time

Figure 5.14: Displacement. of masses, x — x*, in the coupled spring system
as a function of time as computed by sprfft. The initial displacement is
[0.2,0,-0.2], which is the normal mode with frequency wy = /2k/m. The
time step is 7 = 0.05.

Displacement of masses {relative to rest positions)

0.35 - ——
© Mass #1 |
+ Mass #2 |
0zt PN » Mass #3 | |
' i
FEY
v).’\\ .
' 4 7
]) !]
= 04 F\’ U 1
CICI ! ! B "\ M
: [
0E> ,5' | '*“ \ |
g8 0) # [1
& J LT
o X ! \ Py
L \ [A T
[a] | /

Time

Figure 5.15: Displacement of masses, x — x*, in the coupled spring system as a
function of time as computed by sprfft. The initial displacement was [0.3 0 0];
all three normal modes are excited. The time step used was = 0.05.

168 ' CHAPTER 5. ANALYSIS OF DATA

Power spectrum (dashed is windowed data)

E -5 ! F)
g0 .
a . N

1040:_ Tee L o

-8
10 ; - '
Q 0.2 0.4 0.6 0.8 1
Frequency

Figure 5.16: Power spectrum for the coupled spring system as computed by
sprift. The initial displacement is [0.3, 0, 0], which gives a combination of
the three normal modes (notice the three spikes). The time step is r = 0.5;
frequencies are truncated at the Nyquist frequency. Dashed line is the spectrum
of windowed data.

One way to compensate for our time series being finite is to apply a window.
The sprfft program uses the Hanning window,

Yi+1 = 2

1 1 J .
é——COS (Q'IFW)] i1 j=0,1,...,N*1 (565)

where y is the original time series and ¥ is the windowed time series. This
window smoothly tapers the data at the ends, reducing spurious leakage effects.
Notice in Figure 5.16 that the spikes in the windowed data (dashed line) are
significantly more pronounced. The peaks become even narrower if we add more
data points to the time series,

The results from this coupled oscillator problem may remind you of the
Lorenz model. Looking back on the time series from that model (Figure 3.12)
we recall that they appear periodic. It is a simple matter to modify sprfft
to compute the Lorenz model. Although in Chapter 3 we used the adaptive
Runge-Kutta routine, we found that the time step, 7, did not vary significantly.
Using rk4 with a fixed time step gives ug a time series we can easily analyze.
The resulting power spectrum for z(¢) is shown in Figure 5.18 (the results are
similar for the other two variables in the Lorenz model). While there is a peak
around f = 1.5, on the whole, the spectrum is guite complicated. A signal whose
spectrum contains all frequencies in equal amplitude is called white noise, an
analogy to the spectrum of white light. Spectra such as that in Figure 5.18 are
commonly referred to as red noeise, since all frequencies are present but have
maore power in the lower frequencies,

5.3, *NORMAL MODES 169

I— s T
= | ; ‘ \ f/ \\ ! \\ ' ‘
:>-: 0.5¢ ,f \ /‘ \ ,f \‘ \.
E ot ¢ . | /' 4 fl \\ |
2 A | { | { | | !
O -0.5r y f' , ff) L i

/ \ y /"J \ i Y E
) - f) AS J
-5 0 5 10 15 20
s

o AN |
= ~ - B ~ .
= 0.5F . e / Y .
- EN L / -
% 0 ¢ . :}47?: /' \‘ ’f//\/\-+ —
£ . \j)
E_ g5 <. Voo <.
= Y |

1 e

5 0 5 10 15 20
1

Figure 5.17: IHustration of lcakage and windowing. The upper graph shows the
time series y(t) = cos(f) in the interval 0 < ¢ < 15 as a solid line and its periodic
extensions outside the interval as dot-dashed lines. The lower graph shows the
same time series after applying the Hanning window {5.65), indicated by the
dashed line.

10° |

ol ‘..JI.MJMM

“ Ry ’%5;!‘3:‘.1 .: !‘! L
107 | E | t "ﬁ. 5“ ! \K '\:MWWWM Mwmm
10° _ | | | IE: ‘VZ‘ \Ir";'l";l*:'{‘“:".‘l”w‘ "w‘”‘

Frequency

Figure 5.18: Power spectrum of z(¢) from the Lorenz model; dashed lne is
spectrum of windowed data. The parameters used are the same as in Figure 3.13,
with time step, 7 = 0.05, and N = 1024 data points.

170 CHAPTER 5. ANALYSIS OF DATA

For a long time it was believed that a noisy spectrum indicated that a physi-
cal system contained many degrees of freedom. For example, a conpled oscillator
system with many masses (e.g., atoms in a crystal) has a spectrum with many
eigenfrequencies. The Lorenz model, however, is a simple, nonlinear system with
only three degrees of freedom that produces a red noise spectrum. These results
in nonlinear dynamics have revolutionized time series analysis and forecasting.

EXERCISES

22. Derive the eigenvectors (5.63) for the coupled spring-mass system. Also show
that they are orthogonal and normalized to unit length. [Pencil]

23. (a) Find the normal mode frequencies for the Wilberforce pendulum (see Ex-
ercise 3.13). [Pencil] (b) Modify sprfft to evaluate the time series for the Wilber-
force pendnlum. Compute the power spectrum and confirm your results from part
(a). [Computer]

24. Modify sprfft to evaluate the time series for the Lorens model. Plot the resulting
power spectrum, as shown in Figure 5.18. Take o = 10, b = 8/3, and try r = 10, 28,
and 222.

25. (a) Modify sprfft to evaluate the time series for the Lotka- Voltera model (Exer-
cise 3.22) and plot the resulting power spectrum. (b) Repeat part (a) for the Brusse-
lator model (see Exercise 4.4). [Compnter]

26. {a} Find the normal mode frequencies for the spring-mass system in Exercige
4.13; assume k; = ka. [Pencil] (b) Modify sprfft to evaluate the time series for
the this system. Compute the power spectrum and confirm your results from part
(a). [Computer]

27. Compute the power spectrum of the angular displacement 6(¢) for the simple
pendulum (see Section 2.2). Show that for small initial displacements, for example
8(0) = 10°, the spectrum only has a single peak, but for large displacements, for exam-
ple 8(0) = 170°, multiple peaks appear. What is the relation betwesn the frequencies
of these maltiple peaks? [Computer] '

BEYOND THIS CHAPTER

Curve fitting is such an important topic in scientific data analysis that entire
books are dedicated to the subject.[18, 26] Even linear least squares analysis
can be complicated since the matrices in the normal equations are often ifl-
conditioned. Gaussian elimination can fail, and the best approach is to use
singular value decomposition (SVD).[49] '

In this chapter we only consider fitting data to functions that are linear in
the coefficients. In general, to fit nonlinear functions requires an iterative pro-
cedure for finding the minimum of %*. In some cases, the problem is notoriously
difficult; the function

Yz {ay,...,a4}) = are ** £ gge™®? _ (5.66)

APPENDIX A: MATLAB LISTINGS 171

is o famous example. There are, however, spectalized algorithms for tackling
Lliese problerns.[14, 113]

Least squares analysis can give poor results when the data contains out-
lices or if the errors are not Gaussian distributed. So-called robust techniques
have been developed to provide alternative ways to fit data.[74, 109] It is often
wseful to apply both least squares and a robust algorithm to a data set; if the
fit parameters differ significantly, you might want to investigate why. Robust
techniques are also useful for identifying outliers.

Sometimes we want to draw a smooth curve through a data set, but don’
really carc to specify the function. In this case it’s simplest to assemble the curve
using a piecewise function, the cubic spline being the most popular choice.[40,
82] This is also a good approach when we want to interpolate between data
points.

The Fourier transform has many applications besides that of estimating
power spectra. Computing convolutions and correlations of data sets is most
officiently performed using FFTs. Section 8.2 covers spectral methods for solv-
ing partial differential equations. Specifically, the Fourier transform is used
to numerically solve the Poisson equation. See Brigham [27] for an extensive
summary of other applications.

An alternative technique for power spectrum estimation is the maximum
entropy method (MEM).[31 This algorithm is useful when a data set has sharp
peaks in the power spectrum, especially when trying to resolve peaks that are
close together. Unfortunately, careless use of the method leads to spurious
features (e.g., false peaks) in the spectrum. MEM can be significantly improved
when combined with an adaptive filter.[95]

APPENDIX A: MATLAB LISTINGS

Listing 5A.1 Function linreg. Fits a straight line to a data set.

function [a_fit, sig_a, yy. chisqrl = linreg(x,y,sigma)
% Function to perform linear regression (fit a line)

% Inputs

hoox Independent variable
%oy Dependent variable

% sigma Estimated error in y
% Outputs '

% a_fit Fit parameters; a(l) is intercept, a(2) is slope
% eig_a Estimated error in the parameters a()

A Curve fit to the data

% chisgr Chi squared statistic

%* Evaluate various sigma sums
sigmaTerm = sigmna .~ {(-2);

s = sum{sigmaTerm};

sx = sum{x .* sigmaTerm);

172 CHAPTER 5. ANALYSIS OF DATA

sy = sum(y .* sigmaTerm);

sxy = sum(x .* y .* sigmaTerm);
sxx = sum({(x .~ 2) .* sigmaTerm);
denom = s*sxx - sx"2;

%% Compute intercept a_fit(l) and slope a_fit(2}
a_fit(1) = (sxx*sy - sx*sxy)/denom;
a_fit(2) = (s*sxy - sx*sy)/denom;

%* Compute error bars for intercept and slope
sig_a(l) = sqrt(sxx/denom);
sig_a(2) = sqrt(s/denom);

A* Evaluate curve fit at each data point and compute Chi~2

¥y = a fit(1)y+a_fie(2) *x; 4 Curve fit to the data
chisqr = sum(((y-yy)./sigma).”2); % Chi square
return;

Listing BA.2 Program lsfdemo. Generates a data set and fits a curve to the data;
may be used to test the linreg (Listing 5A.1) and pollsf (Listing 5A.3) functions.

% lsfdemo - Program for demonstrating least squares fit routines
clear all; help lsfdemo; % Clear memory and print header

%* Initialize data to be fit. Data is gquadratic plus random number.
fprintf{’Curve fit data is created using the quadratici\n’);
fprintf{’ y{x) = c(1) + c(2)*x + c(3)*x"2 \n?);

¢ = input{’Enter the coefficients as [c(1) c(2) ¢(3)]:);

N = 5O; % Kumber of data points

x = 1:N; Yx=10[1,2, ..., N
randn(’state’,0); % Initialize random number generator
alpha = input(’Enter estimated error bar: *);

r = alpha*randn(1,N); % Gaugsian distributed random vector
y = c(l) + c(2)#2x + c(3)*x."2 + 1;

sigma = alphaxones(1,¥); % Constant error bar

%+ Fit the data to a straight line or a more general polynomial
M = input(’Enter number of fit parameters (=2 for line): *);
if{M==2)

#* Linear regression (Straight linme) fit

[a_fit sig_a yy chisqr]l = linreg{x,y,sigma);
else

%* Polynomial fit

la_fit sig_a yy chisqr] = pollsf(xz,y,sigma,M);
end

%* Print out the fit parameters, including their error bars.
fprintf{’Fit parameters:\n’);
for i=1:M

APPENDIX A: MATLAD LISTINGS 173

fprintf(* alilg) = fg +/~ g \n’,i,a_fit(i),sig a(i));
end

%#* Graph the data, with error bars, and fitting functiom.

figure(1); clf; % Bring figure 1 window forward
errorbar(x,y,sigma,’o’); % Graph data with error bars

hold on; % Freeze the plot to add the fit
plot(x,yy.7='); % Plot the fit on same graph as data
xlabel(’x_i?); ylabel{’y_i and Y(x)?);

title([’\chi"2 = ’,num2str (chisgr),’ H-M = ° ,num2str(N-M)1);

Listing 5A.3 Function pollsf. Fits a polynomial to a data set.

function [a_fit, sig a, yy. chisqr]l = pollsf(x, y, sigme, M}
Y% Function to fit a polynemial to data

% Inputs

hox Independent variable

oy Dependent variable

% sigma Estimate error in y

A Number of parameters used to fit data
% Outputs

% a_fit Fit parameters; a{l) is intercept, a(2) is slope
% sig_a Estimated error in the parameters a(}

% ¥y Curve fit to the data

% chisqr Chi squared statistic

%+ Form the vector b and design matrix A
b = y./sigma;
N = length(x);
for i=1:N
for j=1:M
AGi,§) = x(i)7(3-1)/eigma(i);
end

end

%+ Compute the correlation matrix C
C = inv(A.' * A);

%+ Compute the least squares polyncmial coefficients a_fit
a_fit =€ * A.? * b.7;

%* Compute the estimated error bars for the coefficients
for j=1:K

sig_a(j) = sqrt(C(j,j));
end

%% Evaluate curve fit at each data point and compute Chi~2
yy = zeros(1,N);
for j=1:M

174 CHAPTER 5. ANALYSIS OF DATA

yy = yy + a_fit{(j)+x."(j-1); % yy is the curve fit
end
chisqr = sum{ {((y-yy)./sigma)."2);
return;

Listing 5A.4 Program ftdemo. Demcnstrates the discrete Fourier transform using
the direct sumimation or the Fast Fourier transform method.

% ftdemo - Discrete Fourier transform demonstratiom program
clear all; help ftdemo; ¥ Clear memory and print header

%# Initialize the sine wave time series to be transformed.
¥ = input{’Enter the number of points: D F
freq = input (’Enter frequency of the sine wave: ’);

phase = input(’Enter phase of the sine wave: ');

tau = 1; % Time increment

t = (0:{N-1))*tau; %t = [0, tau, 2*taun, ...]
y = sin(2#pist*freq + phase); I Sine wave time series

f = (0:(N-13)/ (N*tau); % f = [0, 1/(H*+tan), ...]

%* Compute the transform using desired method: direct summaticn
% or fast Fourier transform (FFI) algorithm.
flops(0); % Reset the flops counter to zero
Method = menu(’Compute transform by’,'Direct summation’,*FFT’);

if(Method == 1)}; % Direct summation
twoPill = -2%pi*sqrt(~1}/N;
for k=0:N-1

expTerm = exp(twoPiN*{(0:N-1)*k);
yt (k+1) = sum(y .* expTerm);
end
elae % Fast Fourier transform
¥yt = f£8{y);
end
fprintf('Number of floating point operations = Y%gh\n’,flops):

%* Graph the time series and its transform.

figure(l); ¢lf; % Clear figure 1 windew and dring forward
plot(t,y);

title(’Original time series’);

ylabel(*Amplitude’); xlabel(’Time’);

figure(2); clf; % Clear figure 2 window and bring forward
plot (f,real(yt},’~’,f,imag(yt),’—-’);

legend (’Real’,’Imaginary’);

title{’Fourier transform’);

ylabel (’Transform’}; xlabel(’Frequency’);

%* Compute and graph the power spectrum of the time series.
figure(3); clf; ¥ Clear figure 3 window and brimg forward
powspec = abs(yt) . 2;

APPENINX A: MATLAB LISTINGS 175

semilogy (f ,powspec,’—’};
title(’Power spectrum (unnormalized)}’);
ylabel{’Power’); xlabel(’Frequency’);

Listing 5A.5 Program sprift. Computes the evolution of a coupled mass-spring
system; uses Fouricr transforms to ebtain the eigenfrequencies. Uses rké (Listing
3A.2) and sprrk {Listing 5A.6).

% sprfft - Program to compute the power spectrum of a
% coupled mass—-spring system.
clear; help sprfft; % Clear memory and print header

Y% Set parameters for the system (initial positions, etc.).
x = input{(’Enter initial displacement [x1 x2 x31: ?};

v = [00 0]; % Masses are initially at rest

state = [x v]; % Positions and velocities; used by rkd
tan = input (’Enter timestep: ’};

k_over_m = 1; # BRatio of spring const. over mass

%¥ Loop over the desired number of time steps.

time = Q; % Set initial time

nstep = 256; % Number of steps in the main loop

nprint = nstep/8; | Number of steps between printing progress
for istep=l:nstep ¥{¥ MAIN LOOP %A%

%* Use Runge-Kutta tec find mew displacements of the masses.
state = rk4(state,time,tau,’sprrk’,k_over_m};
time = time + tau;

Y* Record the positiens for graphing and to compute spectra.
zplot (istep,1:3) = state(1:3); % Record positions
tplot (istep) = time;
if(rem(istep,nprint) < 1)
fprintf(’Finished g out of ¥g steps\n’,istep,nstep);
end
end

%* Graph the displacements of the three masses.

figure(1i); clf; % Clear figure 1 window and bring forward

ipr = l:nprint:nstep; % Used to graph limited number of symbols

plot(tplot(ipr),xplot(ipr,l),’0’,tplot(ipr),xplot(ipr,2),’+’,...
tplot (ipr) .xplot{(ipr,3),’*’,. ..
tplot,xplot(:,1},7 =7 ,tplot,xplot(:,2),7=.7, ...
tplet,zplot{:,3),'—-’);

legend(’Nass #1°, Mass #2’,’Mass #37);

title(’Displacement of masses (relative to rest positions)’};

xlabel(*Time’); ylabel(’Displacement’);

drawnow;

176. CHAPTER 5. ANALYSIS OF DATA

Y+ Calculate the power spectrum of the time series for mass %1

f(1:nstep) = (0:(nstep-1))/(taurnstep); % Frequency

x1 = zplet(:,1); % Displacement of mass 1

x1fft = £ft{x1); % Fourier transform of displacement
spect = abs(x1fft).”2; % Power spectrum of displacement

%* Apply the Hanning window to the time series and calculate
% the resulting power spectrum
window = 0.5%(i-cos{2+pi*{(l:nstep)-1}/nstep)); % Hanning window

xlw = x1 .* window’; % Windowed time series
xiwfft = £Et(xlw); % Fourier transf. (windowed data)
spectw = abs (xiwfft). 2; % Power spectrum {windowed data)

Y= Qraph the power spectra for original and windowed data
figure(2); clf; % Clear figure 2 windov and bring forward
semilogy (£ (1: (nstep/2)),spect (1: (nstep/23}, -7, ...

£{1: (nstep/2)) ,spectw(1: (nstep/2)),’~");
title(’Power spectrum {dashed is windowed data)’};
xlabel (’Freguency’); ylabel(’Power’);

Listing 5A.6 Function sprrk. Defines the equations of motion for coupled spring-
mass system. Used by sprift.

function deriv = sprrk(s,t,param)
% Returns right-hand side of 3 mass-spring systen
% equations of motion

% Inputs

% 5 State vector [x(1) x(2) ... v(3)]
% t Time (not used)

% param (Spring constant)/{Block mass}

% Output

% deriv [dx(1)/dt d={2)/dt ... dv(3)/dt]
deriv(1) = s(4);

deriv(2) = =(5);

deriv(3) = s(8);

param2 = -2¥param;

deriv{4) = param2*s(1l) + param*s{(2);
deriv{5) = param2+*s{2) + param*(s(1)+s(3));
dexriv(8) = param2#s(3} + param#s(2);
return;

APPENDIX B: C++ LISTINGS

APPENDIX B: C++4 LISTINGS

Listing 5B.1 Function linreg. Fits a straight line to a data set.
#include "NumMeth.h"

void linreg{Matrix x, Matrix y, Matrix sigma,

Matrix &a_fit, Matrix &sig_a, Matrix &yy. double &chisgr)
// Function to perform linear regression (fit a line)
// Inputs

[/ X Independent variable
/oy Dependent variable
// sigma Estimated error im y
// Outputs

/f a_fit Fit parameters; a(l) is intercept, a(2) is slope
// sig_a Estimated error in the parameters a()

/Yy Curve fit to the data

// chisqr Chi squared statistic

//* Evaluate various sigma sums
int i, nData = x.nRow();
double sigmaTerm;
double s = 0.0, sx = 0.0, sy = 0.0, sxy = 0.0, sxx = 0.0;
for{ i=1; i<=nData; di++) {
sigmaTerm = 1.0/ (sigma(i)*aigma(i));
s += sigmaTerm;
sx += x(1) * sigmaTerm;
sy += y(i) #* sigmaTerm;
sxy += x(i) * y(i) % sigmaTerm;
sxx += x(i) * x(i) * sigmaTerm;
}

double denom = sS*sSXX - SX%s8X;

//* Compute intercept a_fit(1) and slope a_fit{2)
a_fit(1) = (sxx*sy - sx*sxy)/denom;
a_fit(2) = (s*sxy - sx+*sy)/denom;

//* Compute error bars for intercept and slope
sig_a{l) = sqrt(szx/denom);
sig_a{2) = sqrt(s/denom);

//#* Evaluate curve fit at each data point and compute Chi~2

chisqr = 0.0;

for(i=1; i<=nData; i++) {
yy(i) = a_fit(1)+a_fit(2)#x(i); // Curve fit to the data
double delta = (y{(i)-yy(i))}/sigma(i};
chisqr += delta*delta; // Chi square

}

}

178 CHAPTER 5. ANALYSIS OF DATA

Listing 5B.2 Program lsfdemo. Generates a data set and fits a curve to the data;
may be used to test the linreg (Listing 5B.1) and pollsf (Listing 5B.3) functions.
Also uses the random number generator randn (Listing 11B.8).

// 1sfdemo - Program for demonstrating least squares fit routines
tinclude "NumMeth.h"

void linreg{ Matrix x, Matrix y, Matriz sigma,

Matrix &a_fit, Matrix &sig.a, Matriz &yy, double &chisgr);
void pollsf(Matrix x, Matrix y, Matrix sigma, int M,

Matrixk a_fit, Matrix& sig_a, Matrizk yy, doublek chisqr)
double randn{ longk iseed);

void main() {

//+ Initialize data to be fit. Data is quadratic plus random number.
Matriz <(3);

cout << "Curve fit data is created using the quadratic” << endl;
cout << " y(x) = c{l) + c(2yxx + c(3)*x72" << endl;

cout << "Enter the coefficients:" << endl;

cout <€ "c(1) = "; cin »> c(1);

cout << "c(2) = "; cin >> c(2);

cout << "¢(3) ="; cin >> ¢(3);

double alpha;

cout << "Enter estimated error bar: "; cin >> alpha;

int i, N = 50; // Humber of data points

long seed = 1234; // Seed for random number generator

Matrix xz(¥), y(@), sigma(N};
for(i=1; i<=N; i++ > {

(1) = i; fx=11,2, ..., 4]
y(i) = (1) + c(*x(i) + c(B*x(D)*x(i) + alpha*randn{seed) ;
sigma(i) = alpha; // Constant error bar

}

/7% Fit the data to a straight line or a more general pelynomial
cout << "Enter number of fit parameters (=2 feor line): ";
int M; cin >> M;
Matrix a_fit(M), sig_a(M), yy(W); double chisqr;
if(M == 2) //* Linear regression (Straight line) fit
linreg(x, y, sigma, a_fit, sig.a, ¥y, chisqr);
else //* Polynomial fit
pollsf{ x, y, sigma, M, a_fit, sig_a, yv, chisqr);

//* Print out the fit parameters, including their error bars.
cout << "Fit parameters:" << endl;
for{ i=1; i<=M; i++)
cout << " a(" << i ¢« ") =" << & fit(i) <«
no4f- << sigoa(i) << endl;

APPENDIX B: C++ LISTINGS 179

cout << "Chi square = " << chisqr << "; N-M = " << N-M << endl;

//* Print out the plotting variables: x, y, sigma, yy
ofstream z0ut("x.txt"), yOut("y.txt"),
sigmaOut ("sigma.txt"), yylut("yy.txt");
for{ i=1; i<=N; i++) {
x0ut << x(i) << endl;
yOut << y(i) << endl;
sigmaOut << sigma{i) << endl;
yyDut << yy{i) << endl;
}
}
/##3xx To plot in MATLAB; use the script below #whskkskokkdkokskkskkihk
lead x.txt; load y.txt; load sigma.txt; load yy.txt
% Graph the data, with error bars, and fitting function.

figure(l); clf; % Bring figure 1 window forward
errorbar(x,y,sigma,’o’); % Graph data with errer bars

hold on; % Freeze the plot to add the fit
plot(x,yy.’-’}; % Plot the fit on same graph as data

xlabel (*x_1°); ylabel(’y_i and ¥(x)’};
ok sk ok sk o ok ok ok R R R KRR KKk sk ko ko sk kb Rk ok ko ek

Listing 5B.3 Function pollsf. Fits a polynomial to a data set. Uses inv (Listing
4B.4).

#include "NumMeth.h"
void inv(Matrix a, Matriz& alnv);
void pellsf(Matrix x, Matrix y, Matrix sigma, int M,

Matrixf a_fit, Matrix& sig_a, Matrix& yy, double& chisqr) {
// Function to fit a polynomial to data

// Inputs

/ox Independent variable

/oy Dependent variable

// sigma Estimate error in y

/N Nurber of parameters used to fit data
// Outputs

// a.fit Fit parameters; a{l) is intercept, a(2) is slope
// sig_.a Estimated error in the parameters a()

/vy Curve fit to the data

// chisqr Chi squared statistic

//* Form the vecter b and design matrix A
int i, j, k, N = x.nRow{);

Matrix b(N), A(N,¥);

for(i=1; i<=N; i++) {

b(i) = y(i)/sigma(i);

For{ Hi=1: i<=M: i++)

180 CHAPTER 5. ANALYSIS OF DATA

A(i,j) = pow(x(i), (double) (j-1))/sigma(i);

//* Compute the correlation matriz C
Matrix C(M,M), Cinv{(M,M);
for(i=1; i<=M; i++) { // (C inverse) = (A transpose) * A
for(j=i; j<=M; j++) {
Cinv(i, j) = ¢.0;
for(k=1; k<=N; k++)
Cinv{(i,j) += Alk,i)*A(k,i);
}
}

inv{ Cinv, C }; // C = ((C inverse) inverse)

//* Compute the least squares polynomial coefficients a_fit
for{ k=1; k<=M; k++) {
a_fit{k) = 0.0;
for(j=1; j<=M; j++)
for(i=1; i<=N; i++)
a_fit(k) += Clk,j) * A(i,j) #* b({i);
}

//* Compute the estimated error bars for the coefficients
for(j=1; j<=M; j++)
sig_a(j) = sqrt(C(j,j));

//* Evaluate curve fit at each data point and compute Chi~2
chisqr = 0.0;
for{ i=1; i<=N; i++) {

yy(i) = 0.0; // yy is the curve fit

for(j=1; j<=M; j++)

yy(i) += a_fit(j) * pow(x(i), (double}{j-1) };
double delta = (y{i)-yy(i})/sigma(i);
chisqr += delta*delta; // Chi square

Listing 5B.4 Program ftdemo. Demonstrates the discrete Fourier sransform using
the direct summation or the Fast Fourier transform method. Uses £t function (Listing
5B.7}).

// ftdemo - Discrete Fourier transform demonstration program
#include "NumMeth.h"

// Defines timing routines time{) and difftime(}

#include <time.h>

void fft(Matrix%& RealA, Matrix& Imagd);

APPENDIX B: C++ LISTINGS 181

void main(} {

//* Initialize the sine wave time series to be transformed.
cont << "Enter the number of points: ";

int N: cin >> N;

cout << "Enter frequency of the sine wave: ";

double freq; cin >> freq;

cout << "Enter phase of the sine wave: ";

double phase; cin >> phase;

double tau = 1; // Time increment

const double pi = 3.141592654;

Matrix t(N), y{N), £(I0};

int i,].k;

for{ i=1; i<=N; i++) {
t(i) = {(i-1)#*tau; // t = 10, tau, 2%tau, ...]
y(i) = sin(2+pi*t(i)*freq + phase); // Sine wave time series
f(1) = {i-1)/(N¢tau); /£ = [0, 1/ (N*tau), ...]

b

//* Compute the transform using desired method: direct summation
// or fast Fourier transform (FFT) algorithm.
Matrix ytReal(N}, ytImag(N);
cout << "Compute transform by, 1)} Direct summatiom; 2) FFT: “;
int method; cin >> method;
time_t startTime = time{NULL);
if(method == 1) { // Direct summation
double twoPil = -2#pi/N;
for(k=0; k<N; k++) {
ytReal (k+1} = 0.0;
ytImag(k+1) = 0.0;
for(j=0; j<N; j++ 3 {
ytReal (k+1) += y(j+1)#cos(twoPill*j*k) ;
ytImag(k+1) += y(j+1)*sin{twoPil*j*k);

}

}

¥

else { // Fast Fourier transform
ytReal = y; :
ytImag.set(0.0); // Copy data for input to fft
fft(ytReal, ytImag);

}

time_t stopTime = time(NULL);
double totalSec = difftime(stopTime, startTime);
cout << "Computation time = " << totalSec << " seconds" << endl;
// Compute the power spectrum
Matrix powSpec(ll);
for(k=1; k<=N; k++)
powSpec(k) = ytReal(k)*ytReal(k) + ytImag(k)*ytImag(k);

//% Print out the plotting variables:

182 CHAPTER 5. ANALYSIS OF DATA

/f t, v, £, ytReal, ytImag, powspec
ofstream tOut{"t.txt"), yOut("y.txt"), fOut{"f.txt"),
ytReallut ("ytReal.txt"}, ytImaglut("ytImag.tzt"),
pouSpecOut{"powSpec.txt");
for(i=1; i<=K; i++) {
tlut << t(i) << endl;
ylut << y(i) << endl;
flut << f(i) << endl;
ytRealOut << ytReal(i) << endl;
ytImaghut << ytImag(i) << endl;
powSpecOut << powSpec{i) << endl;
¥
} .
JHdkkk To plot in MATLAB; use the script below kkkkskmkkrrikrasstts
load t.txt; load y.txt; load I.txt;]
load ytReal.txt; load ytImag.txt; leoad powSpec.txt;
%#* Graph the time series and its transform.
figure(1); clf; % Clear figure 1 window and bring forward
plot(t,y);
title(’Original time series’);
ylabel (’Amplitude’}; xlabel('Time’);
figure(2); clf; ¥ Clear figure 2 window amd bring forward
plot(f,ytReal,’-’,f,ytImag,’--?);
legend (’Real’, ’Imaginary’};
title(’Fourier transform’};
ylabel (’Transform’); xlabel(’Frequency’);
%* Compute and graph the power spectrum of the time series.
figure(3); clf; % Clear figure 3 window and bring forward
semilogy(f,powSpec,’-*};
title{’Power spectrnm {unnormalized)’);
ylabel (’Power’); xzlabel (’Frequency’);
e ok ek ook sk ok o AR K R R sk o s ko sk o koK sk R kb f

Listing 5B.5 Program sprfft. Computes the evolution of a coupled mass-spring
system; uses Fourier transforms to obfain the eigenfrequencies. Uses rk4 (Listing
3B.2), sprrk (Listing 5B.6) and fft (Listing 5B.7).

// sprift - Program to compute the power spectrum of a
// coupled mass-spring system.
#include "NumMeth.h"

veid sprrk(double x[], double t, double param[], double deriv[]);

void rk4{ double x[J, int nX, double t, double taun,
void {*derivsREK) (double x[], double t, double param[], double deriv[]),
double paramil);

void fft{ Matrix& Reald, Matrix& Imagh);

void main() {

APPENDIX B: O+ LISTINGS

//* Set parameters for the system (initial pesitions, etc.).
6;

const int nState =

Matrix x(3), v(3); double state[nStatet+1];
cout << "Enter initial displacement of:" << endl;

cout << " Mass #t
cout << " Mass #2
cout << " Mass #3
v(1) = 0.0; v{(2) =

0.

cin > x{1);
cin >> x(2);
cin >> x(3);
i v(3) = 0.0; // Masses are initially at rest

state[1] = x(1); statef2] =

state[4] = v(1); statefl5]

x(2);
v(2);

state[3]
state[6]

x(3};
v{3);

cout << "Enter timestep: "; double tau; cin >> tau;
double k_over_m = 1;
double param[1+1]; param{1] = k_over_m;

//* Loop over the desired number of time steps.
// Set initial time
// Number of steps in the main loop
// Number of steps between printing progress
// Plotting variables

double time = 0O;
int nStep = 256;

int nprint = nStep/8;
Matrix xplot{nStep,3), tplot(nStep);

int i, iStep;

// Ratio of spriing const. over mass

for(iStep=1; iStep<=nStep; iStep++) {

//* Use Runge-Kutta to find neéw displacements of the masses.

rk4 (state,nState, time,tau, sprrk,param);
time = time + tau;

//* Record the positions for graphing and to compute spectra.

xplot(iStep,1} =

1

//* Calculate the power spectrum of the time series for mass #1
Matrix f(nStep), xifftR(nStep), x1fftI(nStep), spect(nStep);

state[1];
xplot (iStep,2) = state[2];
tplot(iStep) = time;
if{ (iStepYnprint} < 1)

cout << "Finished " << iStep << " out of " <X

nStep << " steps" << endl;

for(i=1; i<=nStep; i++) {
£(i) = (i-1)/(tau*nStep);
double x1 = xplot(i,1);

x1££tR{i)

x1£££I(1)
¥
fEE(x1fftR, xiffel)

xl;
0.0;

for(i=1; i<=nStep; it++)

//* Apply the Hanning window t¢ the time series and calculate

// Record positions
xplot (iStep,3)

/{ Frequency
// Displacement of mass 1

// the resulting power spectrum
3.1415926564;

double window, pi =

state[3]:

// Copy data for input to fft

// Fourier transform of displacement
// Power spectrum of displacement
spect(i) = zifftR(i)*x1fftR(i) + xIffeI(i)*x1fftI(i);

183

184 CHAPTER 5. ANALYSIS OF DATA

Matrix xifftRw(nStep), xlfftlv(nStep). spectw(nStep);
for(i=1; i<=nStep; i++ } {
window = 0.5%(1.0-cos(2.0%pi*{i-1.0)/nStep)); // Hanning window

double xlw = xplot{i,1) * window; // Windowed time series
x1fftRu (i) = xlw;
x1fftIw(i) = 0.0; // Copy data for input to fft
} N
fft(x1fftRw, x1fftIw); // Fourier transf. (windowed data}
for(i=1; i<=nStep; it+) // Power spectrum (windowed data)

spectw{i) = x1fftRw(i)*x1fftRw{i) + x1fftIw(i)*x1fftIw(i);

//* Print out the plotting variables:
// tplot, xplot, f, spect, spectw
ofstream tplotDut{"tplot.txt"), xplotOut("xplot.txt"), fOut("f.txt"),
spectOut {"spect.txt"), spectwlut ("spectw.txt");
for(i=1; i<=nStep; it++)} {
tplotDut << tplot(i) << endl;
xplotDut << xplot(i,l) << ", " <K xplot(i,2) << ", ®
<< xplot(i,3) << endl;
flut << £(i) << endl;
spectOut << spect(i} << emndl;
spectulut << spectw(i) << endl;
¥
}
/#%kkx To plot in MATLAB; use the script below kiockkks kil sskrFk s
load tplot.txt; load xplot.txt; leoad f.tx%;
load spect.txt; load spectw.txt
nstep = length(tplot); nprint = nstep/8;
%* Graph the displacements of the three masses.
figure(1); <li; % Clear figure 1 window and bring forward
ipr = l:nprint:mstep; % Used to graph limited number of symbols
plot (tplot(ipr) ,xplot(ipr,1),°c’,tplot{ipr) ,xplot(ipr,2},’+,
tplot(ipr) ,xplot (ipr,3),'*’,
tplot,xplot (:,1),7-7 ,tplot,xplot(:,2),'-.7, ...
tplot,xplot(:,3),’—-");
legend(’Mass #1°,’Mass #2°, 'Mass #3°);
title{’Displacement of masses (relative to rest positioms)’);
xlabel (*Time’); ylabel(’Displacement’);
%#* Graph the power spectra for origimal and windowed data
figure(2); clf; /) Clear figure 2 window and bring forward
semilogy (£{1: (nstep/2)) ,spect(1l: (nstep/2)},’-",. ..
f(1:{nstep/2)),spectw(l: (nstep/2)),’——’);
title (’Power spectrum (dashed is windowed data)’);
xlabel (’Frequency’); ylabel(’Power’);
sk ke sobeok s ok SR ks ok ok sk ek e ook ok R oo o ok R R Rk ok R kR ok ok

Listing 5B.6 Function sprrk. Defines the equations of motion for coupled spring-
mass system. Used by sprift.

void sprrk(deuble x[], double t, double param[], double deriv([]) {

APPENDIX B: C++ LISTINGS 185

// Beturns right-hand side of 3 mass-spring system
/! equations of motion

// Inputs

7/ x State vector [x(1) x(2) ... v(3)]

// t Time {(not used}

!/ param (Spring constant)/(Block mass)

// Output

/ deriv [dx(1)/de ax(2)/dt ... dv(3}/dt]
derivit] = x[4];

deriv[2] = x[6];

deriv[3] = x[6];

double param2 = -2*paramli];

deriv[4] = param?+x[1] + param[1]*x[2];
deriv[5] = param2+x[2] + param[1]1x{(x[1]1+x[3]};
deriv[6] = param2+#x[3] + param[1]=+x[2];
return;

Listing 5B.7 Function £ft. Computes the discrete Fourier transform using the
FFT algorithm.

#include "NumMeth.h"
void fft(MatrixZ Realld, Matrixk Imagh) {

// Routine to compute discrete Fourier transform using FFT algorithm
// Inputs

/ Reald, Tmagh Real and imaginary parts of data vector
// Outputs
/ Reals, Imagh Real and imaginary parts of transforn

double ReallU, RealW, RealT, ImaglU, ImagW, ImagT;

//% Determine size of input data and check that it is power of 2

int N = RealdA.nRow(); // Number of data points

int M = (int){log((double)N }/log(2.0) + 0.6); // N =27M

int NN = (int) (pow{2.0,(double)M) + 0.5);

if(W 1= AN) {
cerr << "ERROR in fft(): Number of data points not power of 2" << sndl;
return;

}

const double pi = 3.141592654;

int N_half = N/2;

int Nml = N-1;

//* Bit-scramble the input data by swapping elements
int i,k,j=1;
for{ i=1; i<=Nml; i++) {
ifFC1 <3 o
RealT = Realh(]); ImagT = Imagh(j); // Swap elements i and j

186 ' CHAPTER 5. ANALYSIS OF DATA

Reald(j) = Reald(i); ImagA(j) = Imagh(i}; // of Bealh and Imagh
RealA (i) = RealT; Imagh(i} = ImagT;
1
k = N_half;
vhile(k < j) {
jo=k
k /= 2;
]
j += k;

¥

//* Loop over number of layers, M = log 2(N)
for(k=1; k<=M; k++) {
int ke = (int) (pow(2.0, (double)k} + 0.5);
int kel = ke/2;
//* Compute lowest, mon-zero power of ¥ for this layer
RealU = 1.0; Imagl = 0.0;
double angle = -pi/kel;
RealW = cos(angle}; ImagW = sin{angle);
//* Loop over elements in binary order (outer loop)
for{ j=1; j<=kel; j++) {
//* Loop over elements in bimary order (immer loop}
for{ i=j; i<=N; it=ke) {
int ip = i + kel;
//* Compute the y(.)*W~. factor for this element
RealT = RealA(ip)*RealU - Imagh(ip)*Imagl; // T = A{(ip)=U
ImagT = RealA(ip)*Imagl + Imagh(ip)*Reall;
//+ Update the current element and its binary pair
RealA(ip) = RealA(i)-Reall;
Imagh(ip) = Imagd(i)-ImagT; // A(ip) = A1) - T
RealA(i) += RealT:
Imagh(i} += ImagT; /7 A(L) = A(Q) + T
}
//* Increment the power of W for next set of elements
double temp = RealU#RealW - ImagU+Imagli;
Tmagl = RealU#ImagW + ImagU*RealW; /A U=U=*¥
Reall = temp;

Listing 5B.8 Function ifft. Computes the discrete inverse Fourier transform
using the FPT algorithm. Uses ££t (Listing 5B.7).

#include "Numleth.h"
void fft(Matrix& Realhd, Matrix& Imagh);

void ifft(Matrix& Reald, Matrix& Tmagh) {

APPENDIX I3: C++ LISTINGS 187

// Routine to compute inverse Fourier transform using FFT algorithm
// Inputs

// Reald, Imagh Real and imaginary parts of transform

// Outputs

/ Reald, Imagh Real and imaginary parts of time series
int i, N = RealA.nRow(}; // Number of data points

//* Take complex conjugate of input transform
for{ i=1; i<=N; i++)
Imagh(i) #= -1.0; // Complex conjugate

//* Evaluate fast fourier transforn
fft{ Reald, Imagl);

//* Take complex conjugate and normalize by N
double inv¥ = 1.0/N;
for{ i=1; i<=N; i++) {
Realk(i) *= invN;
Imagh(i} *= -invN; // Hormalize and complex conjugate
}
}

188 ' CHAPTER 5. ANALYSIS OF DATA

APPENDIX C: CARBON DIOXIDE DATA

Table 5.9: Carbon dioxide (in parts per million) measured at Mauna Loa, Hawaii.

339.35 3309.96 340.59 341.17 341.67 342.13 342.61 343.10
34349 343.60 343.34 342.72 341.90 341.01 340.18 339.41
338.66 337.93 33732 337.00 337.07 337.52 33821 338.96
339.60 340.10 34051 340.89 341.32 34184 34239 342.92
343.40 343.78 34309 343.96 343.69 343.28 342.8 342.36
341.68 340.69 339.45 338.24 337.36 33701 337.17 337.63
338.37 339.11 339.84 340.56 341.28 34179 342.07 34215
34995 342.64 34343 344.46 34537 345.86 345.87 345.51
344.95 344.23 34334 342.27 34116 34021 339.60 339.40
330.54 330.91 34040 341.00 341.71 34248 343.26 343.81
344,15 344.36 344.61 345.06 345.70 34641 346.99 347.28
347.25 34696 346.46 34577 344.91 343.91 342.85 341.80
341.22 340,08 341.19 341,69 34230 34280 343.39 343.79
344.14 34442 34478 34530 345.93 346.55 347.07 347.53
347.96 348.34 348.53 348.41 34793 347.14 346.12 345.01
343.99 343.19 342.69 34247 34252 34283 343.3€ 344.02
344.60 34526 345.71 34597 346.15 346.36 346.74 347.35
34811 34888 349.48 349.80 349.79 34943 34875 347.85
346.00 346.01 34524 344.56 343.97 34354 34343 343.78
314.53 34545 346.23 346.74 347.05 347.30 347.62 348.01
348.46 34898 349.61 330.32 351.00 35148 351.66 351.52
351.07 350.33 349.38 348.3¢ 347.40 346.70 346.31 346.20
946.35 846.77 34742 34817 34883 34920 349.65 3560.02
150.52 351.09 351,63 35212 352.63 353.19 353.72 354.07
35414 353.95 353.55 352.98 35221 351.25 350.19 349.26
348.68 348.54 34875 34911 34951 349.96 350.55 351.27
352.07 352.55 352.77 352.87 353.07 35351 354.22 355.02
355.66 355.97 355.92 355.63 35519 35459 333.74 352.60
351,30 350.12 349.36 349.13 340.37 349.01

Notes: Measurements were taken every 14 days, starting in 1931 Values in table
are ordered left to right and then down (ie., the second value is 339.96). Estimated
error is go = 0.16 ppm.

APPENDIX C: CARBON DIOXIDE DATA

Table 5.10: Carbon dioxide (in parts per million) measured at Barrow, Alaska.

189

344.20
346.21
330.85
343.49
347.82
339.41
341.39
347.29
346.60
338.43
349.92
350.45
336.40
349.23
352.05
337.13
348.28
353.47
343.72
349.53
303.87
352.76
344.50
356.60
357.27
344.22
359.40
359.90
342.40

344.83
346.56
330.45
344.52
347.62
336.15
342.83
347.85
343.92
341.78
350.41
349.98
338.28
349.53
352.30
336.24
348.85
353.26
340.30
350.29
354.12
349.83
346.69
356.95
356.38
346.56
359.55
350.43
342.01

345.20
346.47
331.84
345.39
347.56
333.46
343.91
347.76
340.29
344.35
350.38
348.29
340.36
349.38
352.15
337.24
349.59
353.19
338.30
351.11
354.27
346.14
348.52

357.01°

3564.58
349.18
350.18
359.33
344.35

345.37
345.51
334.40
345.95
347.67
332.02
344.91
347.86
336.55
345.82
350.05
345.33
342.16
349.29
351.36
339.58
350.48
353.23
338.47
352.02
3564.36
342.57
350.02
357.10
361.72
351.57
358.86
359.26
347.96

345.41
343.12
337.20
346.44
347.60
332.24
345.89
347.93
333.67
346.48
349.69
341.66
343.62
349.57
349.66
342.34
351.54
3563.07
340.61
352.82
354.57
340.10
351.40
357.36
348.20
353.58
359.07
358.23
351.22

345.42
340.24
339.52
347.01
346.87
334.01
346.55
348.12
332.37
346.99
349.57
338.24
345.01
350.19
346.92
344.78
352.56
352.24
343.70
353.25
354.89
339.33
352.83
357.65
344.98
355.32
359.75
355.34
353.33

345.52
336.50
341.17
347.57
345.18
336.66
346.89
348.30
332.93
347.87
349.77
336.01
346.53
330.92
343.38
346.52
353.29
330.37
346.52
353.44
355.03
340.20
334.41
357.77
343.04
356.92
360.34
330.71

345.79
333.06
342.39
347.88
34259
339.31
347.08
347.98
335.17
348.96
350.19
335.45
348.04
351.57
339.78
347.60
3563.57
347.40
348.44
353.61
354.46
342.16
355.73
357.65
342.84
358.35
360.37
345.74

Notes: Measurements were taken every 14 days, starting in 1981. Values in table
are ordered left to right and then down (i.e., the second value is 344.83). Estimated

error is go = 0.27 ppm.

Chapter 6

Partial Differential
Equations I:
Foundations and Basic
Explicit Methods

Up to now, most of the physical systems we have simulated were formmulated
using ordinary ditferential equations. However, much of physics involves working
with partial differential equations (PDEs}. We have the Schridinger equation in
quantum mechanics, Maxwell’s equations in electricity and magnetism, and the
wave equation in optics and acoustics. The next four chapters cover techniques
used 1o treat such equations numerically. This chapter starts by discussing the
various types of PDEs and describing how to solve parabolic PDEs, such as the
diffusion equation, using an explicit marching method.

6.1 INTRODUCTION TO PDEs

Classification of PDEs

In solving ordinary differential equations we developed some general methods,
such as Runge-Kutta, that could be applied to any problem. The situation is
different with partial differential equations (PDEs). The classification of the
equation is a guide to the type of method that should be nsed.

Instead of introducing the classification of PDEs in the abstract, let’s discuss
some familiar, concrete examples. There are three PDEs that serve as model
equations for our classification scheme and, fortunately, you have already seen
them in your other physics courses. The first is the one-dimensional diffusion

192 CHAPTER 6. PDES I: FOUNDATIONS & EXPLICIT METHODS

equation:
4 H?
Tz, t) = k=—=T{z,t) 6.1
at (?) awg (>) ()
This equation is used to describe many different diffusion processes. Here it is
written as the Fourier equation from the theory of heat transport. The variable
T(x,t) is the temperature at position o and time t. The constant & is the
thermal diffusion coefficient. This first equation is an example of a parabolic
equation. The time-dependent Schrodinger equation is another example (see
Section 9.2). _ :
The second important PDE that we study is the one-dimensional wave equa-
tion , N
a2 A 9?4
= (6.2)
ot? da
where A(z,t) is the wave amplitude and ¢ is the wave speed. This equation is
classified as a hyperbolic equation.
Our third partial differential equation is Poisson’s equation used in electro-
statics. In two dimensions, it takes the form

e 5P 1
T2 + gy—g = —ap(ﬂ?:y} (6.3)

where ®{z,y) is the electrostatic potential, plx,y) is the charge density, and eq
is the permittivity of frec space. If p =0, then we have Laplace’s equation. The
Poisson and Laplace equations are classified as elliptic equations. :
Notice that in each of these examples we have two independent variables,
either (x,t) or {z,y). All the methods we discuss are extendable to higher-
dimensional systems, but ave much easier to understand when first used with
only two variables. Formally, a second-order PDE in two independent variables
of the form
A b %A %A A O0A

+d=—+e—+ fA(x,y)+9=0 (6.4)

@ o2 + dzdy te Ay? O Jy

was classified as hyperbolic if b2 — dac > 0, parabolic if 6% —4ac = 0, and elliptic
if 82 — 4dae < 0.

Initial Value Problems

The diffusion equation and the wave equation are similar in that they are usually
solved as initial value problems. For the diffusion equation, we might be given
~ an initial temperature distribusion T'(z,4 = 0) and want to find T (z,#) for all
¢ > 0. Similarly, for the wave equation, we could start with the initial amplitude
A(z,t = 0) and velocity dA(z,t = 0}/dt of a wave pulse and be asked to find
the shape of the wave pulse, Az,), for all £ > 0.

Besides initial conditions, we also need to specify boundary conditions. Say
v anlution is constrained to the region of space between @ = —L/2 and z =

G.1. INTRODUCTION T'() PDES 193

05, By 258 3
fpdeedfEanatise., praisaisid g
Boeiricngiaifaies PT
3 24 3 x
] i : easociin
s SOluthn to be Shanah i s
Boundary EEiZtti8REEEE: determined in SE222 '\
condition E L the interior 5
given here Fi44H HH ! Boundary
£ gac | condition
= H given here
t=0 3
x=-1L72 x=LR2

Initial condition given here

Figure 6.1: Schematic representation for an initial value problem.

L/2. Boundary conditions are imposed at these end points. For the diffusion
equation we could fix the temperature at the boundaries,

T(x=-Lj2,t]=T,; T{x=L/2,t)=T, (6.5)

This is an example of Dirichlet boundary conditions. An alternative would be
to fix the heat flux at the boundaries

dr drT

— [

=F (6.6)

If the boundaries are insulated, then F, = Fp = (. In this case we have Neu-
mann bowndaery conditions. A third type of boundary condition is commeon in
numerical simulations. We can equate the function at the two ends,

Tle=—L/28) = T(z=1/2t (6.7)
dr dr
ll = (6.8)
dv |, 12 A | g, o

This is called a periodic boundary condition. In one dimension, using periodic
boundary condition® is equivalent to transforming our coordinates from a line
to a circle.

A useful way to picture initial value problems is to view them on the at
plane, as shown in Figure 6.1. Notice that the interior region is open ended; we
may compute T'(z,t) or A{x,) as far into the future as we want.

Ag with ODEzg, we discretize the time as ¢, = (n — 1)7, where 7 ig the time
step and n = 1,2,.... Similarly we discretize space as x; = (¢ — 1)h — L/2,
where h ig the grid spacing and ¢ = 1,2,.... A gchematic of an initial value
problem in digcretized form is shown in Figure 6.2. Our job is to determine the
unknown values in the interior (open circles) given the initial conditions (gray
circles) and the boundary conditions (flled circles).

Initial value problems are often solved using marching methods. Starting
from the initial condition, we compute the solution one time step into the future.

194 CHAPTER 6. PDES I FOUNDATIONS & EXPLICIT METHODS

Initial
® congdition

Boundar
® point Y

Interior
O point

Figure 6.2: Schematic representation for a discretized initial value problem.

Boundary condition given here

HHIHY
i §§§§f [

] Q?gi% Solution Lo bela:;
2% determined 1n'g

s

Boundary Fiis
condition ,g,gf%g

given here Boundary
condition
y=0 i] given here
= .

Boundary condition given here

Figure 6.3: Schematic representation for a boundary value problem.

Using this vesult, the solution at ¢ = 27 is computed. The algorithm proceeds
in this manner and marches forward in time. Initial value problems are solved
both analytically and numerically in this chapter and the next.

Boundary Value Problems

Elliptic equations, such as Laplace’s equation in electrostatics, are not initial
value problems but rather boundary value problerns, For example, we may be
told the potential on the four sides of a rectangle,

‘I’($=U,y):¢1; q’{szw:y):q)Z;
B(x,y = 0) = Pg; B(z,y = Ly) = P4 (6.9)

and be asked to solve for ®{w,y) at all points inside the rectangle (Figure 6.3).
We discretize space as o; = (i — Lhy, y; = (7 — 1)hy where hy and h, are the
z and y grid spacings. Now our task is to determine ® at the interior points,
given the coustraints specified by the boundary conditions (Figure 6.4).
Algorithins for solving boundary value problems are sometimes called jury
methods. The potential at an interior point is influenced by all the bound-

6.2. DHFUSION EQUATION 195

¥

Il
=

Boundar
e point Y

Interior
O point

Figure 6.4: Schematic representation for a discretized boundary value problem.

ary points; the solution in the interior is a weighted result that reconciles all
the demands (constraints) imposed by the boundary. The methods for solving
bouridary value problems are covered in Chapter 8.

I don’t want to dwell too much on the classification of equations. We could
go on to discuss the uniqueness of solutions: instead, let's start looking at al-
gorithms for solving our three model equations. One last note: Most equations
encountered in real research do not fall neatly into one of our three categories.
Instead, they are often hybrids. For cxample, consider acoustic wave prop-
agation with attenuation. The equations are in part hyperbolic and in part
parabolic. Still, the methods we develop here will be applicable to such hybrid
problems.

6.2 DIFFUSION EQUATION

Method of Images

We'll start with the most cooperative of the three PDEs introduced in the
previous gection, the diffusion equation:

0 8*
—=T{z,t) =
6t (’r7) K

where T'(x,t) is the temperature at location = and time ¢; the constant & is
the thermal diffusion coefficient. Before solving this equation numerically, let’s
obtain the analytical solutions to some simple initial value problems. There
are several ways to solve the diffusion equation (e.g., separation of variahles,
integral transforms). Tn this section we use one of the lesser known techniques,
the method of images.[86]

An important solution of this PDE is 2 Gaussian of the form

o(t)lx/z_w o [(;a%f)dz]

TG(:E: t) =

(6.11)

196 CHAPTER 6. PDES I FOUNDATIONS & EXPLICTT MITFHODS

where xg is the location of the maximum. The standard deviation, a(1), in-
creases in time as

olt) = V2t (6.12)

Notice that as ¢ = 0. o{t) = 0, so the width of the Gaussian tends to zero.
Since the Gaussian is normalized,

/ Ter (o, O =1 (6.13)
then
lim T (a2, #) = d(x — o) (6.14)
£50

where 8(x) is the Dirac delta function. Tn Fact, this Ganssian is one of the
definitions of a delta function.[11] This Gaussian solution is important since it
is also the Green’s funcrion for the infinite domain.[89]

The problem we want 1o scive is the following: Given the initial condition
T(x,t =0) = d(z) and the Dirichlet boundary conditions,

Tie=—Lj2,t) = Tl = L{2,8) =0 (6.13)

find T'{x,t) for all z and . Physically, this problem corresponds to the diffusion

of heat in a bar of length L whose ends are held at temperazure T = 0. 1L this

zero ternperature bothiers you, remember that. we may add an arbiirary constant

to the solution. At time ¢ = 0, an infinitesimal spot at the center of the bar is

instantaneously heated to a very high (infinite} termperature. The total heat (or

cnergy) in the bar remains finite since the integral of the temperature is finitc.
By the method of images, we may construct an analytical solution as

Tl)= 3 (=1)"Telo+nl) (6.16)

= 0K

To understand the construction, consider the schematic shown in Figure 6.5.
The initial condition has images at —L and L. But the image at L has an image
of itsclf at —2L; similarly, the image at —L has an image at 2L. Of course, there
are an infinity of images of images. The images are initially all delva functions
of alternating signs. In time each spreads as a Gaussian, yet the sum maintaing
the boundary conditions at x = +1,/2 (Fignre 6.6). Notice that the solution
looks somewhat like a Ganssian, except that the values at ¥ = £L/2 are fixed
at, zoro by the boundary conditions.

The method of images is most uscful when we are interested in the solution
for small t. The solution i an infinite sum, but for short times only the images
near the origin contribute significantly. As ¢ increases, more and more Images
contribute: in the case of Jarge 1 it is better to use the solution obtained by
separation of variables (see Sections 6.3 and 8.1). That solution is also an
infinite sum, but the contributions from: the higher-order terms decrease with
time.

6.2. DIFFUSION EQUATION 197

-2L -L L2 0 L2 L 2L
I I I I I I |
® o] o] L
Image of 1 Imageof
image Bar condition initial condition

Figure 6.5: Method of images solution for the diffusion of a delta function initial
condition. The images are positive or negative as indicated by the solid or open
circles, respectively. There is an infinity of images at £L, £2L, .. .

Figure 6.6: Plot of T'(x.t) as given by Equation (6.16) at ¢ = 0.03 for £ = 1,
L = 1. The original pulse and one image on each side are plotted in the top
graph and their sum in the lower graph. Only the solution between —L /2 and
I./2 has physical meaning. '

198 CHAPTER 6. PDES I: FOUNDATIONS & EXPLICIT METHODS

Forward Time Centered Space Scheme

Now let’s try to numerically solve the diffusion equation. As mentioned earlier
in the chapter, we discretize time and space, so it is useful to introduce the
shorthand

T =Tz, tn) (6.17)

where z; = (i—1)h—L/2 and t,, = (n—1)7 (see Figure 6.2}. The index i denotes
the spatial location of a grid point, while the index rn indicates the temporal
step. Note that the boundary points are T and T%, so the grid spacing is
h=L/{N-1).

The time derivative, discretized using the forward derivative form, becomes

8T(I, t) = T(:’B’La tn + T) _ T(.’I?-,j,fn) _ T';f!+1 N Tin

ot p = . (6.18)
The space derivative is discretized using the centered derivative form,
OT(a,t) | Tleathitn)+ T(w; — hytn) — 2T (35, tn)
dz? h?
- Tt I;il i (6.19)

From the way we discretized the derivatives, this method takes the name forward
time centered space (FTCS) scheme.
Using the above, our discretized diffusion equation is

A+ -Tr T + T, =20
- LA hzl (6.20)

The future value of temperature (at step n + 1) is explicitly determined from
the current value, as is most apparent by arranging the terms as

TP+ =TI + _(P+ T2 - 20 (6.21)

Given that everything that depends on time step n is on the right-hand side,
while only the future value of temperature is on the left, the F'TCS scheme is an
example of an ezplicit method (implicit methods are discussed in Section 9.2).
Because of the way the time derivative is discretized, the FTCS scheme may
remind you of the Euler scheme for ODEs {(see Chapter 2).

FTCS Program

A program called dftcs, which solves the diffusion equation using the FTCS
method, is outlined in Table 6.1. The temperature at the ends is fixed at T =0,
$0 the boundary conditions are

Ty =T§ =0 (6.22)

6.2. DIFFUSION EQUATION 199

Table 6.1: Outline of program dftcs, which computes the diffusion of a delta
function using the F'TCS method.

Initialize parameters (r, A, etc.).

Set initial conditions (6.25) and boundary conditions (6.22) .

Set up loop and plot variables.
e Loop over the desired number of time steps.

— Compute new temperature using FTCS scheme, (6.21).

— Periodically record temperature for plotting.

Plot temperature versus x and ¢ as wire-mesh and contour plots.

See pages 208 and 210 for program listings.

for all n. The initial condition we want to use is T'(z, 0) = d(x), but we can-
not put a delta function in the program. To best represent the delta function
numerically, we use
(x+h)/h® for —h<z<0
Alz) = (h—z)/h? for0<z<h (6.23)
0 otherwise

Notice that

lim A(z) = d(x) (6.24)

h—0

The function A{z) is just a triangular spike with unit area. When we discretize
A{x) we have

_J1/h fori=N/2
Ai {0 otherwise (6.23)
Note that
L2 N
/ Afz)dz — D Ah=1 (6.26)
—L/2 =1

80 £ also has unit area.

Before running the program, we should have some idea as to how to specify
the time step. From Equation (6.12), we know the width of our Gaussian will
spread in time as

ot) = V2t (6.27)

Call t, the time it takes the width & to increase from zero to £ (i.e., by one grid
spacing). From the above, we may write

h2

T 9%

to (6.28)

200 CHAPTER 6. PDES I. FOUNDATIONS & EXPLICIT METHODS

Diffusion of a deltzs spike

Temperaure contour plcr

15 o : : R S

TO5TTTUGe T 001 0095 002 002 003
Time

Figure 6.7: Mesh and contour plots of T'(z,{) from dftcs. Number of grid
points is N = 61, time step 7 = 1.0 x 1071,

Diffusion of a delta spike

“emperature contaur plot

HIH

2. : Al M‘HH h [\ ll |
2o i
=
o *
T
’ N . - ="""006
0 e e 004
e 7T 002 e—
—0.5‘}? . 05 0.005 0.01 0015 002 0.025 003 0.035 0.04
x Time Time

Figure 6.8: Mesh and contour plots of T'(x,¢) from dftcs. Number of grid
points is N == 61, time step 7 = 1.5 x 107, In this case, because 7 > t,, the
FTCS scheme is numerically unstable.

Notice that the FTCS scheme, Equation (6.21), may be written in terms of ¢,
as
T = (n— 2T (6.29)

Our physical intuition tells us that we probably don’t want to use a time step
much larger than .

In running the dftcs program for N = 61 and 7 = 1.0 x 107*, we obtain
the results shown in Figure 6.7. In this case h=L/{N - 1) =1/60 and s = 1,
80 #, = 1.389 x 107*, Qualitatively, the profile looks correct; in the exercises
you are asked to compare it quantitatively with the analytical solution.

The FTCS method is not stable for all values of 7 and . Specifically,
it is unstable when v > ¢, (Figure 6.8). In Chapter 9 we analyze why this
happens and discuss some more advanced numerical methods that don’t suffer

6.2. DIFFUSION EQUATION 201
from numerical ingtabilities,

EXERCISES

1. Show that Equation (6.11) is a solution to the diffusion PDE, Equation (6.10]. [Pen-
cil] ‘

2. Show that the solution of the diffusion PDE, Equation (6.10), for the initial
condition Tz, # = 0) = Ty(x) (—oo <z < o) is

oo

T(z,t) = / Tolz oo — o t) dx’
—

where Ty is given by (6.11). [Pencil]

3. Run the dftcs program with N = 61 and a variety of values for 7 between

1072 and 1077, For 7 = 1.0 x 107%, try a variety of values for N. What do you

ohserve? [Computer]

4. (a) Write a function to evaluate Equation {6.16) numerically for T (x,t) and repro-

duce Figure 6.6. (b} Use the function from part (a} in the dftcs program to produce a

graph of |[T..(z,t)—Te(x, t]|, the absolute difference between the analytical temperature

profile, Ty, and the profile obtained by the FTCS scheme, T... [Computer]

5. {a) Using the mecthod of images, find the solution of the diffusion equation with

Dirichlet boundary conditions T(x = —L/2) = T{x = L/2) = 0 and initial condition

T(x,t = 0) = §(x — L/4)}. [Peucil] (b) Write a program to graph the solution obtained

in part {a) at t = 0.25¢7,0.50¢r,...,5tL, where t;, = L?/8k is the time it takes the

width of the Gaussian to spread a distance L/2. How many images are needed to

abtain 1% accuracy in the boundary condition at each of these times? [Computer,
6. Suppose that we replace our Dirichlet boundary conditions with the following
Neunmann boundary conditions:

or _ T —0
Oz lo=—z/2 92 la—ns2

(a) Using the method of images, find the solution T(x,t) for the initial condition,
T(x,0) = §(z). [Pencil] (b) Using the method of images, find the sohition T(z,t) for
the initial condition, T{x,0) = 8(x—L/4). [Pencil] (¢) Modify dftcs to implement these
boundary conditions by setting 77 = 73 and Ty = I%_;. Compare the program’s
output with the results from parts (a) and (b). Explain why the spatial discretization
is 2 = (i— 2)h —L/2 with h = L/(N —2) for these boundary conditions. [Computer]

-

7. Consider the periodic boundary conditions:

aT _ar

T{w = —Lf2,t)=T(z=L/2,¢); Taloe 12~ B2 lorye

(a) Using the method of images, find the solution T{z,t) for the initial condition,
T{x,0} = 67z}, [Pencil] (b) Using the mcthod of images, find the solution T{z,t) for
the initial condition, T(x, 0) = é(x — L/4). [Pencil] (¢} Compare the results from parts
{a) and (b) of this exercise with those of the previous exercise. In what ways are
they similar and how are they different? [Pencil] {d) Modify dftce to implement these
boundary conditions by setting T7 = Tx_, and Tk = 13'. Compare the program’s

202 CHAPTER 6. PDES It FOUNDATIONS & EXPLICIT METHODS

output with the results from parts {(a) and (b). Explain why the spatial discretization
is 2 = (i~ 2)h— L/2 with h = L/(N —2) for these boundary conditions. [Computer]
8. The Richardson scheme for solving the diffusion equation uses the following dis-
cretlzation:
T;a,+l _ frin—l - +I + 2: L - QTn
27 N k2

Note that this is a three time-level scheme, that is, the method uses T, 7", and
777! 30 the scheme is not self-starting. Write a program that uses this scheme to
solve the diffusion problem discussed in this section. Use the FTCS scheme on the
first step to get it started. Try a variety of values for 7, and show that the method is
always unstable. [Computer] '

9. The DuFort-Frankel scheme for solving the diffusion equation uses the following
discretization:

Tin+l _ Tiﬂkl B T+1 +T:1,_1 o (Ti,n+] + Tin—l)

27 h?

Note that this is a three time-level scheme, that is, the method uses 77!, T, and
T™ ', s0 the scheme is not self-starting. Write a program that uses this scheme to
solve the diffusion problem discussed in this section. Use the FTCS scheme ou the
first step to get it started. Try a variety of values for + and show that the method is
ﬁnconditionally stable but that the accuracy of the solution decreases with increasing
7. [Computer]

6.3 *CRITICAL MASS

Manhattan Project

In the spring of 1943, as global war raged, physicists were gathering at a secret
facility in the New Mexico desert. Had you been among them, on arriving
yvou would have received the Los Alamos Primer, twenty-four mimeographed
pages that described the essentizl theoretical principles behind the Manhattan
Project.[114] The Primer’s first sentence cleatly stated the project’s goal: “to
produce a practical military weapon in the form of a bowb in which the energy
is released by a fast neutron chain reaction....”

Though the technical difficulties were staggering, the basic principles out-
lined in the Primer are simple. If a thermal neutron collides with a fissionable
nucleous, say of uranium 235, a significant amount of energy is released when
the nucleus splits. More significantly, several neutrons are produced in the reac-
tion and, as these neutrons cause other nuclei to fission, a ehain reaction occurs.
Yet neutrons are also lost by escaping at the surface of the material. The first
question to be answered is “Under what conditions can a chain reaction be
sustained?”

6.3. *CRITICAL MASS 203

Neutren Diflusion

We assume the neutron density. n(r,t), obeys ordinary diffusion theory,

3]

an(r, t)y = DV*n + Cn {(6.30)
where D is the diffusion constant and C is the creation rate for neutrons. For
U2 D & 10° m*/s and ' = 10% s7!. To simplify the analysis, consider a
one-dimensional systemn of length L, so (6.30) is,

d &*n .
with —L/2 < & < L/2. Tf all neutrons that reach the boundary escape from the
system, then

nix =—-L/2,t) =0 nlz=L/2,)=0 (6.32)

are the (Dirichlet) boundary conditions.

Our analysis of Equation (6.31) will not take the usual approach of explicitly
solving for n(x,#) for a given initial condition. Instead, we simply want to
find the criterion under which the neutron density increases in time (i.e., chain
reaction occurs). '

Separation of Variables
We start by using the separation of variables trial solution,
n{z,t) = X (x)T() (6.33)

where X and 7' are unknown functions of z and ¢, respectively. Inserting this
trial solution into the neutron diffusion PDE, Equation (6.31},

oT 58X . .
X% = DT 5o+ CXT (6.34)
o 10T D &X
T X o2 (6.35)

Now comes the key step that simplifies our partial differential equation into a
pair of ordinary differential equations. Since the left-hand side can depend only
on ¢t and the right-hand side only on z, they cannot depend on either variable.
In other words, each side of {6.35) equals a comstant.

Calling this constant «, the left hand side is

1dT

The general solution of this ODE is simply
T(t) = T(D)e™! (6.37)

204 CHAPTER 6. PDES I FOUNDATIONS & EXPLICIT METHODS

where T'(0) is determined by the initial condition.
The right-hand side of (6.35) is

DX
X 4t +C=a (6.38)
> X a-C
& —
TS D X (6.39)

Given the boundary conditions (6.32), the general solution of this ODE is,

=S (2 (+2.4)) o

where

_ (%)2 _ % | (6.41)

and the a;,’s are determined by the initial condition.
Finally, to establish if a chain reaction occurs, we need to determine if & > 0
so that (6.37) gives exponential growth. From Equation (6.41), a > 0 if

C-D (‘%)2 >0 (6.42)

for any 7. This inequality is satisfied when L > L. where

Le = my/DJC (6.43)

is the critical length. For cur one-dimensional geometry, this relation establishes
the critical mass for & chain reaction. If the system's length is smaller than L,
then the flux of neutrons at the boundary will damp out the neutron density.
However, if L > L, then the density (and energy) will increase exponentially,
with dramatic consequences.

Neutron Diffusion Program

Using the F'T'CS scheme, the one-dimensional neutron diffusion equation, (6.31),
is discretized as

ntl _ on nk B 2nk
n; i _ plhi +m;1 L Onn (6.44)
T h
or D
r
- CYRRT SR RUCE P

As before, space and time are discretized as z; = (i~1)h—L/2and t,, = (n—1)7
with h = L/(N —1). The boundary conditions n{+L/2,t) = 0 are discretized
as n? = nf =0, that is, the andpoint values are fixed to zero.

(.3. *CRITICAL MASS 205

Iable 6.2: OQutline of programn neutrn, which computes the neutron diffusion of
a idelta function using the FTCS method.

e Initialize parameters (v, h, ctc.}.

Set initial and boundary conditions.

Loop over desired number of time steps.

— Compute the new density using FTCS scheme, {6.45).

— Periodically record densivy for plotting.

Plot density versus x and £ as wire-mesh plot.

Ploi average neutron density versus time.

See pages 209 and 212 for program listings.

Again the criterion for stability is v < ¢, = h*/2D. Here we must be care-
ful not to confuse numerical ingtability with the exponential growth produced
by a chain reaction. It helps to be familiar with the signature of a numerical
instability—the exponential growth of short wavelength oscillations (see Fig-
ure 6.8).

The program neutrn, which solves the neutron diffusion equation as an
initial value problem using the FTCS scheme, is outlined in Table 6.2. The
initial condition is a delta function at the center of the system [see Equation
(6.25)]. The physical constants are set to ¢ = D = 1, which is equivalent to
defining the length scale as L./7 and the time scale as C'.

Figure 6.9 shows the diffusive decay of the neutron density in a subcritieal
system (L/L. = 2/7). The average density,

N

- 1 L =1 1 n

i) = 7 L/qn(m,t} dr = #A"= N Z”i (6.46)
THia i=1 ’

approximately decays as 7i(t) ~ e®f, where oy = C'~ Dx?/L? = C(1— L2/L?).
A supercritical system, with L/L. = 4/, is shown in Figure 6.10. In this case,
ar = 0.38C, so the time it takes for the average density to increase by a factor
of 10 is about 6.1/C, in agreement with the growth rate shown in Figure 6.10.

Exercises

10. Trom the neutron diffusion PDE, Equation (6.30), in three dimensions, find the
critical volume for a rectangular system with sides of length L., Ly, and L. Show

206 CHAPTER 6. PDES I: FOUNDATIONS & EXDPLICET ME'TTHOD

Neuiron diffusion

L=z {l =n)
o7 o —
06
05"
=
2
@04
k= »
Q
g
Soa3
U<
= i i3
< .
02
o1
““v-
[LR P v
1 0) o 1 2 3 4 [
X Time Time

Figure 6.9: Mesh plot of n(x,t) and plot 7{t) from neutrn. System length |
L = 2 (subcritical}, number of grid poiuts is N = 61, the number of steps |
12,000, and time step = 5.0 x 1071,

Neditron diffusion

L=4 (L =n)
3.5 §—
3
.
25 .
= ‘
§ B
g 2 .
k=] 00
@ - P
S .
15 .
@ -
= 1 o
L+t B
os M((n.\ oo
g . - \
] 1 2 3 4 5 8
Time

Figure 6.10: Mesh plot of n(x,¢) and plet (¢} from neutrn. Systemn length i
L = 4 (supercritical), number of grid points is ¥ = 61, the number of steps i
12,000, and time step 7 = 5.0 x 10771,

BEYOND THIS CHAPTER 207

that this volume is minimum when the system is a cube. {Hint: Use the trial solution
n{z,y, 2, t) = X (@)Y (4} Z(2)T(t)]. [Pencil]

11. {a) Modify neutrn to add the curve a(t = ()e™'’ to the graph of a(t) versus ¢.
Plot your results for the cases shown in Figures 6.9 and 6.10. (b) Repeat part (a) but
graph A(t) versus ¢ using a log scale on the vertical axis; increase the mumber of steps
to 5 x 10%. [Computer’

12, Cousider the Neumann boundary conditions:

an _ On

—_ = — =0
Or lpweryz Ole=ry2

(a) Using separation of variables show that this system is always supercritical. [Pencil]
(b) Modify neutrn to implement these boundary conditions by setting ni = n% and
nh = n%.,. In this case the spatial discretization is #; = (i — 3)h — L/2 with
h = L/(N — 2) for these boundary conditions. Compare the program’s output with
the result predicted in part (a). [Computer]
13. Counsider the mixed boundary conditions:

dn

p == —L7/2) = [=0
ae=-L20=0 i 32

(a) Show that L. = ix+/D/C (Hint: Think symmetry). [Pencil] (b) Modify neutrn
to implement these boundary conditions by setting #T = 0 and n% = ni_. Explain
why the spatial discretization is 2; = (i — 1)h — L/2 with b = L/{N — £) for these
boundary conditions. Clompare the program’s output with the result predicted in part
(a). [Computer]

14. The critical mass can be reduced by surrounding the fissionable material with a
tamper, an inactive maberial that diffuses neutrons, Modify neutrn to have the systemn
extend from —al/2 to aL/2, but with € = 0 for || > L/2. By trial and error, find
the critical length for this system when a = 2, 4, and 10. [Computer]

BEYOND THIS CHAPTER

The moest complete reference on the analytical treatment of partial differential
equations is still Courant and Hilbert.[35] On the other hand, the standard
mathematical physies texts [11, 24, 86] also present the important material in
a more casily digestible format. The physics behind most of the PDEs we’ll
consider is discussed in Morse and Feshbach [89].

The FTCS method introduced in Section 6.2 is just one scheme for solving
the diffusion equation. Fletcher [47] catalogues and compares many schemes for
solving both the one-dimensional and the multidimensional diffusion equation.
Numerical instability is the FT'CS method’s Achilles heel, but in Section 9.2 we
introduce implicit methods that are unconditionally stable.

208 CHAPTER 6. PDES I. FOUNDATIONS & EXPLICIT METHODS

APPENDIX A: MATLAB LISTINGS

Listing 6A.1 Program dftcs. Solves the Fourier heat diffusion equation using
the FTCS scheme.

% dftcs - Program to solve the diffusion equation
% using the Forward Time Centered Space (FICS) scheme.
clear; help dftcs; % Clear memory and print header

Y% Initialize parameters (time step, grid spacing, etc.).
tau = input{’Enter time step: °};
N = input (’Enter the number of grid peints: ')
L =1.;: Y The system extends from x=-L/2 to x=L/2
h = L/(N-1); % Grid size
kappa = 1.; % Diffusion coefficient
coeff = kappaxtau/h~2;
if(coeff < 0.5 }
disp(’Solution is expected to be stable’);
else
disp(’WARNING: Solution is expected to be unstable’);
end

%#% Set initial amd boundary conditions. .

tt = zeros(N,1); % Initialize temperature to zerc at all points
tt {round (W/2)) = 1/h; ¥ Initial cond. is delta function in center

%% The boundary conditions are tt(1) = tt () = 0

%% Set up loop and plot variables.

zplot = (0:N-1)*h - L/2; % Record the x scale for plots
iplet = 1; % Counter used to count plots
nstep = 300; % Maximum number of iterations
nplets = 50; ¥ Number of snapshots (plots) to take

plot_step = nstep/mplots; ¥ Number of time steps between plots

%* Loocp over the desired number of time steps.
for istep=l:nstep %4 MAIN LOOP %%

%* Compute new temperature using FICS scheme.
t5{2: (N-1)) = tt(2: (N-1)) + ...
coeff+ (Lt {3:M) + tt{1: (N-2)) - 2#t5(2:(W-1))3;

Y% Periodically record temperature for plotting.
if{ rem{istep,plot_step) < 1)} % Every plot_step steps

ttplot (:,iplot) = tt(:); % record tt(i) for plotting
tplot(iplot) = istep*tau; % Record time for plots
iplot = iplet+l;

end

end

APPENDIX A: MATLAB LISTINGS 209

%* Plot temperature versus x and t as wire-mesh and contour plots.
figure(1); <1f;

mesh(tplot,xplot,ttplot); ¥ Wire-mesh surface plot
xlabel(’Time’); ylabel(’x’); =label{’T(z,t)’);

title(’Diffusion of a delta spike’);

pause(1);
figure(2}; clf;
contourlevels = 0:0.5:10; contourLabels = 0:b;

cs = contour(tplot,xplot,ttplot,contourlevels); % Contour plot
clabel (cs,contourLabels); % Add labels to selected contour levels
xlabel(’Time’); ylabel(’x’');

title(’Temperature contour plot’);

Listing 6A.2 Program nentrn. Solves the neutron diffusion equation uging the
FTCS scheme,

% neitrn - Program to solve the neutron diffusion equation
% using the Forward Time Centered Space (FTCS) scheme.
clear; help neutrn; % Clear memory and print header

%+ Initialize parameters (time step, grid points, etc.).
tau = input{’Enter time step: ’J;

input (’Enter the number of grid points: ’);

input (’Enter system length: *);

% The system extends from x=-L/2 to x=L/2

= =
mnon

h = L/(H-1); % Grid size
D=1.; % Diffusion coefficient
C=1.; % Genmeration rate

coeff = D*tau/h~2;
coeff2 = Cxtau;
if(coeff < 0.5)
disp(’Solution is expected to be stable’);
else
disp ("WARNING: Solution is expected to be unstable’):
end

%* Set initial and boundary comditions.

an = zeros{l,1): % Initialize density to zero at all points
nn_new = zeros{N,1); % Initialize temporary array used by FICS
mn{round (N/2)) = 1/h; Y% Initial cond. is delta function im center

%% The boundary conditions are mn{1) = nn{N) = 0

%* Set up loop and plet variables.

zplot = (0:N-1)*h - L/2; % Record the x scale for plots

iplot = 1; % Counter used to count plots

nstep = input (’Enter number of time steps: °};

nplots = 50; % Number of snapshots {plots) to take

plot_step = nstep/nplots; 7% Number of time steps between plots

210 CHAPTER 6. PDES L FOUNDATIONS & EXPLICIT METHODS

%* Loop over the desired number of time steps.
for istep=l:nstep %4 MAIN LOOP %%

%* Compute the new density using FTCS scheme.
nn_new(2: (N-1}) = nn(2: (N-1)) +
coeff+ (nn(3:N) + nn(l:(N-2)) - Z*nn(2:{HW-1))) + ...
coeff2*nn(2: (N-1));
nn = nn _new; % Reset temperature to new values

%* Periodically record the density for plotting.
if{ rem{istep,plot_step) < 1 } ¥ Every plot_step steps

anplot{:,iplot) = nn(:); % record nn(i) for plotting
tplot (iplot} = istep*tau; # Record time for plets
nAve(iplot) = mean(nn); % Record average density

iplet = iplot+1;
fprintf {’Finished g of Jig steps\n’,istep,nstep);
end
end

4* Plot density versus x and t as a 3D-surface plot
figure(1l); clf;

surf (tplot,xplet,nnplet);

xlabel(’Time’); vylabel(’x’); =zlabel{’n(x,t)*);
title(’Neutron diffusion’};

%#* Plot average neutron density versus time
figure{2); clf;

plot(tplot,nAve,’*’);

xlabel (’Time’); ylabel(’Average density’);
title([’L = 7 ,num2stx(L),’ (L_c = \pi}’1);

APPENDIX B: C++ LISTINGS

Listing 6B.1 Program dftcs. Solves the Fourier heat diffusion equation using
the FTCS scheme.

// dftcs - Program to solve the diffusion equation
// using the Forward Time Centered Space (FTCS) scheme.
#include "NumMeth.h"

void main{) {

//* Initialize paraméters (time step, grid spacing, ete.}.
cout << "Enter time step: "; double tau; cin >> tau;

cout << "Enter the number of grid poimts: "; imt N; cin >> N;
double L = 1.; // The system extends from x=-L/2 to x=L/2

APPENDIX B: C++ LISTINGS 211

double h = L/(N-1}; // Grid size
deuble kappa = 1.; // Diffusion coefficient
double coeff = kappa*tau/(h*h);
if(coeff < 0.5)
cout << "Solution is expected to be stable" << endl;
else
cout << "WARNING: Solution is expected to be umnstable" << endl;

//* Set initial and boundary conditions.

Matriz tt{N}, tt_new(N);

tt.set(0.0); // Initialize temperature to zero at all points
tt{N/2) = 1/h; // Initial cond. is delta function in center
//// The boundary conditions are tt(l) = tt(N) = 0
tt_new.set(0.0); // End points are unchanged during iteration

//% Set up loop and plot variables.

int iplet = 1; // Counter used to count plots
int nStep = 300; // Maximum number of iteratioms
int plot_step = 6; // Humber of time steps between plots

int nplots = nStep/plot_step + 1; // Number of smnapshots (plots)
Matrix xplot{(N), tplet(nplots), ttplot(lN,nplots);
int i,3;
for(i=1; i<=N; i++)
zplot (i) = {i-1)#h - L/2; // Record the x scale for plots

//* Loop over the desired number of time steps.
int iStep;
for(iStep=1; iStep<=nStep; iStep++) {

//%* Compute new temperature using FTCS scheme.
for{ i=2; i<=(N-1); i++ >
tt_new(i) = t£(i) + coeffx (£t (i+1) + tt{i-1) - 2%t4(i));

tt = tt_new; // Reset temperature to new valunes

//* Periodically record temperature for plotting.
if((iSveplplet_step) < 1) { // Every plot_step steps

for(i=l; i<=N; i++) // record tt(i) for pletting-
ttplot(i,iplot) = tt(i);

tplot (iplot} = iStep*tau; // Record time for plots

iplot++;

}
}
nplots = iplot-1; // Humber of plots actually recorded

//* Print out the plotting variables: tplot, xplot, ttplot
efstream tplotOut("tplot.txt"), xzplotOut("xplot.txt"),
ttplotOut ("ttplot.txt");
for(i=1; i<=nplots; it++)
tplotlut << tplot{i)} << endl;

212 CHAPTER 6. PDES I. FOUNDATIONS & EXPLICIT METHODS

for(i=1; i<=N; i++) {
xplotlut << zplot(i) << endl;
for(j=1; j<mplots; j++)
ttplotDut << ttplot(i,j) << ™, ™,
ttplotlut << ttplot(i,nplots) << endl;
¥

)]
J#¥%%x To plot in MATLAR; use the script below skkk#skkskkddrkkdrkd*
load tplot.txt; load xplet.txt; load ttplot.txt;
%* Plot temperature versus x and t as wire-mesh and contour plots.
figure(l); clf;
mesh{tplot,xplot,ttplot); % Wire-mesh surface plot
xlabel("Time’); ylabel(’xz’); =zlabel(’T(x,t)’);
title{’'Diffusion of a delta spike’);
pause(1);
figure(2); clf;
contourlevels = 0:0.5:10; contcourLabels = 0:5;
es = contour (tplot,xplet,ttplot,conteurLevels); % Contour plot
clabel{cs,contourLabels); % Add labels to selectsd contour levels
xlabal(‘Time’); ylabel(’x’);
title(’Temperature contour plot?);
ok ok ook kRt kR o o R ol ok ok sk ko R R bk ok kK K R Kk

Listing 6B.2 Program neutrn. Solves the neutron diffusion equation using the
FTCS scheme.

// neutrn - Program to solve the neutron diffusion equation
// using the Forward Time Centered Space (FICS) scheme.
#include "NumMeth.h"

void main(} {

/7% Tnitialize parameters (time step, grid spacing, etc.).

cout << "Enter time step: "; double tau; cir >> tau;
cont << "Enter the number of grid points: "; int N; cin >»>> N;
cout << "Enter system length: "; double L; cin >> L:

// The syster extends from x=-L/2 to x=L/Z
double h = L/(N-1); // Grid size
double D = 1.; // Diffusion coefficient
double C = 1.; // Gemeration rate
double coeff = D*tau/(hkh);
double coeff2 = C¥tan;
if(coeff < 0.5)
cout << "Solution is expected to be stable" << endl;
else
cout << "WARNING: Solution is expected to be unstable" << endl;

//* Set initial and boundary conditions.
HMatrix nn(N), nn_new(N);

APPENDIN B: G LISTINGS 213

an.set(0.0); // Initialize density to zero at all points
m{N/2) = 1/h; // Initial comnd. is delta function in center
//// The boundary conditions are nn(1) = nn(W) = 0
nn_new.set(0.0); // End points are unchanged during iteration

//* Set up loop and plot variables.

int iplet = 1; // Counter used to count plots
cout << "Enter number of time steps: "; int nStep; cin >> nStep;
int plot_step = 200; // Number of time steps betweem plots

int nplets = nStep/plot_step + 1; // Number of snapshots (plots)
Matrix zplot(N), tplot{nplots), nnplot{(N,nplots), nhve(nplots);
int 1,7;
for(i=1; i<=N; i++)

xplot(i) = (i-1)*h - L/2; // Record the x scale for plots

//* Loop over the desired number of time steps.
int iStep;
for(iStep=1; iStep<=nStep; iStep++) {

//* Compute new density using FTCS scheme.
for(i=2; i<=(N-1)}; i++)
nn_new(i) = nn(i) + coeff*(nn(i+1) + nn(i-1) - 2#*nn(i))
+ coeff2%nn(i);

nn = nn_new; // Reset density to new values

//* Periodically record density for plotting.
if((iStepiplot_step) < 1) { // Every plot_step steps ...
double nSum = 0;
for(i=1; i<=N; i++) {
nnplot (i,iplot) = nn(i); // Record tt(i) for plotting
nSum += nn(i);
}
ndve{iplet) = nSum/N;
tplot{iplot) = iStep#tau; // Record time for plots
iplot++;
}
1
nplots = iplot-1; // Number of plots actually recorded

//* Print out the plotting variables: tplot, ¥plot, nnplot, nAve
of stream tpletlut("tplot.txt"), xplotOut("xplot.txt"),
nnplotQut ("nnplot.txt"), nAveOut("nive.txt");

for(i=1; i<=nplots; i++) {

tplotlut << tplot(i) << endl;

nhveQut << nAve(i) << endl;
}
for{ i=1; i<=N; i++) {

xplotlut << zplot(i) << endl;

for(j=1; j<nplots; j+t+)

214 CHAPTER 6. PDES [: FOUNDATIONS & EXPLICIT METHODS

nnplotOut << mmplot(i,j) << ", ™}
nnplotOut << nnplot(i,nplots) << endl;
}

+
/*ex** To plet in MATLAB; use the script below el sk ok sk b kR R o K
load tplot.txt; load xplot.txt; load nnplot.txt; load nhve.txt;
%+ Plot density versus x and t as a 3D-surface plot
figure(1l); clf;
surf (tplot,xplot,nnplot};
xlabel (’Time’}; ylabel{’z’); =zlabel(’n(x,t}’);
title(’Neutron diffusion’);
Y%* Plot average neutron density versus time
figure(2); clf;
plot(tplot,nAve,’*’);
xlabel{*Time'); ylabel(’Average density’};
ok oo ok b koo K e R AR s kOO R R R

Chapter 7

Partial Differential
Equations II:
Advanced Explicit Methods

This chapter introduces more advanced marching methods and applies them to
solving hyperbolic PDEs. In the first section we consider the linear advection
equation that, despite its simplicity, is challenging to solve numerically and
serves as a good test case for our explicit schemes. In Section 7.2 these schemes
are applied to a more interesting nonlinear PDE with shock wave solutions: the
continuity equation for traffic flow.

7.1 ADVECTION EQUATION

Wave and Advection Equations

We now look at hyperbolic equations, the paradigm of which is the familiar
wave equation,
9?4 ,0%A
o = © Ba?
where A(z,1) is the wave amplitude and ¢ is the wave speed. In Chapters 2 and
3 the equations of motion for a particle were QDEs of the form

(7.1)

d?r

ol fle,v) (7.2)

where r and v are the position and velocity of the particle. To salve the equa-
tions numerically, we usually rewrite (7.2) as a pair of first-order equations,

dv dr

=ty G =v (73)

216 CHAPTER 7. PDES 11: ADVANCED EXPLICIT METHODS

For the wave equation, we use a similar trick and introduce the variables

dA a4
= ; = 4
A a= 7.4

P
ar

The wave equation may now be written as the pair of equations

9P _ 3Q. 8Q _ AP

o e o o (7.5)
or 5 5
a
9 B e (7.6)

T lo L
where a = [O] and B = [] 0 }

This suggests that cven though the wave equation is the most familiar hy-
perbolic equation, it is not the simplest possible hvperbolic equation. When
formulating and studying numerical methods, it is best to first use them with
the simplest, nontrivial problem. We will thus use as our modcl hyperbolic
equation the advection equation,

da da (7.7
— = —o— 7.7
at dx g

Physically, this equation describes the evolution of the passive scalar field,
afx,), carried along by a flow with constant velocity ¢ This cquation is also
known as the linear convection equation. In the wave equation we have left-
and right-moving waves: with the advection equation, waves move only in one
direction (to the right if ¢ > 0). Of course, left- and right-moving waves may
be described using (7.6), the vector advection equation.

The advection equation is the simplest example of a flux-conservation cqua-
iion,

13
ai; — V. Fip) (7.8)
which in one dimension is 5 3
P ;)
= ——FY; K'Y
at dw) (7.9)

Equations of this form are ubiquitous in physics because if p is any conserved
quantity (such as mass or energy), then F(p) is the Aux. For example, in
electrodynamics if p is charge density, then F is current density. Note that if F
goes as 8p/8z instead of p, then (7.9) becomes the diffusion equation.

Solution of the Advection Equation

The analytical solution of the advection cquation is easy to obtain., For the
initial condition
ale, t = 0) = folx) (7.10)

7.1. ADVECTION EQUATION : 217

t=0 t>0
x

VAV VARV

Figure 7.1: Linear advection of a wave pulse.

where fo is an arbitrary function, the solution is

a(r,t) = fo(z — ct) (7.11
For example, suppose that our initial condition is a cosine-modulated Gaussian
pulse,
_ 2
a{z,t = 0) = coslk(z — 70)] exp [(“’Q%M] (7.12)

where the constants @y and ¢ give the location of the peak and the width of the
pulse. The wave number k = 2z /A, where X is the wavelength of the moedulation.
The solution is

a{x,t) = coslk({{x — ct) — xo)]exp {_ ((‘I—_(;');ﬂ]
= coslkz — (20 + et))]exp [_W—(Z+fﬂ)] 713

Notice that the solution a(xz,{} exactly preserves its shape, but with the location
of the peak displaced to xo + ¢f {Figure 7.1). Although the advection equation
is simple to solve analytically, it makes an excellent test case for our numeri-
cal methods for hyperbalic equations. We will discover that even this sinple
equation is nontrivial to compute numerically,

FTCS Method for Advection Equation

Let’s try to solve the advection equation numerically using the FTCS method
from the previous section. The time derivative is replaced by its forward (right)
discretized form

da alzyta+7) —alz,t,) ot —al (7.14)

— =
ot T T

where x; = (i—1)h—L/2and t,, = (n—1}7 (see Figure 6.2). The index ¢ denotes
the spatial location of a grid poing, while the index n indicates the temporal
step.

218 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

i i
—0—O0—0—0—0—0—0—@ Dirichlet

i boundary conditions
|
|

~FO—O0—0—0—0—0—0—0~ periodic

1
1
1
| boundary conditions
|
1

1
1
[
1]
I 1

—L12 0 X L2

Figure 7.2: Grids used by Dirichlet and periodic boundary conditions. With
periodic boundary conditions, the boundary lies between the first and last grid
points.

The space derivative is replaced by its centered discretized form,

da _ alzi+hty) —alz; —h,t,) af; —al,
9 25 = 7 (7.15)

We'll use periodic boundary conditions, so grid points z; and zx are adjacent;
the grid spacing is & = L/N (Figure 7.2). The discretized advection equation is

n+1 7 n n
a;l " —al al, — ol
2 p = “—C Land 2h il (716)

The FT'CS scheme is obtained by solving for o},
n cT -
a;f,wrl = — %(a?_!_I - G’?—l) (7.17)

A program, called advect, that implements the FTCS scheme for the advection
equation, is outlined in Table 7.1. The initial condition is a cosine-modulated
Gaussian pulse [Equation (7.12)].

The number of iterations performed equals L/{cr). With periodic boundary
conditions, the pulse should move across and around the system once, returning
to its starting point. Since the wave speed is ¢, the time it takes a wave to move
a distance equal to the grid spacing, b, is £, = h/e. This gives us a characteristic
time scale for the problem. Figure 7.3 shows the initial and final values for the
wave amplitude, a(z,%). The solid line is the initial condition; the dashed line
shows the pulse after it evolves long enough to circle the system once. Clearly,
the FTCS method failed; the pulse does not maintain its shape. The mesh plot
shown in Figure 7.4 illustrates how the pulse distorts in time.

Lax Method for Advection Equation

Now for the bad news: For the advection equation, the FTCS method is nu-
merically unstable for all values of 1 As will be shown in Section 9.1 for a
smaller value of 7, we can delay the problem but not escape it. Fortunately, the

T ADVECTION EQUATTION 219

Table 7.1: Outline of program advect, which computes the advection of a cogine-
modulated Gaussgian pulse using various numerical methods.

Sclect nurnerical parameters (7, A, cte.).

Set initial and boundary conditions.

Initialize plotting variables.

Loop over desired number of steps.

— Compute new values of wave amplitude using 'T'CS (7.17), Lax
(7.18), or Lax-Wendroff (7.28) method.

— Periodically record alr, £ for plotting.

Plot the initial and final amplitude profiles.

Plot the wave zmuplitude a(r, 1) versus o and £

See pages 239 and 242 for program listings.

25

I 2 Initial
1.5 o -~ Final

a(x,1)

-0.5 0 0.5

Figure 7.3: Initial and final shapes of the wave pulse as obtained by the advect
program using the F'TCS method. Notice that the wave does not correctly retain
its shape. The number of grid points is N = 50, and the time step is » = 0.002
(r < t, = 0.02).

220 CHAPTER 7. PDES Il ADVANCED EXPLICIT METHODS

&\‘
il T
. //
0.5
HT}T_RRH"“/ Time

0
Position -05

Amplitude

Figure 7.4: Qutput from the advect program using the FTCS method. Notice
how the wave pulse moves in the positive direction but incorrectly distorts with
time. The parameters are as in Figure 7.3.

stability problem is simple to fix. We introduce the Laz method, defined by the
following iteration equation:

1 T n
aptt = §(a?+1 +ai) — ﬁ(a?—o—l — @iy (7.18)

Notice that the Lax method simply replaces the a? term in the FTCS method
with the average value of the left and right neighbors. The Lax method is stable
if

— <1 7.19
The maximum usable value for 7 is thus

h
Tmax = E = by (720)

This criterion is known as the Courant-Friedrichs-Lewy (CFL) condition. It
commonly appears as a stability criterion for numnerical schemes that solve hy-
perbolic equations. Notice that if we use a finer grid (smaller k], we are forced
to use a smaller 7. The CFL siability condition is derived in Section 9.1.

Using Lax’s method with a grid of N = 50 points and a time step of » =
Tmax — 0.02, we find that the pulse exactly preserves its shape. The mesh plot
of the solution is shown in Figure 7.5. From (7.18), we know that if 7 = Tmax.
then o' = a |, which is the exact solution of the advection equation.

Lax's method has an interesting property. For values of 7 above Tmax, you
will have problems because the method is numerically unstable. However, for
7 significantly less than mpax, the numerical solution is also wrong. If 7 is too
small, we find that the pulse dies out as it moves (Figure 7.6). We get the

7.1. ADVECTIGN EQUATION 221

Amplitude
[=)

L
0.5 T —
o

05 ©

Pasition

Figure 7.5: Mesh plot obtained by the advect program using the Lax method.
Parameters used are N = 50 grid points and time step 7 = ty, = 0.02. The wave

pulse correctly retains its shape.

Amplitude

Position

Figure 7.6: Mesh plot obtained by the advect program using the Lax method.
Parameters used are N = 50 grid points and time step 7 = 0.015. Notice how

the pulse amplitude dies out since 7 < ¢, = 0.02.

222 CHAFTER 7. PDES II: ADVANCED EXPLICIT METHODS

best results when T = Tpax. This example should dismiss a popular miscon-
ception about numerical methods: The smaller the time step, the better the
solution. While it is usually true that the truncation error for mary schemes is
proportional to 7, this is not a universal property for all methods.

The averaging term in the Lax method serves to stabilize the numerical solu-
tion by introducing an artificial diffusion (or artificial viscosity). The magnitude
of this artificial diffusion is inversely proportional to the time step 7. When the
time step is too large (7 > mpax), the artificial diffusion is too weak to stabi-
lize the solution. When the time step is too small (7 < Tax), the diffusion is
too strong and it damps out the true solution. Many hyperbolic PDE schemes
besides the Lax method incorporate some form of numerical diffusion.

Lax-Wendroff Scheme

Let’s look at one more scheme for solving hyperbolic PDEs. The Lax-Wendroff
scheme is a second-order finite difference scheme; the idea is that we want to
take the Taylor expansion

alz,t +7) = a(z,) + 7 (g—j) + 1—; (%) o(r*) (7.21)

and kecp the terms through 7. The term that is linear in 7 is easy to represent
using the original equation, which we now write in the more general form

da 0
— =——Fua 7.22
3 5 b (7.22)
where the flux F(a) = ca for the advection equation.
To obtain an expression for the second-order term, we differentiate the equa-
tion above:

Fa 8 d 8 OF .
Yet we may write
OF dF da o de o, OF
where F'(a) = ¢ for the advection equation.
Inserting {7.24) into Equation (7.23),
&a 9 _,, OF s
o %F (Q)E {7.23)

Putting it all together in our Taylor expansion, we get

2
alz, t+7) ~alz.t) — 7 (%F(a)) + % (%F’(a)%) (7.26)

7.1 ADVECTION EQUATION

- Initial
0.6 ,,L. ‘ - - Final

a{x,t)

—()__8-5 —_— (w] . [P

0.b

Figure 7.7: Initial (solid) and final {dashed} amplitudes obtained by the advect
program using the Lax-Wendroff method. Parameters used are N = 50 grid

points and time step 7 = 0.015. Note how the amplitude decreases since r <
tw = 0.02. i

After discretizing the derivatives, we obtain the Laz- Wendroff scheme

' OE t GF
R T r_3 [ety — [F' 58], (7.97)
i i 2h 2 h)
Fo—F_ 21 Fog—F; F,—F;
R) it skl it ST (N 1) tn & S R N R
YT o TR\t A
where F; = Flal

Mand Fi = F'[(afy, +af}/2]. For the acvection equation this
2

expression simplifies considerably, since F; = ca® and F) i1 =6 ¢, and Equation
(7.27) reduces to
or (22
;H_l =aj — 3, alaty —ai) + th (ofy, + @iy — 2a}) (7.28)

Notice that the last term is a discretized sccond derivative in a(x,2). This term
give us an artificial diffusion that stabilizes the numerical solution. The CFL
condition (7.20) is also the criterion for stability for the Lax-Wendroff scheme.
Notice that if 7 = 7ipax = hije, the Lax-Wendroff scheme is identical to the Lax
scheme. This is good news, since we know that Lax is exact when 7 = mjax.
The Lax scheme iz flawed becanse when 7 < mpay, the solution is rapidly
damped out by the artificial viscosity (see Figure 7.6). The Lax-Wendroff
cheme also has artificial viscosity to contral instability, but it does not increase
as rapidly with decreasing 7. Figure 7.7 illustrates the use of the Lax-Wendroff
scheme for the same parameters as those in Figure 7.6. Comparing the two re-
sults, you see that the Lax-Wendroff schome is still useful even when 7 << 1ya4

224 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

1 want to emphasize again that the one-dimensional advection equation
makes a useful test case but is of little interest since the analytical solution
is trivial. In the next section we consider a much more interesting hyperbolic
equation that (1) is nonlinear, {2) has solutions that develop discontinuities
{shocks) even if the initial conditions are smooth and continuous, and {3) is a
model for the flow of automobile traffic.

EXERCISES

1. By direct substitution into the advection eguation, (7.7), check that Equation
(7.11) is a solution. [Pencil]
2. Modify advect to use the Dirichlet boundary conditions

a{x=—L/2t) = sin{wt)
aler =Lj2,¢) = 0
Have the program run long enough for the wave generated at x = —L/2 to reach the

opposite side of the system. Using N = 50 grid points and a frequency of w = 10w,
what do you observe for time steps of 7 = 0.015, 0.02, and 0.037 How do your resulés
change when you vapy the frequency? Test each case nsing the FTCS, Lax, and Lax-
Wendroff schetnes. [Computer]
3. The advection and diffusion of a passive scalar in a one-dimensional flow is com-
monly described by the transport equation,

oT ar &7

ot _C% + Jx?

Find the solution of this PDE for the initial condition T'(x, ¢ = 0) = §{z) and periodic
boundary conditions at z = £L/2. [Pencil]

4. Write a prograrm that uses the FTCS scheme to solve the one-dimensional tmnbport
equation in the previous problem. (a) Empirically show that the numerical solution is

stable if -
CcT KT
i B ekl
(h) - h? s1

In this case, physical diffusion can serve to stabilize the numerical scheme. {b) Com-

pare the results from your program with the solution for the delta function initial
condition of the previous exercise. [Computer]
5. The “upwind” scheme for solving the advection equation uses a left derivative for
the 8/0z term,

a?“ —af af —ai

7 h
Modify the advect program to use this scheme, and compare it with the others dis-
cussed in this section for the cases shown in Figures 7.3-7.7. For what values of 7 is
it stable? [Computer]
6. The leap-frog scheme for solving the advection equation uses centered derivatives
for both terms,

41 n—1 7 n
A S & S S |

27 ' 2h
Notice that this is a three time-level scheme, that is, it uses a?™', af, and o7~". To
" get it started, we need to use one of the other schemes (e.g., Lax). Modify the advect

+1

7.2. *PHYSICS OF TRAFFIC FLOW 225

program to use this scheme and compare it with the others discussed in this section
for the cases shown in Figures 7.3 7.7. For what values of 7 is it stable? [Computer]

7.2 *¥PHYSICS OF TRAFFIC FLOW
Fluid Mechanics

Tn fluid mechanics the equations of motion are obtained by constructing equa-
tions of the form

op '

iy -F(p) (7.29)
or in one dimension,

ap 9

-~ oz 2 (7.30)

Here p is any one of the conserved quantities

mass density
p=<{ x,y or z—momentum density {(7.31)
energy density

and F'is !
mass flux

F(p) = { =z,yor z—momentum fux ' (7.32)
energy ux

that is, the corresponding flux.

While the equations for the momentum and energy are somewhat compli-
cated, the equation for the mass density, p, is quite simple. The mass flux equals
the mass density times the fluid velocity, v, so

apg? 8 _ _%{p(m)v(m)} (7.33)

This equation is known as the equation of continuity. The equation for the
momentum density may be rewritten as an equation for the velocity. This
velocity equaticn involves the energy density (the coupling is in the pressure
term), so we must solve the entire set of equations simultaneously.

The full set of hydrodynamics equations is called the Navier-Stokes equa-
tions, For a variety of reasons, these equations are usually not solved in their
full form but rather with a number of approximations. Of course the approxima-
tions used depend on the problem at hand. For example, air is incompressible
to a good approximation in many subsonic flows.

Traffic Flow

One of the simplest, nontrivial flows that may be studied involves fluids for
which the velocity is only a function cf density,

v(a,t) = vip) (7.34)

226 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

For example, suppose that the velocity of the fluid decreased linearly with in-
creasing density as

v(p) = vm{l = p/pm) (7.35)

where ¥y, > 0 is the maximum velocity and pn, > 0 is the maximuimn density.
What type of Aluid behaves this way? One flow you are probably very familiar
with is automobile traffic. The maximum velocity is the speed limit; if the
density is near zero (few cars on the road), then the traffic moves at this speed.
The maximum density, pm, i8 achieved when the traffic is bumper-to-bumper.
While on real highways the flow may not exactly chey Equation {7.35), it turns
out 1o be a good first approximation.[65)]
Our equation for the evelution of the density may be written as

% - —% {(a + %ﬁp)p} (7.36)

where o« = vy and f = —2vy/py. This equation is called the generalized
inviscid Burger’s equation. We obtain the standard inviscid Burger’s equation
when « = 0 and g = 1. This equation has been studied extensively because it
is the simplest nonlinear PDE with wave sclutions.[16] Equations of this type
appear frequently in nonlinear acoustics and shock wave theory.

Returning to our traffic njodel, we want to develop a method to solve the
nonlinear PDE,

ap
| i {P (P} (7.37)
Rewrite this equation as
9 ([d ap
% (o)) 32 (7.38)
or
8:9

— = —¢(p) (7.39)

where ¢(p) = d(pv)/dp. Using our hnear function for v{p) as given by Equation
(7.35), we have

clpy = vm(l — 2p/pm) (7.40)

Notice that ¢(p) is also linear in p and takes the values ¢{0) = vy and ¢{pm) =
—vm. The function e(p) i3 not the speed of the traflic, but rather is the speed
at which disturbances {or waves) in the flow will travel. Since ¢(p) may be both
positive or negative, the waves may move in either direction. Note, however,
that e{p) < v(p), so the waves may never move fagter than the cars.

Method of Characteristics

For ¢{p}) = constant, we have the advection equation for which we already
know the solution. We may build an analytical solution to (7.39) from our
knowledge of the sclution of the advection equation by using the method of

7.2, *PHYSICS OF TRAFFIC FLOW 227

Characteristic line

Slope = /e \

Figure 7.8: Sketch of the characteristic lines for the advection equation.

1
c(Polx,))

Slope =

X x

Figure 7.9: S8ketch of a single Cha.racterfiétic line for the nonlinear traflic equation.

.

characteristics.[1] If you are not interested in learning this method, skim through
the introduction to the stoplight problem (see Figures 7.11 and 7.12), and skip
to its solution, Equation (7.46).

For a moment let’s return to our solution of the linear advection PDE,
Equation (7.11). We know that, with time, the initial condition, p(z,t = 0) =
polx), is translated with speed ¢. Consider the sketch of the x¢ plane shown in
Figure 7.8. Suppose that we draw a line with slope dt/dz = 1/¢ from a point @,
on the r-axis. This line will be a contour of constant p in the xt plane because
the solution of the advection equation is just the initial condition displaced by
a distance Az = cAt.

Now let’s return to the nonlinear problem, Equation (7.39). In Figure 7.9
we draw the characteristic line from the point #1; this line has slope dt/dx =
1/e{pp(x1)). Even in the nonlinear problem, the density Is constant along this
linre. Here is the proof: For any function of two variables, the chain rule tells us
that

L patt) = 5.0+ L2 a0 (7.41)

Suppose that we vary z with ¢ such that we move along the characteristic line.

This means that dt/dz = 1/e(pe) or dx/dt = ¢(pg). Using the previous equation
with f{z,1) = p(a, 1),

Dot)= L paa), 1)+ elpole) Lplalth) (742)

228 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

f
Slope = 1
Slope = __! APolx))
c(pglxi))
X X, x

Figure 7.10: Sketch of various characteristic lines for the nonlinear traffic equa-
tion.

Yet from our original PDE, the right-hand side is zero, so
d .
p plz(t).t) =0 (on the characteristic line) (7.43)

which completes the proof.

To use the method of characteristics to construct our solution, we draw a
characteristic line from each point on the z-axis (Figure 7.10). You should think
of these lines as forming a contbur map of p(z,%), since each line is a line of
constant density.)

Traffic at a Stoplight

Now to solve an actual traffic problem. The simplest problem we can solve is
the initial distribution

pai=n=mn={ o 250)

that is, a step function (Figure 7.11). As a traffic problem, this could represent
cars at a stoplight. Behind the light (which is at @ = 0}, the traffic is at its
maximum density {bumper-to-bumper); there is no traffic on the other side of
the light. At time ¢ = 0 the light turns green and the cars are free to move.
Tntuitively, we know that not all cars start moving when the light turns green.
The density decreases as the cars separate, but this effect propagates back into
the stream of traffic with a finite wave speed (Figure 7.12). In fluid dynamics
this is known as a rarefaction wave problem.

Let’s start by drawing the characteristic lines on the positive z-axis. These
lines will have slope 1/¢(0) = 1/vn. If we shade the region of constant density,
we have the sketch shown in Figure 7.13. The first car through the light will
move at the maximum velocity since there are no cars in front of it. The lefi
horder of the p(x,) = 0 region is the location of the lead car.

Next. we add the characteristic lines for the points on the negative z-axis,
as shown in Figure 7.14. Notice that most cars do not begin to move until long
after the light has turned green. This is because the disturbance (or wave) can

7.2, *PHYSICS OF TRAFFIC FLOW : 220

 Figure 7.12: Traffic moving after a stoplight turns green. Notice ‘that in the
second frame the last car toward the rear has not moved.

Figure 7.13: Partial construction of p(z,t) in the zt plane using characteristic
lines. In the shaded region the density p(a,) is zero. The left boundary of this
region ig given by the position of the lead car.

230 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

Figure 7.14: Partial construction of plz.t) in the xt plane using characteristic
lines. In the shaded region on the left the density p{z.¢) is maximum {bumper-
to-bumper).

X=-£

Figure 7.15: Characteristic lines for a continuous initial density profile. This
density profile goes to a step function as € — 0.

only move with velocity ¢(py,). For our linear relation between v and p, we have
i pm) = —vp.

To obtain all the characteristic lines we must remember that our initial
condition is discontinuous. Suppose that we modified py(z) so thas it varied
continuously from gy 10 zero in a neighborhood of radius € about z = 0. The
slopes of the characterigtic lines in this neighborhood would vary continnously
from 1/vy, to —1/vy (Figure 7.15).

Taking the limit ¢ — 0, we have our final picture of the characteristic lines

Figure 7.16: Construction of p(w, t) in the xt plane using characteristic lines.

7.2. *PHYSICS OF TRAFFIC FLOW 231

plx.1)

Say Lead car
t,>t,>0 R l

~

X

Figure 7.17: Traflic density, p(x,t), as a function of position for various times.

as shown in Figure 7.16. The solution may be written as

Pm for T < —vmt
plr,t) =< ¢ (zft) for —vmt <z <ot (7.45)
0 for £ > Ut

where ¢ 1{c(p)) = p; that is, ¢! is the inverse function of ¢(p). Using Equation
(7.40) for c(p) we have

Pm for S —Umt
pl@,t) =4 1 (1 - T5) pm for —vnmt < & < vpi (7.46)
0 for T > umt

Notice that in the region —wyt < & < vyt, the density vaties linearly with
position (Figure 7.17).
Traffic Program

Now 'th_at we have an analytical solution for a simple traffic problem, let’s sec
how well our numerical methods can do. The equation of continuity is

O plent) = 2 F(p) (7.47)

where the flow is F{p) = p(z, t)v(p(z,t)) and the velocity, v{p), is given by
Equation (7.35). The FTCS scheme for solving this equation is

,,
P = 00 = o (P — L) (7.48)

where Ff* = F{pl*). The Lax scheme uses the equation

B B AT
Pyt = 5Pk + pi) — 5 (Fly — FRy) (7.49)

232 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

Table 7.2: Outline of program traffic, which computes the equation of conti-
nuity for traffic ow.

¢ Select numerical parameters (r, h, stc.).
¢ Set initial condition (7.52) and periodic boundary conditions.
e Initialize plotting variables.

¢ Loop over desired number of steps.

Compute the flow, Fip) = p(z, t)v{p(z, t)).
— Compute new values of density using:

* FTCS scheme (7.48) or;
Lax scheme (7.49) or
* Lax-Wendroff scheme (7.50).

Record density for plotting.

— Display snap-shot of density versus position. [MATLAB only]
¢ Graph density versus position and time as mesh plot.

s Graph contours of density versus position and time.

See pages 240 and 244 for program listings.

Finally, the Lax-Wendroff scheme uses

no n _ m
P?+1:P? 2h(F:11 Fnl)Jsz ;; (]WFHI.?L ol _Cim%—Fz hFE_l)
(7.50}
whete B g
R Y N e (7.51)

Notice how the last term of (7.50) is built: We would like to be able to evaluate
the function ¢(p) at values between grid points, that is, at 7 + J and ¢ — 5.
Since we know the value of p only at grid points, we estimate its value between
grid points by using a :.1mple average. We use this estimated value for Pixy 1O
evaluate ¢;41.
The program called traffic, which implements these numerical schemes, is

outlined in Table 7.2. As an initial condition we take a square pulse of the form

—Lid<z<

prst=0) = pole) = { p{l;l otherwise (7.52)

This initial value problem is similar to the stoplight problem considered above

7.2. *PHYSICS OF TRAFFIC FLOW 233

Figure 7.18: Characteristic lines for the finite pulse [see Equation (7.52)].

[see Equation (7.11)], except that the line of cars is of finite length. We take
periodic boundary conditions so the problem resembles the start of a race on a
cireular track. From the solution to the stoplight problem, Equation (7.46), we
expect. the right side of the pulse to expand with the density varying linearly
from pm, to zero. '

The left edge of the pulse shonld not move until the density there drops
below prax. The last car only begins moving when the traffic is no longer
bumper-to-bumper. Figure 7.18 shows the characteristic lines for this problem;
the discontinuity at —L/4 is a shock front. At the shock front, characteristic
lines of high density and low density intersect, and the p(z, ¢} is multivalued at
the shock. The characteristic line solution is valid as long as we terminate the
characteristic lines at the shock. Even if the initial condition is smoothed, this
shock will develop since the slopes of low density and high density characteristics
lines have opposite sign.

When the last car begins to move, the shock front also moves. Using the
condition that the Aux, F(p), is a continuous function, we may compute the
motion of the shock. Our formulation using characteristic lines may then be
extended to complete the solution (see Exercise 7.13).

Running the traffic program using the FTCS method we obrain the results
shown in Figure 7.19. Notice that while the FTCS method appears stable in
this case, the solution is not at all satisfactory. The right edge of the pulse
is curved, yet it should expand as a straight line (see Figure 7.17). Using the
traffic program with the Lax method, we get the results shown in Figures 7.20
and 7.21. While the right edge is straighter, its slope is too large. Also the left
edge is not maintained constant.

The Lax-Wendroff scheme does an excellent job, as shown in Figures 7.22
and 7.23. The latter is a contour plot of the density in the ¢ plane; compare
this result with the characteristic lines shown in Figure 7.18. By running the
program for more time steps, we can observe the evolution of the pulse after
the last car starts to move (Figures 7.24 and 7.25). The shock at the left edge
of the pulse moves, and its strength begins to decrease. Eventually the density

234 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

Density versus position and time

Figure 7.19: Mesh plot of density versus position and time from the traffic
program using the FTCS method with 80 grid points and a time step of 0.2.

Density contours

time
o

-150 100 -50

®x o
&
(=]
—
ot
o
-
%]
(=)

Figure 7.20: Contour plot of density versus position and time from the traffic
prograin using the Lax method with 80 grid points and a time step of 0.2.

7.2. *PHYSICS OF TRAFFIC FLOW 235

Density versus positicn and ime

o .
0.4 : 7
L, z i
02 ’ /12
7
_286. ’ ——
-100 0 100 o0 4

Figure 7.21: Mesh plot of density versus position and time from the traffic
program using the Lax method with 80 grid points and a time step of 0.2.

Density contours

4 CEp L TT T T '
L \‘o.aaR Ll i
3.5 \1 "\\I Vol ‘|| I F"‘ ’;’
TR
3 09'\\\ | '\I '\l I | f/ i
2.5 “ 4 XY?% ‘\u ‘05 ‘I‘ ;
i W ‘-\ w\ L ‘I ; / ;éj
£ 2 X \ Ry l‘l H !
b.7 \ "". \ ‘\\ 1&7"‘4."’ i
15 VLT I//
5 l\\\ “-‘ \H i | IFJ,
1r 2 \,“\\“"\“ Hﬁgz q
0.5} “\""\\" ! /
' \in

150 100 50 0 50 100 150
X

Figure 7.22: Contour plot of density versus position and time from the traffic
program using the Lax-Wendroff method with 80 grid points and a time step of

0.2.

becomes uniform everywhere.
Shock waves in real traffic are very dangerous. Drivers have finite reaction

times, so sudden changes in traffic density can cause accidents. In our traffic
model, the local density determines the traffic velocity. Fortunately, undex
normal visibility conditions, drivers adjust their speed by judging the global
traffic conditions (i.e., they lock at more than just the car in front of them). This
fact introduces a diffusion term into the model that smooths the discontinuous

shock fronts.

236 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

Density versus position and time

H!

i
‘/
R

i !
|

.

Figurce 7.23: Mesh plot of density versus position and tirne from the traffic
program using the Lax-Wendroff method with 80 grid points and a time step of
0.2.

Densny conteurs

L/

150 —100 —50 0 30 100 150

Figure 7.24: Contour plot of density versus position and time from the traffic
program using the Lax-Wendroff method. Parameters are the same as in Fig-
ure 7.22 except the simulation is run five times longer (i.e., the number of time
steps is five times larger).

7.2, *PHYSICS OF TRAFPICLOW 237

Dengity versus posiiion and time

Figure 7.25: Mesh plot ol density versus position and time from the traffic
program using the Lax-Wendroff method. The contour plot for this run is shown
in Figure 7.24.

EXERCISES

7. The flow of traffic is F(a,t) = p{,t)v(p). For the stoplight problem, abtain an
expression for F(z,t) using the solution (7.46) and v(p) = vum(1-p/pn). Sketch Fia, £)
versus z for £ > 0, and show that it is maximnm at 2 = 0 (i.c., at the light). [Pencil]
8. Call z¢(t) the position of a given car; then

-d;; — u(pleet), 1) (7.53)
{a) Show that
0) t << -2, 0)/!1x| e
() = b4
ze(t) { Dl — 2«/—3% Yot > :rp }/tm (7.54)

by using the solution to the stoplight problem. Equation (746). [Pencil] {(b) Plot the
trajectories x. in the wt plane for various 2.(0). [Computer] (¢} Plot the time it takes
for a car to reach the intersection as o function of [z.(0)|. [Computer]

9. After a time ¢, the total amount of traﬂic that has passed through the light is N{t) =
jo pla,) dz. Show that N(t) = [0 (x = 0,t) dt, where Fw, 1) = p(a, the(z,t) is the
flow. [Pencil]

10. Modify the traffic program so that it uses a Gaussian pulse of width L /4 a3 an
initial distribution for the density. Clenter the pnlse at & = 0 with p(0,0) = pm. Show
how the density evolves with time. Explain why one side of the pulse expands while
the other contracts [remember that the wave speed, c(p), is not a constant]. Describe
what a driver on this racetrack will experience. [Computer]

238 CHAPTER 7. PDES IT: ADVANCED EXPLICIT METHODS

11. Modify the traffic program so that it uses the initial condition

plzt=10)= %n[l + cos (4w /L]

(a) Plot the density versus position for a variety of times and show that the cosine wave
turns into a sawtooth wave. In nonlinear acoustics this is referred to as an N-wave.
If you have ever been to a very loud rock concerf, you may have heard one of these.
(b) Madify your program to compute the spatial power spectrum of the density {see
Section 5.2). Remove the zero wave number component. Initially, the spectrum will
contain & single peak, but in time other peaks appear. Use a mesh plot to graph the
spectrnm versus wave number and time. [Compuser]

12. Suppose that we have a uniform density of traffic with a small congested area.
Modify the traffic program so thai it uses the initial condition

plat=0) = po[l + cexp{—z"/207)]

where o = 1/5, o = L/8, and py are a constants. (a) Show that for light traffic
(e.g., pop = pm/4) the perturbation moves forward. ‘What is its speed? (b) Show that
for heavy traffic (e.g., po = 3pm/4) the perthrbation moves backward. Interpret this
result physically. {(c) Show that for py = po /2 the perturbation is almost stationary;
it drifts and distorts slightly. [Computer]
13. Call 24(t) the position of the shock wave (sec Figures 7.18 and 7.24). The velocity
of the shock is given by
drs Flpy) — Flp_)
dt P+ —p-
where Flz,t) = p(x, t)v(e, t) is the flow and px = lim._,o p(ws £ €), that is, the density
an each side of the shock front. (a) Show that

(7.55)

des 1 ;
7 = gleler) e (7.56)

when v is linear in the density. [Pencil] (b) Use the density profile camputed by the
traffic program to compute x.(¢) given that x.(0) = —L/4. Compare your results
with the locations of steep gradients in the contour plot produced by traffic. [Com-
puter]

BEYOND THIS CHAPTER

In Section 7.2 the method of characteristics is used to obtain an analytical so-
lution to the generalized Burger’s equation. The method of characteristics may
also be implemented as a numerical scheme for solving hyperbolic equations.
For the wave equation we have two sets of characteristic lines (left- and right-
moving waves). For more complicated problems [e.g., Buler equations in fluid
mechanics) these characteristic lines are computed numerically as trajectories
of a nonlinear ODE.[73]

One of the principal difficulties with numerieally solving hyperbolic cquations
is the formation of shocks. At a shock the solution is discontinuous and our
PDE description breaks down. One way to treat the problem is to uge an

APPENDIX A: MATLAB LISTINGS 230

uneven grid and concentrate grid points at the location of the shock. Shock-
capturing methods automatically adjust the grid spacing to accomplish this.
See Anderson ct al. [10] and Fletcher [47] for an extensive discussion of finite
difference methods for solving hyperbolic equations. For a presentation of the
hydrodynamic cquations suitable for a physicist, see Tritton [128].

APPENDIX A: MATLAB LISTINGS

Listing TA.1 Program advect. Solves the advection equation using vearious nu-
merical schemes.

% advect - Program to solve the advection equation
% using the various hyperbolic PDE schemes
clear all; help advect; % Clear memory and print header

%+ Select numerical parameters (time step, grid spacing, etc.).
method = menu(’Choose a numerical method:’,
'FTCS’, ?Lax’,’ Lax-Wendroff’);

N = input(’Enter number of grid points: *);
L=1.; % System size

h = L/N; % Grid spacing

c=1; % Wave speed

fprintf (*Time for wave to move ome grid spacing is %g\n’,h/c);
tau = input(’Enter time step: ’);

coeff = —c#tau/(2.%¥h); ¥ Coefficient used by all schemes
coefflw = 2%coeff™2; % Coefficient used by L-W scheme
fprintf (’Wave circles system in g steps\n’,L/ (c*¥tau));

nStep = input(’Enter number of steps: ’);

%% Set initial and boundary conditions.

sigma = 0.1; % Width of the Gaussian pulse
k_wave = pi/sipgma; % Wave number of the cosine

x = ({(1:N)-1/2)%h - L/2; ¥ Coordinates of grid points
% Initial condition is a Gaussian-cosine pulse

a = cos(k_wave*x) .* exp(-x."2/(2*sigma"2));

% Use periodic boundary conditions
ip(l: (N-1)) = 2:N; ip(WM =1; % ip
im{2:5) = 1:(N-1); im{(1) = N; % im

i+1 with periodic b.c.
i-1 with periedic b.c.

%* Initialize plotting variables.

iplet = 1; % Plot counter

aplot(:,1} = a(:); - % Record the initial state

tplot (1) = 0; % Record the initial time (t=0)
nplots = 50; % Desired number of plots

plotStep = nStep/nplots; % Number of steps between plots

%#* Loop over desired number of steps.
for iStep=t:nStep %% MAIN LOOP %%

240 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

%#* Compute new values of wave amplitude using FTCS3,
% Lax or Lax-Wendroff method.
if{ methed == 1) %%% FTCS method %%
a(l:N) = a(Ll:N) + coeff*{alip)-a(im});
elseif (method == 2 } h¥% Lax method 144
a(l:N) = .6%{a(ip)+afim)) + coeff*(al(ip)-alim));
else Yh% Lax-Vendroff method %4%Y
a(i:N) = a(i:N) + coeff*{a(ip)-alim)} + ...
coefflw*(a{ip)+a(im)-2#a(l:N)};
end

%* Periodically recerd a(t) for plotting.

if ¢ rem{iStep,plotStep) < 1) ¥ Every plot_iter steps record
iplot = iplot+1;
aplot(:,iplot) = al(:}; % Record af{i) for ploting
tplot(iplet) = tau*iStep;
fprinef (g out of %g steps completedin’,iStep,nStep);

end

end

Y% Plot the initial and final states.
figure(1); clf; % Clear figure 1 window and bring forward

plot(xz,aplot(:,1},’-’,x,a,'-="); legend(*Initial’,’Final’);
xlabel(’x’); ylabel{’a(x,t)’);
pause(1}; % Pause 1 second between plots

%# Plot the wave amplitude versus position and time
figure(2); clf; % Clear figure 2 window and bring forward
mesh (tplot,x,aplot); ylabel{’Position’); xlabel(’Time’);
zlabel (? Amplitude’);

view([-70 50]); Y% Better view from this angle

Listing TA.2 Program traffic. Solves the equation of continuity for teaffic flow,

% traffic - Program to solve the generalized Burger
% equation for the traffic at a stop light problem
clear all; help traffic; % Clear memory and print header

%* Select numerical parameters (time step, grid spacing, etc.).
method = menu(’Chocose a numerical method:’,
JFTCS? , 'Lax?, *Lax—Wendroff’};

¥ = input(’Enter the number of grid points: ’);

L = 400; % System size (meters)

h = L/N; % Grid spacing for periodic boundary conditions
v_max = 25; % Maximum car speed (m/s)

fprintf (’Suggested timestep is Y%g\n’,h/v_max);
tau = input{’Enter time step (tau): ');

APPENDIN A: MATLAR LISTINGS

fprintf (*Last car starts moving after Jg steps\n’,
_ (L/4) /(v_nax*tau)) ;
nstep = input(’Enter number of steps: ’);
coeff = tau/(2+h); % Coefficient used by all schemes
coefflw = tau"2/(2+#h"2); ¥ Coefficient used by Lax-Wendroff

h* Set initial and boundary conditions

rho_max = 1.0; % Maximum density
Flow_max = (.25*rho_max*v_max; % Maximum Flow
% Initial condition is a square pulse from x = -L/4 to x = 0
rhe = zercs{l,N); for i=round(l/4):round(N/2-1)
rhe(i) = rho_max; % Max density in the square pulse
end

rho(round(N/2)) = rho_max/2; % Try running without this line
% Use pericdic boundary conditions

ip(1:N} = (L1:M)+1; ip(M) = 1; % ip = i+l with periodic b.c.
im(1:N) = (1:)-1; im(1) = N; % im = i-1 with periodic b.c.

%% Initialize pletting variables.

iplet = 1;
xplot = ({1:M}-1/2)*h ~ L/2; % Record x scale for plot
rplot(:,1) = rho(:); % Record the initial state

tplot(1l) = 0;
figure(1); clf; % Clear figure 1 window and bring forward

%* Loop over desired number of steps.
for istep=l:nstep

%* Compute the flow = (Density)#*(Velocity)
Flow = rho .* {v_max*(1 - rho/rho_max)};

%* Compute new values of density using FTCS,
% Lax or Lax-Wendroff method.
if{ method == 1) %A% FTCS method %¥%
rho(1:N) = rho(1:N) - coeff*(Flow(ip)-Flow{im});
elseif{ method == 2) %%% Lax method %%Y%
rho (1:N) = .5%(rho(ip)+rho(im))
- coeffx(Flow(ip) -Flow(im));

else Y4 Lax-Wendroff method %44
cp = v_max*{1 - (rho(ip)+rho(1:N)}/rho_max};
cm = v_max*(1 - {rthof{i:N)+rho(im))/rho_max};

rho(1:N) = rho(1:N) - coeff*(Flow(ip)-Flow{im})
+ coefflw*(cp.* (Flow(ip)-Flow(1:N)}
- cm.*(Flow(1:N)-Flow{im)}));
end

%* Hecord density for plotting.
iplet = iplot+l;

rplot(:,iplot) = rho{:};

tplot (iplot) = tau*kistep;

241

242 CHAPTER 7. PDES IT: ADVANCED EXPLICIT METHODS

Y% Display snap-shot of density versus position
plot(xplot,rho,’-’,xplot,Flow/Flow_max,’——’);
xlabel (*x'); ylabel(’Density and Flow?’);
legend (’\rho(x,t)’,’F(x,£)’);
aris([-L/2, L/2, -0.1, 1.11);
drawnow;

end

%% Graph demsity versus position and time as wire-mesh plet
figure{(1); clf; % Clear figure 1 window and bring forward

mesh (tplot,xplot,rplot) xlabel(’t’}; ylabel(’x’); zlabel{’\rho’);
title (’Density versus position and time’);

view([100 301): Y Rotate the plot for better view point
pause(1); % Pause 1 second betwsen plots

%#* Graph contours of density versus position and time.
figure(2); clf; % Clear figure 2 window and bring forward
% Use rot90 function to graph t vs x since

% contour(rplot) graphs x v8 t.

clevels = 0:(0.13:1; ¥ Contour levels

cs = contour(xplot,tplot,flipud(rotQO(rplot)),clevels);
clabel(cs); Y Put labels on contour levels
xlabel(’x’); ylabel(’time’); title(’Density comtours’};

APPENDIX B: C++ LISTINGS

Listing 7B.1 Program advect. Solves the advection equation using various nu-
merical schemes.

// advect - Program to solve the advection equatiom
// msing the various hyperbolic PDE schemes
#include "NumMeth.h"

void main() {
//* Select numerical parameters (time step, grid spacing, etc.).

colit << "Choose a numerical method: 1) FTCS, 2) Lax, 3) Lax-Wendroff : "
int method; cin >> method;

cout << "Enter number of grid points: . int N; cin >> Nj
dovble L = 1.; // System size

double h = L/N; // Grid spacing

double ¢ = 1; // Wave speed

cout << "Time for wave to move ome grid spacing is " << h/c << endl;
cout << "Enter time step: "; double tau; cin >> tau;
danble coeff = —cxtau/(2.*h); // Coefficient used by all schemes

APPRNIIN 1 Cpg LISTINGS

double coefflw = 2+coeff*coeff; // Coefficient used by L~W scheme
cout << "Wave circles system in " << L/(cktau) << " steps" << endl;
cout << "Enter number of steps: "; int nStep; cin >> nStep;

//* Set initial and boundary comditions.
const deuble pi = 3.14159265%;

double sigma = 0.1; // Width of the Gaussian pulse
double k_wave = pifsigma; // Wave number of the cosine
Matrix x(N), a(N}, a_new{(l);

int i,j;

for(i=1; i<=N; i++) {

x(1) = (i-0.8)*h - L/2; // Coocrdinates of grid points

// Imitial condition is a Gaussian-cosine pulse

a(iy = cos(k_wave*x(i)) * exp(-x(i)*x(i}/(2*signa*sigma});
}

// Use periodic boundary conditions

int *ip, *im; ip = new int [N+1]; im = new int [N+1];
fer(i=2; i<i; i++) {
ipli] = i+1; // ip{i]l = 1+1 with periodic b.c.
im[i] = i-1; /7 im{i] = i-1 with periodic b.c.
}

ip{1] = 2; ip[N] = 1,
im{1] = N; im[N] n-1:

//+ Initialize pletting variables.
int iplet = 1; // Plot counter
int nplets = 5Q; // Desired number of plots
double pletStep = ({double)nStep)/nplots;
Matrix aplot{N,nplots+1), tplot(nplots+1);
tplo= (1) = 0; // Record the initial time (t=0)
for(i=1; i<=N; i++)
aplot(i,1) = a(i}); // Record the initial state

//* Loop over desired number of steps.
int iStep;
for(iStep=1; iStep<=nStep; iStept++)} {

//* Compute new values of wave amplitude using FTCS,
// Lax or Lax-Wendroff method.
if(methed == 1 } //f1] FTCS method /f/////
for(i=1; i<=N; i++)
a_new(i) = afi) + coeff*(a(iplil)-a(imiil) };
else if(method == 2) ////// Lax method //////
for(i=1; i<=N; i++)
a_new(i) = 0.5%(a(iplil)+a{imlil])) +
coeffx(alip[il)-a(im[i]));
else /777177 Lax-VWendroff metheod //////
for{ i=1; i<=N; i++)
a_new(i) = a(l) + coeff*(aliplil)-alim[il)) +
coefflwk(al(ip[ilY+a(im[il)~2%a(i) J;

244 CHAPTER 7. PDES H: ADVANCED EXPLICUD MITTIHODS

a = a_new, // Reset with new amplitude values

//* Periodically record alt} for pletting.
if (fmod((double)iStep,plotStep) < 1) {
iplot++;
tplot(iplot) = tau*iStep;
for(i=1; i<=N; i++)
aplot (i,iplot) = a(i); // Record a(i) for ploting
cout << iStep << " cut of " << nStep << " steps completed" << endl;
h
T
nplots = iplot; // Actual number of plots recorded

//+ Print out the plotting variables: x, a, tplet, aplot
ofstream x0ut("x.txt"), alut("a.txt"),
tplothut ("tplot.txt"), apletlut{"aplot.txt"};

for(i=1: i<=N: i++)} {

x0ut << x{i) << endl;

alut << a(i) << endl;

for(j=1; j<mplots; j++)

aplotlut << aplot(di,j) << ™, '

aplotOut << aplot{i,nplots) << endl;
¥
for(i=1; i<=nplets; i++ }

tplotOut << tplot(i) << endl;

delete [] ip, im; // Release allocated memory
1
/rtxrd To plet in MATLAB; use the script below #ddkkkkssssbikixxkrk
%% Plot the initial and final states.
load x.txt; Joad a.txt; lecad tplot.txt; load aplot.txt;
figure{l); c<l1f; % Clear figure 1 window and bring forward
plot(x,aplot{:,1},’-",x,a.’~="); legend(’Tnitial’,’Final’);
xlabel (’x’); ylabel{'a(x,t)’);
pause{l}; % Pause 1 second between plots
%% Plot the wave amplitude versus pozition and time
figure(2); clf; % Clear figure 2 window and bring forward
mesh{tplot,x,aplot}; ylabel(’Position’); xlabel(’Tims’);
ziabel (’Amplitude’);
view([-70 501); % Better view from this angle
ko o s o sk o ok oK K K K s s sk o ook sk sk skt o o ok ok sk ok ok ok ok ook ok ok ok R R K R K SR SRR R Kk sksksk o ko ok f

Listing 7TB.2 Program traffic. Solves the equation of continuity for traffic fow.

// traffic - Program to solve the generalized Burger
// equation for the traffic at a stop light preblem
#include "NumMeth.h"

APPENDIX B: C++ LISTINGS 243

void main() {

//* Select numerical parameters (time step, grid spacing, etc.).
cout << "Choose a rumerical method: 1) FTCS, 2) Lax, 3) Lax-Wendroff : ";
int method; cin >> method;

cout << "Enter the number of grid peints: "; int N; cin >> N;

double L = 400; // System size (meters)

double h = L/N; // Grid spacing for periocdic boundary conditions
double v_max = 25; // Maximum car speed (m/s)

cout << "Suggested timestep is " << h/v_max << endl;
cout << "Enter time step (tau}: "; double tam; cin >> tau;
cout << "Last car starts moving after "

<< (L/4)/(v_max#*tau) << " steps" << endl;

cout << "Enter number of steps: "; int nStep; cin >> nStep;

double coeff = tau/{2+h); /{ Coefficient used by all schemes
double coefflw = taurtau/(2%h*h); // Coefficient used by Lax-Wendroff
double cp, cm; // Variables used by Lax-Wendroff

//* Set initial and boundary conditions

double rho_maxz = 1.0; // Maximum demsity
double Flow_max = 0.2b*rho_max*v_max; // Maximum Flow

// Initial condition is a square pulse from x = -L/4 to x = 0
Matrix rho(N), rho_new{l); ;
int i,j, iBack = N/4, iFromt = N/2 - 1;
for({ i=1; i<=N; i++)
if(iBack <= i &k i <= iFront) rho{i) = rho_max;
else rho(i) = 0.0;
rho {iFront+1} = rho_max/2; // Try running without this line
// Use periocdic boundary conditicns
int *ip, *im; ip = new int [N+1]; im = new int [N+1];
for(i=2; i<l; i++) {

iplil = i+1; // ipli]l = i+l with periodic b.c.
im[i] = i-1; // im[i] = i-1 with periodic b.c.
}
ip[1] = 2; ip(N] = 1;
im[1] = N; im[W] = N-1;

//* Initialize plotting variables.

int iplet = 1;

Matrix tplot({nStep+1), xplot(N), rplot(N,nStep+l);

tplot (1) = 0.0; // Record initial time

for(i=1; i<=N; i++) {
xplot(i) = (i -~ 0.8)*%h - L/2; // Becord x scale for plot
rplot(i,1) = rho(i); // Record the initial state

}

//* Loop over desired number of steps.
Hatrix Flow(N);
int iStep;

246 CHAPTER 7. PDES II: ADVANCED EXPLICIT METHODS

for(iStep=1; iStep<=nStep; iStep++) {

//* Compute the flow = (Density)*(Velocity)
for(i=1; i<=N; i++)
Flow(i) = rho(i) * (v_max*(1.0 - rho(iY/rho_max)]);

//* Compute new values of density using FTCS,
// Llax or Lax-Wendroff method.
if(method == 1) /777471 FICS method 111l
for(i=1; i<=N; i++)
tho_new(i) = rho{i) - coeff*(Flow(ip[i])—Flow(im[i]));
else if(method == 2) ////// Lax method 1A
for(i=1; i<=N; i++)
rho_new{i) = 0.5%(rho(ip[i]) +rho(im{il))
- coeff*(Flow(iplil)-Flow(inlil)};
else //#/¢/ Lax-Wendroff method /1111
for{ i=1; i<=N; i++) {
cp = v.max*(l - (rho(ip[i])+rho(i})/rho_max);
cm = v_max*(i - {rho (1) +rho (im[i1))/rho_max) ;
rho_new(i) = rhe(i) - coeff*(Flow(ip[i])—Flow(im[i])}
- coefflw*(cp*(Flow(ip[i])—Flow(i))
- em*(Flow(i)-Flow{im[i])));
1
// Reset with new demsity values
rhe = rho_new;

//% Record density for pletting.
cout << "Finished " << iStep << ™ of " << nStep << " steps" << endl;
iplot++;
tplot (iplot) = tan*iStep;
for(i=1; i<=N; i++)
rplot(i,iplot) = rho(i);

T

int npleots = iplot; // Wumber of plots recorded

//* Print out the plotting variables: tplot, xplot, rplot
ofstream tplotOut("tplet.txt"), xplotDut(“xplot.txt“),
rplotDut(“rplot.txt”);

for(i=1; i<=nplots; it++)

tplotDut << tplot (i) << endl;
for(i=1; i<=N; i++ } £

xplotlut << zplot(i) << endl;

for{ j=1; j<mplots; j++)

rplotOut << rplot(i,j) << ", ™

rplotlut << rplot(i,nplots) << endl;

}

delete [1 ip, im;

APPINIIX B: C++ LISTINGS

/##%%x To plot in MATLAB; use the script below ##kkkdskdrkksxxskhnk
load tplot.txt; load xplot.txt; load rplot.txt;

%* Graph density versus position and time as wire-mesh plot
figure(1); clf; % Clear figure 1 window and bring forward
mesh{tplot,xplot,rplot) xlabel{’t’); ylabel(’x?); =zlabel(’\rho’);
title(’Density versus pesition and time’};

view([100 301}; % Rotate the plot for better view point

pause(l); % Pause i second between plots
%* Graph contours of density versus pesition and time.
figure(2); clf; % Clear figure 2 window and bring forward

% Use rot90 function to graph t vs x since

% contour(rplot) graphs x vs t.

clevels = 0:(0.1):1; % Contour levels

cs = contour(xplot,tplot,flipud(rot90(rplot}),clevels);

clabel(cs); % Put labels on contour levels

xlabel(’x’); ylabel(’time’); title(’Density contours?);

o KR o KR K SR R SRR Rk ok ko ok ok ok sk ok ok Rk R R R KR Rk Kk

247

Chapter 8

Partial Differential
Equations III: Relaxation
and Spectral Methods

The two previous chapters covered methods for solving parabolic and hyper-
bolic equations. Now we consider the third type of partial differential aquation,
elliptic equations. For this kind of PDE we have to solve a boundary value
problem, and the solution is a static field, such as the electric field described
by Laplace’s equation. Despite the dissimilarities, we find that numerical re-
laxation algorithms link these problems. With spectral methods, we explore a
completely different way of formulating the numerical solution, using a set. of
basis functions instead of a spatial grid.

8.1 RELAXATION METHODS

Separation of Variables

Our paradigm for an elliptic PDE is Laplace’s equation. In two dimensions it
may be written as
Py | Py

= Nl
o2 Oy 0 (8.1)

where ® is the electrostatic potential. Before going into the numerical methods,
let’s solve this equation analytically for a simple problem. Take a rectangular
geometry with boundaries at * = 0, x = L, y = 0, and y = L. In this case,
we can solve Laplace’s equation by separation of variables.[75]

Qur first step is to write ®(z, %) as the product

Pz, y) = X(2)Y(y) (8.2)

250 CHAPTER 8. PDES III: RELAXATION & SPECTRAL METHODS

Inserting this substitution into Laplace’s equation and dividing by ®, we have
1 &#X 1 d%Y
X@ det T Yl d?
Since this equation must hold for all & and g, each term must equal a constant;
we write separate equations for X and Y,
1 &#X o 1 &Y _ g2

X(x) da® ’ Yy dy?
where k is a complex constant. These equasions are ordinary differential equa-
tions gince X (or Y) only depends on x (or Y)-

Two notes are needed for those of you who are less familiar with separation of
variables. First, we write the constant as k2 because it simplifies the notation.
Second, one equation has 12 and the other —k? does not matter, since k is
complex. There is no violation of the original symmetry in Laplace’s equation.

The solutions of these ODEs for X and Y are well known:

(8.3)

(8.4)

X(z) = Cysin(ka) + Cecos(ka) (8.5)
Y(y) = C!sinh{ky) + C;cosh(ky) (8.6)

where Cs, Cq, ¢, and C are constants. Again, shege solutions are the same
since k may be complex. In a few lines you will see:why T chose to write the
solution in this form.

To proceed further, we need to specify boundary conditions. We'll use

d(z =0y = @=Ly = z,y=0 =0

Slz,y=L,) = &, (8.7)

where ® is a constant. The potential is zero on thrae of the sides of the rectangle
and &g on the fourth. The boundary condition at z = 0 is satisfied if C. = 03
the y = 0 boundary condition is satisfied if ¢! = 0. The boundary condition at
¢ = L, is satisfied if k = nw/L., where n is an integer.

. Using the superposition principle, our general golution takes the form

> A LA nry
bz, y) = Cyp Sin siuh 8.8
)= Yo (=) () (5.8)
To find the values of the ¢, coefficients, we impose the fourth boundary condi-

tion, ®(z,y = Ly} = ®o; hence

— - L
Py = nz::lcn sin (ngj) sinh (nzmy) (8.9)

Multiply both sides by sin(mmz/L,) and integrate fromz =0 to & = Lq,

Ly

ML
dx $q sin () =
[0 ¢ L,

o0 e
. nnlL, . f mrx
oy, sinh dzx sin
1 La: 1] Lm

) sin (";:) (8.10)

=

S0 RELANATION METHODS 251

Dy)

0.2

R 04 o8 os 1

Figure 8.1: Contour and mesh plots of the potential versus » and y as given by
the separation of variables solution, Equation (8.15), using terms up through
no=21.

The integral on the left-hand side is casily solved,

L i 9 Lrm o ode
/ sin 2 'L) dr = 2L, jme moodd 8.11)
L0 LL!’ ; [] T BvVEerIl \

The sum on the right-hand side may be simplified, since that integral is

oL
= {rmmry . {nwr Loy o :
/0 sin (I) sin (T) dr = ?On_‘m i8.12)

which collapses the sum to a single term.
Equation (8.10) reduccs to

QL : g 3 |L- Lp
by % = oo sinh Mty Le (e odd) (5.13)
AL L. 2
or
4
Cm = 0 (i odd) (8.14)

mmsinh{maL,/L,)

Our final expression for the solution is the infinite sum

s 4 fmmxe\ sinh(nay/L,)
Plr,y) =T — — 15
(.9) = Z s s (L.,) sinh{nxL,/L,) (8.15)

n=zb, 3,5,

When we graph this solution we discover that a large number of terms is
necded to represent the solution near the y = L, houndary accurately (Fig-
ure 8.7}, Near the corners of this boundary we observe Gibbs ™ phenomenon, an
oscillation that commonly occurs when a Fourier series is used to represent a
digcontinuous function.[86]

252 CHAPTER 8. PDES ITII: RELAXATION & SPECTRAL METHODS

Jacobi Method

We now develop a numerical method for sclving Laplace’s equation. To begin,
let’s go back for a moment to the diffusion equation (Section 6.2). Consider the
TFourier equation for the two-dimensional diffusion of temperature,

0T (z,y,t) . (82’1" 82T)

| a2 " o

2 (8.16)

where & is the thermal diffusion coefficient. We know from physical intuition
that given any initial temperature profile ptus stationary boundary conditions,
the solution will relax to some steady state, call it T, (z,y). In other words,

Jim T'(z,y,t) = Ti(x,y) (8.17)

When the temperature profile is at the steady state, then it does not change in
time, that is, 87,/0t = 0. This means that the steady state obeys the equation
8T, 0T,
Ox? Ayt

=0 (8.18)

Does this look familiar? Of course, this is just Laplace’s equation.

The idea is that the solution of Laplace’s equation is just the solution of
the diffusion equation in the limit ¢ — oo. Algorithms based on this physical
principal are called relazation methods. We already know how to solve the

7

diffusion equation using the FTCS scheme. We start from the two-dimensional
diffusion equation
A% (z,y,t) 26 5
— = U T + —
at gx2 By?

The value of the constant g is unimportant because it drops out later. Using
the FTCS scheme in two dimensions,

(8.19)

T X “T n ¥ -
‘I’i,;rl =&, + §{®i+l,j + &7, 2875}

BT (on .
T ﬁ{q}i.jﬂ + @,y — 207} (8.20)
4
where 87 = (3,5, tn), i = (i — e, 4y = (G = Dy, and £ = (0 = D)7,

Remember that we are solving an electrostatics problem, so the potential doesn'’t
actually depend on time. We introduce an artificial time dependence only to
assist in the construction of the algorithm. A better way to interpret ®7; 1s
to call it the nth guess for the potential with (8.20) serving as a formula for
improving this guess.

In Section 6.2 we saw that the FTCS scheme can be numerically unstable. In
one-dimensional systems the scheme is stable if ur/h? < %; for two-dimensional
systems the scheme is stable if

P

R

VAN
o]

(8.21)

8.1 RELAXATION METHODS 233

(see Exercise 9.5). To simplify the analysis, we take h, = hy = h so the
condition for stability is p7/h* < 1.

Since we are cnly interested in the steady state solution (n — >0}, we want,
to use the largest possible time step. Setting ur/h* = 1/4, Equation (8.20)
becomes

@:I,;rl = {é?if*].,j iy, g T i Gl T (I)zj 1} (8‘22)

Notice that the diffusion constant, u, has dropped out and that the &% ; terms
cancel out on the right-hand side. This cquation has a good parentage; our first
example of a relaxation scheme is called the Jacobi method. It is easy to see
that the method involves replacing the value of the potential at a point with
the average value of the four nearest neighbors. This result may be thought of
as a discrete version of the mean-value theorem for elcctrostatic potential. Of
course, Equation (8.22) is used only for interior points and not when (i, 7) is a
boundary point.

Gauss-Seidel and Simultaneous Overrelaxation

A simple modification of the Jacobi method improves its rate of convergence,
Suppose that we use the updated values of ©; ; as they become available. The
iteration equation is then

o = —{@m PR S TR Pl S (8.23)

The idea is that the updated values of & at two of the nearest neighbors have al-
ready been computed, so why not use thern. With this modification the method
is called the Gawuss-Seidel method. Besides accelerating the convergence, with
Gauss-Scidel we do not need to simultancously store both the " and $7!
matrices, a significant savings in memory.

We can significantly improve our algorithm by overcorrecting the value of
@ at each iteration of the Gauss-Seidel method. This is achieved by using the
iteration equation

@'1:,;1 = (1 - w)@” + {d;]'a-H ¥) + (I)T+llj + (I)nj-f-l =+ (I):b 1} (824)
where the constant w is called the overrelaxation parameter. This method is
called sirmultaneous overrelazation (SOR).

The trick to using SOR effectively is to select a good value for wo. Notice that
using w = 1 is equivalent to Gauss-Seidel. For w < 1 we have underrelaxation,
and the convergence is slowed. For w > 2 the SOR method is unstable. There
is an ideal value for w between 1 and 2 that gives the best acceleration. In some
geometries this optimal value is known. For cxample, in an N, x N, rectangular
grid,

2

Wopt = —————= 8.25
TRV (525)

254 CHAPTER 8. PDES HI: RELAXATION & SPECTRAL METHODS

Table 8.1: Outlinc of program relax, which solves Laplace’s equation using the
Jacobi, Gauss-Seidel, or SOR method.

Initialize parameters (L, h, etc.}.

Select w, the over-relaxation factor (SOR only).

o Set initial guess as first term in separation of variables solution, (8.15).

Loop until desired fractional change per iteration is obtained.

— Compute new estimate for ¢ using;:
% Jacobi method (8.22) or;
* Gauss-Seidel method (8.23) or;
* Simultancous over-relaxation (SOR) method (8.24).

— Check if fractional change is small enough to hals she iteration.

Plot final estimate of ®(z,y) as contour and surface plots.

s PPlot the fractional change versus iteration.

See pages 268 and 271 for program listings.

where

1 T
r=3 (cos ;I + cos ;y) (8.26)

If N, = N, = N (square geometry), this simplifies to

2

1+ sin{x/N) (8.27)

wopt =
with wapy & 1.939 for N = 100. In real-life problems the optimal value for w is
obtained by empirical trial and ervor. Sophisticated programs will automatically
adjust w according to how well the solution is converging.

A program, called relax, that solves Laplace’s equation using the Jacobi,
Gauss-Seidel, or SOR method, is outlined in Table 8.1. Relaxation algorithms
require an initial guess to start the iteration process and the relax program
uses the first term in the separation of variables solution (8.15). Sometimes the
efficiency of the algorithm is greatly influenced by the accuracy of this initial
guess. The best way to appreciate this point is to run the program using a poor
initial guess (e.g., ® = 0 in the interior).

The potential, as computed by the relax program, is illustrated in Figure 8.2
by a contour map and amesh figure. Notice that we have no Gibbs’ phenomenon
(compare with the separation of variables solution, Figure 8.1).

S0 RELAXATION METIHODS 25!

[ahr

ential after 77 iterations

Figure 8.2: Contour and mesh plots of the potential from relax using the SOR
method. Grid size is ¥ = 30 and w = 1.8 (wy,, & 1.88). Compare with the
separation of variables solution, Figure 8.1.

Poisson Equation

The methods developed so far are easy Lo generalize to solve the Poisson equa-
tion. In MKS units,

ey} | Felay) I~ (8.28)
€0

Ja? dy?
where p(x,y) is the charge density and €y is the permittivity of {ree space. In
discretized {orm, we Lhave

1 _ 1 ‘ 1 L
/TQ{(I’H Lo T Rimy =20 + ;F{‘I’-::,JH + O 2@, 51— LY (8.29)
Ly i 0
Jsing the analysis presented earlier, we construct the Jacobi relaxation scheme

for the Poisson equation as

1 1.
N4l _ , 2
e = 1 { HEIPE R SINTPE A O PTRIE VIS ‘g{;h Pr,j} (8.30;
where to simplify the formulation we take /i, = hy, = h. The other two schemes
considered in this section may also be generalized by the simple addition of the
charge density term.

EXERCISES

1. Write a program to evaluate the potential €{rx, y) numerically, as given by Equation
(8.13), on a 50 x 50 grid. Take ®¢ = 1 and graph your solution by mesh and contour
plots (see Figure 8.1). Plot yvour resulls using terms through n = 11, 21, and 51.
Estimate how many terms in the infinite sum are needed to obtain about 1% accuracy
in the solution. [Computer)

256 CHAPTER 8. PDES III: RELAXATION & SPECTRAL METHODS

2. {a) Find the scluiion to the more general boundary value problem,

Plx=0y) = & Sz =Leyy) = o
‘i’(az,y :O) = & ‘i(x:y: Ly) = &
where ®,,...,®, are constants. Pencil] (b} Write a program to graph your solution

by mesh and contour plots. Graph the potential for &1 = ®3 =1, €y = &4, =0, and
for &, = ®3 =1, ¥3 = ¢4 = 0. [Computer]

3. (a) Find the solution to the three-dimensional cubic boundary value problem, {75,
Problem 2.13]

P(x=0,y,2) = ®lz=Lyz = 0
P(x,y=0,2) = Szy=Lz) = 0
@(m,y,z = U) = (I)($>yﬁz = L) = &

using separation of variables. [Pencil] (b) Write a program to graph your solution
for a given height #. Produce mesh and contour plots of ®(z,y, 2) for » = L/4 and
L/2. [Computer] (¢) Write a three-dimensional version of the relax program to solve
this problem by relaxation. Produce mesh and contour plots of ®{x,y,z) for z =L/4
and L/2; compare with your results from part (b).

4. A major issue with relaxation methods is their computational speed. (a) Run the
relax program using the Jacobi method for different-sized systems (N, = N, = 10
to 50). Graph the number of iterations performed versus system size. Fit the data to
a power law and approximate ihe exponent. (b} Repeat part (a) using a bad initial
gness. Set the potential initially to zero everywhere in the interior. {¢) Using SOR,
repeat parts (a) and (b). Compare the Jacobi and SOR, methods (use the optimum
value for w). {Computer]

5. Formulate the Jacobi method without assuming that b, = b,. Modify the relax
program to implement this modification. Keep L, = L, and the boundary conditions,
Equation (8.7), and try grids of 32 x 32, 64 x 16, and 16 x 64. Do you find any
significant differences? [Computer]

6. The relax program uses a good initial guess for the potential ®(z, y). To illustrate
its importance, run the program with a variety of initial guesses, including some poor
ones {e.g., ® = 0 in the interior). Algo try an initial guess that uses the first few
terms of the separation of variables solution (8.15). Compare and comment on your
results. [Computer]

7. Modify the relax program to plot the electric field, E = —V&®. In MATLAB,
the functions gradient (which computes the gradient) and quiver (which produces a
field plot; see Fignre 8.8} are available. Plot the electric field for the potential shown
in Figure 8.2. Try both proportional and equal-length field arrows. [MATLAB]

8. Write a program that uses the SOR method to simulate a Faraday cage (Figure 8.3).
Use a square geometry with N, = N, = 60. Set the left and right walls to & = 0
and @ = 100, respectively. Fix the potential at the top and bottom walls but have it
vary linearly across the system. (a) The Faraday cage is represented by the following
eight points: (s,) = (20,20, (30, 20), (40, 20), (20,30}, (20, 40), (30, 40), (40, 30), and
{40, 40). The potential at these points is fixed at zero. Plot the potential ®; 39 versus
i (i.e., a horizontal cross section through the center), both with and without the cage.
{b) Try a cage that has only the four corner points (20, 20), (20, 40), (40, 20}, (40,40),
and compare with the results from part (a). (c) Trv a cage that has only the four

8.1 RELAXATION METHODS 25

-1

o 7 o

(40,40)

c O 0O
o Q
c O 0o

(20,20)

Figure 8.3: Faraday cage.

(a) (b)

(c) (d)

o
g

&
[

Figure 8.4: Geometries and houndary conditions [or Laplace equation.

side points (20, 30), (30,20}, (40,30), (30,40), and compare with the results from part
(a). [Computer]

9. Write a program that uses the SOR method to solve the electrostatics problems
shown in Figure 8.4. lor cach box, the thin lines indicate a boundaiy where the
potential is fixed at zero; » thick linc indicates the potential is fixed at one. [Computer]

10, (a) Write a program that solves the two-dimensional Poisson equation in a square
geomelry with the Dirichlet houndary conditions & = 0 al the boundary. Map the po-
tential for a single charge at the center of the system. Compare with the potential for a
charge in free space. Rememboer that in two dimengions this charge is a line charge and
not a paint charge (sce Figure 8.5), (b) Modify vour program to use periodic boundary

~

conditions. Compare with the results from part (a). (Hint: Think.) [Computer]

258 CHAPTER 8 PDES I RELAXATION & SPRCTRAL METIHODS

. In two dimensions, the Laplace equation may be discretized as
1 , L. ‘
E'{‘I’fﬂ-a iy =2 S (P + R — 28] =0
£ ¥

{a) Take a very small system that contains only nine interior points (3 x 3 interior
grid). Show that the discretized Laplace equalion ¢an be reduced Lo o system of nine
simultaneous equations. [Pencil] (b} Write a program that solves these simultancous
crrations using Gaussian elimination. This solution is important because it can he
used as an initial guess in multigrid programs. [Computer]

8.2 *SPECTRAL METHODS
Fourier Galerkin Method

At the end of Section 8.1, we saw thai the relaxasion methods could be used 6o
solve the Polsson cquation

- 1
Vioir) = T p(r) (8.31)

where @ (r) is the electrosiatic potential at position t, pis the charge density, and
gy 1s the permittivity of free space. We now d evelop a very different approach for
solving Equation (8.31); for simplicity we'll work in a two-dimensional, square
geometry with 0 < o < L and 0 < y < L. The slgorithms in this section are
easily extended to rectangular geometrics; in Chapier 10 we consider spherical
and cylindrical geomotries.

Relaxation methods discretize space and agsemble a sot of equations for @, ;.
Let’s construct a numerical scheme Lhat represents the potential in a different
way. In Section 8.1, using separation of variables, we constructed onr analytical
solution as an infinite sum of trigonometric fanections see Fquation (8.15)].
Suppose that we bui'd our approximate numerical solution using a finite sum of
functions,

Slr.y) = afilwy) +asfela,y) + . ax fr (e, y) + Tley)
iy
= > apfilwy) + Tl (8.32)
k=1

where ®,(x,) is our approximate solytion and T'(e.y) is the error term. We'll
demand that the trial functions be orthogonal,

i ol
[w / dy Fular,) i (20) = Apdy (8.33)
40 AA)

This orthogonality condition is not absolutely necessary, but imposing it sim-
plilies the formulation of the algorithm.

8.2, FSPECTRAL MIETHODS 259
Insertirg (8.32) into the Poisson equation gives

v? (Z f(u)) + 2 plr.u) = Riz.) (3.34)
I -0

where R{x,y) = —V?T (2. y) is the residual. In general, for a partial differential
equation of the form D9 = 0, where D is a linear differential operator, the
residual 18 B = —-D(® — &) = DP,. Separation of variables follows a similar

procedure, except that we have an infinite sum with no error term and thus zero
residual.

Our next step is to obtain an expression for the coefficicnts, az. There are
a varicty of approaches depending on how we choose to minimize the error.
For example, the collocation method sets Rz, yr) = 0 at sclected locations
(g, i) We'll use the Galerkin methoed, which imposes the condition

of L
] da / dy fele,y)R(z,y) =10 {8.35)
0 Jo

for all . In other words, we sclect the coefficients such that the residual is
orthogonal to all the trial functions.

Our choice of trial functions is nsually motivated by the geometry and the
boundary conditions. For a change of pace, let’s solve the Poisson equation with
the Neumann boundary conditions, V& - fi, where fi is the unit normal at the
boundary. In our squarc geometry, this condition may be written as

a® ae

dz Oy

~ o

fali]
Sy

=) (3.36)

=0 a=1I =0 y=L

With these boundary conditions, the normal component of the electric ficld is
zero at the boundary.
Given shese boundary conditions, a natural set of trial functions is

.fm,'n,(;ray) = CcOos8 I:(_TU_“I&FE] COS I:(ﬂjj)'t’fyj| (837)

with m,n=1,..., M. It is casy to check that
Lot L? .
[dr / oy fm,-n(l'y y)fm’,n’ (T ¥) = Z(l + o)(1 + (S‘J‘i.l)5711,1”'5?1,’!1’ (838)
40 6

so these trial functions are orthogonal.
Inserting (8.37) into (R.34) gives

MM 5
=D apallm =)+ (0 - 1)2]%fm,n (2,y) + %p(rzzu) = R(x.y) (8.39)

m=1 n—1

To solve for the coellicients, apply

L oL
f d"’/ dy Jon o (2,9) (5.40)
V] 40

260 CHAPTER 8 PDES III: RELAXATION & SPECTRAL METHODS

L

Figure 8.5: Schematic illustration of a two-dimensional dipole. The two line
charges, centered at r., are separated by a dlstance d. Their charge densities
are =X coulombs per unit length.

to hoth sides of this equation. Using the Galerkin condition (8.35) and orthog-
onality (8.33), we obtain,

4 1 1
Imr T e tm— 1P + (= D2 (14 81} (1 + 1)

X /OL dz foL dy pla,y) cos [(ﬂ_%] cos {(n —Ll)vry

Finally, having computed the coeflicients, our approximate solution is

i f @, n COS Fm —Ll)rrﬂ cos [(ﬂ *Ll}ary] (8.42)

m=1n=1

(8.41)

Because our trial functions form a complete basis, the solution would be exact
if we used an infinite number of terms.

To obtain the coefficients we need to be able to evaluate the integrals in
(8.41). If the charge distribution consists of a finite number of line charges,
then the integrals are trivial to evaluate because p(r) is a sum of Dirac delta
functions. Generally, the charge density is not such a simple function, and the
integrals in (8.41) have to be evaluated numerically (see Section 10.2).

Dipole Example

As a specific example, consider the charge distribution for a two-dimensional
dipole
p() = M3(r — 1) — 8x —r_)} (8.43)

where A is the charge per wunit length, r+ = r; % %d, r. is the location of
the dipole, and d is the separation vector (Figure 8.5). For the purpose of
comparison, consider the case where the size of the square box is infinite, that

82 *PECTRAL METHODS 261

10 &
5% 10 B | X1 _ o
gl
2=
L IPerl=04L
1 F-rl=01L x\\ 5
N c 2 .
..
= . =
¢ 0 - g 0 N
.\\-.. AN
b _2 A
-1 . T \\\
", 4 R
-2
—5-
[R— _g: N -
0 50 100 150 200 0 53 100 150 200
8 (degrees) @ [dagraas)

Figure 8.6: Potcntial ag a function of angle for the dipole-in-a-box computed
from (8.42), using A = 100 terms. For comparison, the potential for the free
dipole is plotted with a dashed line. The radial distance is [r —r.| = 0.1 L (left)
and 0.4 £ {right) with L = 1. The dipole is in the center of the box with charge
density A = 1.

is, a dipole in free space. The potential for the free dipole is

&(r) = A {njr—ry|—Injr—r_[} (8.44)

2reg

If the observation point, r, is far from the dipole, that is, if |r — x| 3 |d|, then

A [d]

g
2weg |r — rel

B(r)

cos# {8.45)

where # 1s the angle between d and r —r..

The potential for the dipole-in-a-box computed by the Galerkin method is
shown in Figure 8.6. The potential is evaluated |using Equation (8.42)] on a
ring of points equidistant [rom the center of the dipole. The potential at this
radius is plotted along with the potential of the free dipole, (8.44). The width
of the box is L = 1.0; the dipole parameters are A = 1, r. = (L/2)% + (L/2)¥y,
and d = (L/10)¥. Notice in Figurc 8.6 the strong infiuence of the boundary
when |r —r¢| = 0.4L.

Galerkin Method and Separation of Variables

At this point the reador may {incorrectly) have the impression that the Galerkin
method is nothing more than using the separation of variables solution retaining
only a finite nurnber of terms. For our simple example with the Poisson equation,
it turng out that way. However, looking ahead to more complicated partial
differential equations, we sce that the Galerkin method is more versatile. It
gives us great latitude as to our choice of trial functions. With separation of
variables. we mist first find the general solution of a PDE and then build our

262 CHAPTER 8. PDES HI: RELAXATION & SPECTRAL METHODS

particular solution by imposing boundary conditions on these functions. With
Galerkin, the trial functions do not have to be the eigenfunctions of the PDE
we are solving. Rather, any convenient set of functions that is orthogonal and
that matches the boundary conditions may be used.

A more appropriate way of viewing the Galerkin method is as being a spectral
transform approach. In our example we represent our solution by its Fourier
series, which, due to the boundary conditions, is a cosine series. The coefficients
of this series are obtained after we compute the Fourier coefficients of the charge
density. This line of thought leads us naturally to our next numerical scheme.

Multiple Fourier Transform (MFT) Method

One advantage of the Galerkin method is that does not usc a spatial grid,
allowing us to evaluate the potential at only selected poinis. Contrast this with
relaxation methods that require us to compute the potential everywhere inside
the system. On the other hand, if we do need to map the potential over the entire
system, the Galerkin method, as constructed above, is relatively inefficient.

To understand why the Galerkin method is slow, consider the following prob-
lem. Suppose that we partition the space with an N x N grid with grid points at
locations (w;, y;). Define the discretized potential, ®;; = ®(z;,y;), and charge
density, p; ; = p(z;, y;). A simple way of computing the integrals in Equation
{8.41) is to estimate them as sums,

4 1 1
fn = e M= 1P = 12 (14 3m1){ + 0n)

N {m —)z, (n—Limy;] .o
X Z Z Pij COS 7 oS 7 h (8.46)
i=1 =1

for m,n =1,...,M, the grid spacing between points is h = L/N, Typicaily,
M &~ N, so computing all the coefficients, using (8.46), requires a calculation
effort of O(N?M?) = O(N*). The computation of the potential at all N2
grid points using (8.42) also requires an effort of O(N*). In comparison, for
simultaneous overrelaxation (SOR) the computation time is O(N?),

If you think about it, in (8.46) we are taking the two-dimensional {cosine)
Fourier transform of the density. After getiing the coefficients, a, ;, we take the
inverse transform to obtain the potential. Yet we know that the fast Fourier
transform (FFT) algorithm can do thig type of operation very efficiently (see
Section 5.2). Although the transform is now two-dimensional, it does not sig-
nificantly complicate the problem. The discrete Fourfer transform is a linear
operation, so we may apply it separately in each direction {ie., it doesn’t mat-
ter which sum we do first). The FFT algorithm may be adapted to perform
sine or cosine iransforms. As we have seen, the cosine transform is useful for
Neumann boundary conditions.. The sine transform is used with the Dirichlet
boundary condition & = 0. For simplicity, we’ll change the problem and use
periodic boundary conditions allowing us to use the standard FFT routines.

82, *SPECTRAL METHODS 263

Discretized on an N x N sqguare grid, the Poisson equation, (8.28), may be
written as

1 1 1
5z 1Ry + Riony = 2Righ b s AP+ Qujon - 2%} = — P (8.47)

We define the two-dimensional Fourier transforms of the potential and the
charge density as

N-1N-1
Foiinrr = Z Z Bioq jpre” T (8.48)
=0 j=0
N—lN-1
Ryyint1 = Z Z Pit1jre eI (8.49)
=0 F=0
where a = 27+/—1/N. The inverse transforms are

No1N-]
Bip1 41 = Ng Z Z Fnit,ns1€¥medn (8.50)

m=0 n=0
N—-1N-—-1

Pivij+1 = ,\Q 33 By apretime® (8.51)

m=0 n=0

Notice that we have as many Fourier coefficients as grid points, that is, M = NV
Transforming (8.47),

{e—a(m—-l) +ea‘(’mfl) + efa(nfl) 4 Ba{n—].) _ 4} Fm,n _ 7}h2Rmn (852)
-0
Solving for the matrix F, we have
Fm,n - Pm,anm, (853)

where

- hQ/ZEU
cos[2x(m — 1) /N] + cos[2n(n — 1) /N] - 2
Taking the inverse transform of F gives us the potential. This algorithm is
called the multiple Fourier transform (MFT} method.

The program fftpoi, which uses the MFT method to sclve the dipole-in-a-
box problem with periodic boundary conditions, is outlined in Table 8.2, The
functions ££t2 and iff£t2 are used to compute the two-dimensional transforms.
In MATLAB, these are built-in functions; the C++ versions are outlined in
Table 8.3.

The potential for a dipole, as computed by fftpoi, is shown in Figure 8.7,
Given the potential, the electric field is E = —V®. In MATLAB, the gradient
function is used to take the gradient of the potential and the quiver function
produces a vector arrow plot given £, and E,, the - and y-components of the
electric field. For better visualization, we normalize E so that its magnitude is
unity; the guiver plot shows the direction of the field (Figure 8.8). Try plotting
the field without normalizine 1o see whv this is nsefnl.

(8.54)

Prm K

264 CHAPTER 8. PDES JII: RELAXATION & SPECTRAL METHODS

Table 8.2: Qutline of program fftpoi, which solves the Poisson equation using
the multiple Fourier transform method.

o Initialize parameters (L, h, etc.).
e Set up charge density p; ;.

¢ Compute matrix P using (8.54).

Clompute potential using (8.50) and (8.53).

Compute electric field as E = —V®,

Plot potential and electric field.

See pages 270 and 274 for program listings.

Table 8.3: Outline of function £££2 and ifft2, which takes the matrix A and
computes its two-dimensional Fourier transform, Z, using the FFT algorithm.
The ifft2 function is similar but applies the inverse transform.

o Inputs: Real{A), Tmag(A).
¢ Output: Real(Z), Imag(Z).
o Loop over the columns of the matrix.

— Copy out a column into a vector.
— Take FFT of the vector.

— Copy the transformed vector back into the column.
e Loop over the rows of the matrix.

— Copy out a row into a vector.
— Take FFT of the vector.

— Copy the transformed vector back into the row.

See pages 276 and 277 for program listings.

265

"THODS

ME

CTRAL

i

-'i’ "JJ.

8.2

[0.5L 0.55L] and [0.5L 0.45L];

vy =

Threc-dimensional contour plot of the potential from fftpei.

Charges of the dipole are located at [

Figure &.7:

1C/m, L=1m.

A=

E field {Direction)

P

.

i
i
Jax
AN
S

[l

!

A

»

.,
PSRRI,

*i

!

|

i

i
PR SR

i
!
i
g ‘

1

0.8

X

Figure 8.8: Electric field lines plot from fftpoi. Parameters as in Figurc 8.7.

266 CHAPTER 8 PDES IT: RELAXATION & SPECTRAL METHODS

EXERCISES

12. Derive Equation (8.45) given (8.44). [Pencil]

13. (a) Using the wethod of images, find an expression for the potential for the dipole-
in-abox problem. [Pencil] (b) Write a program to evaluate chis solution at a ring of
points centered on the dipole. Compare your results with Figure 8.6. [Computer]

14. Write a progran to compuie the potential of the dipole-in-a-box by the Galerkin
mothod nsing Equations {8.41) and (8.42}. Reproduce the results shown in Fig-
ure 8.6. [Computer]

15. (a) Write a program to compute the potential of the dipole-in-a-box by the
Galerkin method using the Dirichlet boundary conditions

dle=0,y)=Plzr=Ly)=d(z.y=0)=Plx,y=L) =0

Compare the results with those shown in Figure 8.6, [Clomputer] (b) Using the method
of images, find an expression for the potensial of a dipole-in-a-box with Dirichlet
boundary conditions. [Pencil] {¢} Write a program to evaluate the expression obtained
in (b) at a ring of points centered en the dipole. Check your answoers with those
obtained in part (a). [Computer]

16. Consider the trivial QDE df/dt = f with f(0) = 1. Supposc we construct an
approxirnate solution as

.

IROESES P

k=1

in the interval 0 < ¢ < 1. Using the Galerkin method, find the coefficients, ag, for
K = 3. Notice that our basis functions are not orthogoual but the integrals are easy
te evaluate. Compare with the Tavlor expansion af the trie sclution. [Pencil]
17. The fftpoi programn uses & rather coarse method for placing the charges on
the grid: Tt assigns a charge to the pearest grid point. Modify the program so that
it. proportionally assigns a fraction of the charge to each of the nearest four grid
points as piy = Aay/he by (see Figure 89). Compare with “he nnmodified version
by plotting ®(x = L/2,y) for a dipole with charges at (a.y) = (L/2, (1. + d}/2) and
(L/2,(L — d)/2). Take I =1 and d = 1/100. [Computer]
18. In optical diffraction, the Fraunhofer irradiance is the two-dimensional Fourier
transform of the aperture function.[96] Write a progratn, using f£t2, thas computes
the irradiance for a square aperture, as shown in Figure 8.10.[134] In MATLAB you
will probably want to use the ffeshift(X) function that swaps quadrants one and
three and quadrants two and four of matrix X {i.c., the four corners are mappec io the
center). If you are not using MATLAR, consider writing your own version of £ftshift
to shift the origin from the corner to the center. [Computer]

BEYOND THIS CHAPTER

The relaxation methods can be accelerated by using multiple grids.[66, 132] Re-
call the physical analogy between relaxation and the diffusion equatior. The
Jong waveiength modes decay the slowest; this is why it is uscful to use the first
term of the separaiion of variables solution as an initial guess. In a multigrid

BEYOND TIHS CHAPTER | 267

r\(i+1’j+1)

\

)}

A\

_
i,)

Figure 8.9: Proportional partitioning of charge density on the mesh.

600
500
400
3004 -
200.
100

60

60
40

20 20
Aperture Irradiance

Figure 8.10: Aperturc function for a square aperture and its corresponding
Fraunhofer irradiance pattern.

268 CHAPTER 8. PDES II: RELAXATION & SPECTRAL METHODS

algorithm, we starl the relaxation process on the finest grid, When the conver-
genee beging to slow, we trangfer (by averaging) to a coarser grid. When we
have converged on the coarse grid, we transfer back down (by iuterpolation) to
the lincr grid. Multigrid schemes can solve the Laplace equation on an N x N
grid in a time O(N?), as compared with O{N*) for Jacobi and O{N®) for SOR.

The Laplace (or Poisson) equation in one dimension is an ordinary differ-
ential cquation. It should be clear that the methods described in this section
may be applied to this type of boundary-value ODE problems. For a detailed
discussion, see Ascher ot al. [12].

Exercise 8.11 illustrates that the discretized Laplace equation may be writ-
ten ag a large system of linear equations. T say large because the number of
unknowns {and cquaations) equals the number of interior grid points. This ap-
proach for solving elliptic PDEs is most. useful when the grid size is small {c.g..
coarsest grid in a multigrid scheme). However, you can get a lot of extra mileage
by making usc of the sparseness of the matrix (see Section 9.3). A rapid, iterative
algoritkmn for solving such sparse matrices is the conjugate-gradient method.[59]

speetral methods have been used extensively to compute the ficlds in plasma
simmlations.[22, 72, 124] They are also used in computational fuid dynamics 48],
especially in turbulence studies [30]. Haltiner and Williams [68] discuss spectral
methods in the context of geophysical problems. Sadiku [110] and Booton [25]
review a wide variety of numerical techniques as applied to eloctromagnetic
problems.

APPENDIX A: MATLAB LISTINGS

Listing 8A.1 Program relax. Solves the Laplace equation using the Jacobi,
Gauss-3eidel, or SOR method.

% relax - Program to solve the Laplace equation using
% Jacobi, Gauss-Seidel and SOR methods on = square grid
clear all; help relax; ¥ Clear memory and print header

4* Initialize parameters (system size, grid spacing, etc.)
method = menu(’Numerical Method’,’Jacobi’,’Gauss-Seidel’,’SOR’);
N

input {'Enter number of grid points on a side: ’);
= 1; % System size (length)

L/(N-1); % Grid spacing

(0:N~1)*h; ¥ x coordinate

(0:§-1)*h; /i y coordinate

LR~
i

%% Select over-relaxation factor (SOR only)

if(method == 3)
omegalpt = 2/ (1+sin{pi/N)); ¥ Theoretical optimum
fprintf (‘Theoretical optimum cmega = %g \n’,omegalpt) ;
omega = input (’Enter desired omega: ’);

end

APPENDIX A: MATLADB LISTINGS 269

%* Set initial guess as first term in separatiomn of variables soln.
phi0 = 1; % Potential at y=L
phi = phi0 * 4/(pi#sinh(pi)) * sin(pi*x’/L)*sinh{pi*y/L);

%* Set boundary conditions

phi{l,:) = 0; phi(N,:) = 0; phi(:,1) = 0;

phi(:,N) = phiO#ones(N,1);

fprintf (‘Potential at y=L equals %g \n’,phi0);

fprintf (’Potential is zero on all other boundaries\n’);

#* Loop until desired fracticnal change per iteration is obtained

flops(0); % Reset the flops counter to zero;

newphi = phi; % Copy of the solution (used only by Jacobi)
iterMax = N°2; % Set max to avoid excessively long runs
changeDesired = le-d; % Stop when the change is given fraction

fprintf(’Desired fractional change = %g\n’,changeDesired);
for iter=1:iterMax
changeSum = 0;

if{ method == 1) %% Jacobi method %%
for i=2:(N-1) % Loop over imterior points omly
for j=2:(N-1)
newphi(i,j) = .25+(phi(i+l,j)+phi(i-1,j)+
phifi,j=1)+phi i, j+1));
changeSum = changeSum + abs(1-phi(i,j)/newphi(i,j));
end
end
phi = newphi;

elseif(method == 2) %% G-5 method %%
for i=2:(N-1) % Loop over imterior points omnly
for j=2:(N-1)
newphi = .25%(phi(i+1,j)+phi(i-1,j)+ ...
phi{i,j-1)+phii,j+1));
changeSum = changeSum + abs{1-phi(i,j)/newphi);
phi(i,j) = newphi;

end
end
else %% SOR method %%
for i=2:(N-1) % Loop over interior points omly

for j=2:(N-1)

newphi = 0.25+omega* (phi(i+l,j)+phifi-1,j)+ ...
phi(i,j-1)+phi(i,j+1)) + (1-omega)*phi(i,j);

changeSum = changeSum + abs(i-phi(i,j)/newphi);
phi(i,j) = newphi;

end

end

end

270 CHAPTER 8 PDES II: RELAXATION & SPECTRAL METHODS

%# Check if fractiomal change is small enough to halt the iteration
change (iter) = changeSum/(N-2)"2;
if(rem(iter,10} < 1)
fprintf(’After Yg iterations, fractionmal change = he\n?, ..
iter,change{iter));
end
if(change(iter) < changeDesired)
fprintf ('Desired accuracy achieved after %g iterations\n’,iter);
fprintf('Breaking out of main loop\n’);
break;
end
end

%* Plot final estimate of potential as contour and surface plots
figure(l); clf;

clevels = 0:(0.1):1; % Contour levels

cs = contour(x,y,flipud(rot90(phi)) ,clevels);

xlabel(’x’); ylabel(’y’); clabel{cs);

title(sprintf(’Potential after Yg iteratioms’,iter));

figure(2); <lf;

mesh(x,y,flipud(rotd0(phi}));

xlabel (*x’); ylabel(’y'); zlabel (?\Phi(x,y)’):

Y* Plot the fractional change versus iteration
figure(3)}; clf;

semilogy (change);

xlabel{’Iteration’); ylabel(’Fractional change’);
title{sprintf (*Nlumber of flops = %g\n’,flops));

Listing 8A.2 Program fftpei. Solves the Poisson equation using the multiple
Fourier transform method.

% f£ftpoi — Program to solve the Poisson equation using
% MFT method (periodic boundary conditions)
clear all; help fftpoi; ¥ Clear memory and print header

Y+ Initialize parameters (system size, grid spacing, etc.)
eps0 = 8.8542e-12; % Permittivity (€~2/(N m™23})
= 50; % Number of grid points on a side (square grid)
=1; % System size
L/N; % Grid spacing for periodic boundary conditiens
= {(1:N)-1/2)%h; % Coordinates of grid points
= X % Square grid
printf (’System is a square of length Yg \r’,L);

N
L
h
x
y
f

Y* Set up charge density rho{i,])
rho = zeros(N,N); % Imitialize charge density to zero
M = ipput{’Enter number of line charges: 'Y

APPENDIX B: C++ LISTINGS 271

for i=1:1
fprintf(’\n For charge #ig \n’,i);
r = input(’Enter position [x y]: ’);
ii=round(r(1}/h + 1/2); % Place charge at nearest
jj=round(r(2)/h + 1/2}; ¥ grid point
q = input(’Enter charge density: ’);
rho(ii,jj) = rhe(ii,jj) + gq/h"2;

end

%* Compute matrix P
cx = cos{(24pi/W*(0:N-1));
€y = cX;
numerator = -h"2/(2%eps0);
tinyNumber = le-20; % Avoids division by zero
for i=1:N
for j=1:N
P{i,j) = numerator/(cx(i)+cy(j)-2+tinyNumber) ;
end
end

%* Compute potential using MFT method

rhoT = £ft2(rho); % Tramsform rho inte wavenumber domain
phiT = rhoT .* P; % Computing phi in the wavenumber domain
phi = iff+2(phiT); % Inv. transf. phi into the ccord. domain
phi = real(phi); % Clean up imaginary part due to round-off
%* Compute electric field as E = - grad phi

[Ex Ey] = gradient(flipud{rot30(phi)));

magnitude = sqrt(Ex.”2 + Ey. 2)};

Ex = -Ex ./ magnitude; % Normalize components so
Ey = -Ey ./ magnitude; % vectors have equal length

%* Plot potential and electric field

figure(1); clf;

contour3(x,y,flipud(rot90{phi,1}),35};

xlabel(’x?); ylabel(’y’}; zlabel (*\Phi(x,y}’);
figure(2); clf;

quiver(x,y,Ex,Ey) % Plot E field with vectors
title(P’E field (Direction)’); xlabel{’x’); ylabel(’'y’);
axis(’square’); axis([0 L © LI1);

APPENDIX B: C++4 LISTINGS

Listing 8B.1 Program relax. Solves Laplace’s equation using the Jacobi, Gauss-
Seidel, or SOR method.

// relax - Program to solve the Laplace equation using

272 CHAPTER 8. PDES 1I: RELAXATION & SPECTRAL METHODS

// Jacobi, Gauss-Seidel and SOR methods on a square grid
#include "NumMeth.h"

void main(} {
//* Initialize parameters (system size, grid spacing, etc.)

cout << "Select a numerical method: 1) Jacobi, 2) Gauss-Seidel, 3) SOR : "
int method; cin >> method;

cout << "Enter number of grid points on a side: "; int N; cin >> N;
double L = 1; // System size (length}

double h = L/(lN-13; /! Grid spacing

Matrix =(¥), y();

int i,j;

for(i=1; i<=N; i++)
£{(i) = (i-1)*h; // x coordinate
¥ =% // y coordinate

//# Select over-relaxation factor (SOR only)

double omega, omegalpt, pi = 3.14156926564;

if (method == 3 > {
omegaOpt = 2.0/{1.0+sin(pi/N}); // Theoretical optimum
cout << "Theoretical optimum omega = " << omegalpt << endl;
cout << "Enter desired omega: "; ¢in >> omega;

}

//* Set initial guess as first term in separation of variables soln.
double phi0 = 1; // Potential at y=L
double coeff = phi® * 4/(pixsinh(pi));
Matrix phi(N,m);
for{ i=1; i<=N; i++)
for(j=1; j<=N; j++)
phi{i,j) = coeff * sin(pi*x(i)/L) * sinh{pi*y{j)/L);

//* Set boundary conditions
for(i=1; i<=N; i++) {
phi(i,1) = 0.0;
phi(i,N} = phiC;
}
for(j=1; j<=¥; j++) {
phi(l,j) = 0.0;
phill,j) = 0.0;
}
cout << "Potential at y=L equals " << phi0 << endl;
cout << "Potential is zerc on all other boundaries" << endl;

//#% Loop until desired fracticnal change per iteration iz obtained

Matrix newphi{N,M}; // Copy of the solution (used omnly by Jacobi)
newphi = phi;
double phiTemp; // Temporary value used by GS and SOR

int iterMax = N=*I; // Set max to avoid excessively long runs

APPENDIN B: C+4 LISTINGS

n
-1
L

double changeDesired = le-4; // Stop when the change is given fraction

cont << "Desired fractional change = " << changeDesired << endl;
Matrix change{iterMax); // Record fractional change at each iteration
int iter, nlter; // 1terations counters

for{ iter=1; iter<=iterMax; iter++)} {

double changeSum = 0;
if(methed == 1) { 1/ Jacobl methed ////
for(i=2; i<=(N-1); i++ } // Loop over interior points only
for(j=2; j<=(N-1); j++ 3 {
newphi{i,j} = 0.25%(phi(i+l,j)+phi{i-1,ji+
phili,j-1)+phi(i.j+1));
changeSum += fabs (1-phi(i,j}/newphi(i,j?);
}
phi = newphi; // Copy new values into phi
}
else if{ method == 2) //// G-3 method ////
for(i=2; i<=(N-1}; i++)} // Loop over interior points only
for(j=2; j<=WM-1); j++) {
phiTemp = 0.26% (phi (i+1,j)+phi(i~1,j)+
phili,j=1)+phi(i,j+1));
changeSum += fabs{1-phi(i,j)/phiTemp);
phi(i,j) = phiTemp;
}
else //// SOR method ////
for({ i=2; i<=(N-1); it++) // Loop over interior points only
for(j=2; j<=(N-1); j++) {
phiTemp = 0.25%omega* (phi{(i+l,j)+phi(i-1,j)+
phi(i,j-1)+phi{i,j+13) + (l-omega)*phi(i,j);
changeSum += fabs(1-phi(i,j)/phiTemp);
phi(i,j) = phiTemp;
}

//* Check if fractional change is small enough tc halt the iteration
change(iter) = changeSum/((N-2)*{(N-2));
if ({iter¥10) < 1)
cout << "After " << iter << " iterations, fractional change = "
<< change (iter) << endl;
if (change{iter) < changeDesired) {
cout << "Desired accuracy achieved after " << iter
<< " iterations" << endl;
cout << "Breaking out of main loop" << endl;
nlter = iter;
break; // Break cut of the main loop
}
}

//¥ Print ocut the plotting variables: x, y, phi, change
ofstream x0ut("x.txt"), yOut("y.txt"),
phiDut ("phi.txt"), changeOut{"change.txt");

274 CHAPTER 8. PDES 1I: RELAXATION & SPECTRAL METHODS

for(i=1; i<=N; i++ } {
xdut << x(i) << endl;
yO0ut << y(i) << endl;
for(j=1; j<H; j++)
philut << phi{i,j) << ", ";
philut << phi(i,N} << endl;
h
for({ i=1; i<=nlter; i++)
changelut << change(i) << endl;
¥
/e*++kx To plot in MATLAB; use the script below skioksskss s kkkkkkk
load x.txt; load y.txt; load phi.txt; load change.txt;
#* Plot final estimate of potential as contour and surface plots
figure(1); clf;
cLevels = ¢:(0.1):1; % Contour levels
cs = contour(x,y,flipud(rct90(phi)),cLevels);
xlabel(’z’}; ylabel(’y’); clabel{cs);
figure(2); clf;
mesh(x,y,flipud{rot90(phi)));
xlabel(’x’); ylabel(’y’); zlabel(’\Phi(xz,y)?);
%4* Plot the fractional change versus iteration
figure (3}; cl1f;
semilogy (change) ;
xlabel(’Tteration’); ylabel(’Fractional change’);
FARA AR A AL S RAARAK R R A AR Ok o SO R AOR o ok ok ok ook ket ok

Listing 8B.2 Program fZtpoi. Solves the Poisson equation using the multiple
Fourier transform method. Uses ££t2 (Listing 8B.4) and ifft2 (Listiug 8B.5).

// fftpoi - Program to solve the Poisson equation using
// WFT method (periodic boundary conditions)
#include "NumMeth.h"

void fft2(Matrix& Reald, Matriz& Imagh);
void ifft2(Matrix& Reald, Matrixk Imagh);

void main() {

//*% Initialize parameters (system size, grid spacing, etc.)
double eps0 = 8.8542e-12; // Permittivity (C"2/(N m~2))
int N = 64; // Number of grid points on a side (square grid)
double L = i; // System size
double h = L/N; // Grid spacing for periodic boundary conditions
Matriz x(N}, y(;
int i,3j;
for(i=1; i<=N; i++)
x(i} = (i-0.8)*h; // Coordinates of grid points
¥ = x; // Bquare grid
cout << "System is a square of length " << L << endl;

APPENDIX B: C++ LISTINGS

//* Set up charge density rho(i,j)
Matrix rho(N,N);
rho.set{0.0); // Initialize charge density to zero
cout << "Enter number of lime charges: "; int M; cin >> M;
for(i=1; i<=M; i++) {

cout << "For charge #" << i << endl;

cout << "Enter x coordinate: "; deuble xc; cin >> xc;
cout << "Enter y coordinate: "; double yc; cin >> yc;
int ii = (iat) (xe/h) + 1; /{ Place charge at nearest
int jj = (int) (ye/h) + L; /{ grid peint

cout << "Enter charge demsity: "; double gq; cin >> q;
rtho(ii,jj) += q/(h*h);

//* Compute matrix P
const double pi = 3.141592654;
Matrizx cx(N), cy(N);
for(i=1; i<=N; i++)
cx(i} = cos((2#pi/N)*(i-1));
¢y = ¢x;
Matriz RealP(N,N), ImagP(¥,N);
double numerator = -h#h/(2+eps));
double tinyNumber = 1e-20; // Avoids division by zero
for(i=1; i<=N; i++)
for(j=1; j<=N; j++)
RealP{i,j} = numerator/{(cx(i)+cy(j)-2+tinyNumber);
ImagP.set{(0.0);

//* Compute potential using MFT method
Matrix RealR(N,N), ImagR{N,N), RealF(N,¥), ImagF(VN,N};
for{ i=1; i<=N; i++)
for{ j=1; j<=N; j++) {
RealR(i,j) = rho(i,j);
Imagh(i,j) = 0.0; // Copy rho into R for input to fft2
}
fft2(RealR, ImagR) ; // Transform rho into wavenumber domain
// Compute phi in the wavenumber domain
for(i=1; i<=N; i++)
for(j=1; j<=N; j++) {
RealF(i,j) = RealR({i,j)*RealP(i,i) - ImagR(i,j)*ImagP(i,j);
ImagF(i, j) = RealR{i,j)*ImagP(i,j) + ImagR(i,j)*RealP(i,j);
}
Matrix phi(W,N);
ifft2{(RealF,ImagF) ; // Inv. transf. phi into the coord. domain
for(i=1; i<=N; i++ }
for(j=1; j<=N; j++)
phi(i,j) = RealF(i,j);

//* Print out the plotting variables: x, y, phi

276 CHAPTER, 8. PDES II: RELAXATION & SPECTRAL METHODS

ofstream x0Dut ("x.txt"), yOut(y.txt"), philut("phi.txt");
for(i=1; i<=N; i++) {
x0ut << x(i)} << endl;
yOut << y(i) << endl;
for{ j=1; j<N; j++ 3
phiDut << phi(i,j) << ", "3
phiDut << phi{i,N) << endl;
}
¥
/#%xxx To plot in MATLAB; use the script below #kkdkdckrkkhpsddrrirk
load x.txt; load y.txt; load phi.txt;
Y%+ Compute elactric field as E = - grad phi
[Ex Eyl = gradient(flipud(rotQO(phi)));
magnitude = sqrt(Ex.”2 + Ey."2);
Ex = -Ex ./ magnitude; Y% Normalize components so
Ey = -Ey ./ magnitude; % vectors have equal length
%* Plot potential and electric field
figure(1); clf;
contour3(x,y,f1ipud(rot90(phi, 1) ,35);
xlabel(’x’); ylabel{’y’); zlabel(’\Phi(x,y)’};
figure(2); clf;
quiver(x,y,Ex,Ey} % Plot E field with vectors
title(’E field (Directiom)’); xlabel(’x’}; ylabel(’y’);
axis(’square’}; axis([0 10 11};
P ———— TR T TP LA L AL LR EL L LAl

Listing 8B.3 Function £f£2. Computes two-dimensional discrete Fourier trans-
form. Uses fft {Listing 5B.7).

#include "NumMeth.h"
void fft(Matrixk Reald, Matrix& Imagh);
void £ft2(Matrixk Reald, Matrizd Imagh) {

// Routine to compute twoe dimensional Fourier transform
// using FFT algorithm

// Inputs
1/ Reald, Imagh Real and imaginary parts of date array
// Dutputs
// Reald, Imagh Real and imaginary parts of transform

int i, j, N = Realh.nRou();
Matrix RealT(W), ImagT(K); // Temporary work vector

//% Loop cver the columms of the matrix
for(j=1; j<=W; j++) {
//* Copy out a column into a vector
for(i=1; i<=N; i++ J {
RealT{i) = Realh(i,j);

APPENDIN B: C4+ LISTINGS

bo

ImagT{i} = Imagh(i,j};
//* Take FFT of the vector
fft{RealT, Imagl) ;
//* Copy the transformed vector back into the column
for(i=1; i<=N; i++) {
Reall(i, j) RealT(i);
Tmagh(i,j) = ImagT(i);
I

//* Loop over the rows of the matrix
for(i=1; i<=N; i++) {
//* Copy cut a row into a vector
for(j=1; j<=N; j++) {
RealT(j) = Reald(i,j);
ImagT{j) = Imagh{i,j);
}
//* Take FFT of the vector
fft(RealT, ImagT) ;
//* Copy the transformed vector back into the row
for(j=1; j<=N; j++) {
Realh(i,j) = RealT(j);
Imagh{i,j) = ImagT(j);
3
}

I

Listing 8B.4 Function if£t2. Computes two-dimensional inverse discrete Fouricr
transform. Uses £t (Listing 3B.7).

#include "NumMeth.h"
void fft(Matrix& Reald, Matrix& Imagh);
void ifft2{ Matrixzf Reald, Matrixk Imagh) {

// Routine to compute inverse two dimensional Fourier transform
// using FFT algorithm

// Inputs

I RealhA, Imagh Real and imaginary parts of tramsform array
// Dutputs

I Reald, Imagh Real and imaginary parts of data array

int i, j, ¥ = RealA.nRow();
Matrix RealT{N), ImagT(N); // Temporary work vector

//#* Loop over the columns of the matrix
for{ j=1; j<=N; j++) {
//* Copy out a column into a vector and take its complex conjugate

278 CHAPTER 8. PDES IT: RELAXATION & SPECTRAL MIETHODS

for(i=1; i<=N; i++) {
RealT (i)} = Realh(i,j);
ImagT (i} = -1.0*Imagh{i,j);

}
//* Take FFT of the vector
fft(Reall, Imagl; ;
//* Copy the transformed vector back into the column
for(i=1; i<=N; i++) {
RealA(:,j) = RealT(i);
Imagh{i,j) = ImagT(i);
}
+

//* Loop over the rows of the matrix
double invN2 = 1.0/ (I¥+N);
for!{ i=1; i<=N; i++) {
//* Copy out a row into a vector and take its complex conjugate
for(j=1; j<=N; j++) {
RealT(j) RealA(di,j);
ImagT (j) Imagh (i, j);

}

//* Take FFT of the vector

fft{RealT,ImagT);

//* Copy the transformed vector back, taking its complex conjugate

// eand applying the 1/N normalization

for(ji=1; j<=N; j++) {
Reald(i,j) = RealT{(j)*invN2;
Imagh{i,j) = -1.0%ImagT{j)*invN2;

+

}
b

Chapter 9

Partial Differential
Equations I'V: Stability and
Implicit Methods

Chapters 6 and 7 covered various marching methods for solving partial differen-
tial equations. Empirically, we discovered that some methods were numerically
unstable when the time step was too large. Section 9.1 presents two techniques
for testing numerical stability. Section 9.2 discusses some algorithms that are
unconditionally stable but that require inverting large matrices. Section 9.3
covers some specialized routines to handle these matrices.

9.1 STABILITY ANALYSIS

Von Neumann Stability

Consider the advect program we used in Section 7.1 to solve the advection
equation. Using the FTCS scheme, the method is numerically unstable, as
shown in Figure 9.1. The solution looks like a standing wave that rapidly grows
in amplitude. In fact, the amplitude of the solution at the last time step is many
orders of magnitude larger than the initial condition; this is why the mesh plot
looks flat for the earlier times. We get a very similar picture if we employ a
large time step (7 > h/|c|) when solving the advection equation using any of
the other methods in Chapter 7.
From the above observations, it is reasonable to use a trial solution that has
the form
ale, 1) = A(t)e*” (9.1)

where § = /=1. This solution is a wave with wave number & and (complex)
amplitude A(¢}. In discretized form, we have

a(zj,tn) = aj = Angikih (9.2)

280 CHAPTER 9. PDESIV: STABILITY & IMPLICIT METH()DS

.
i
i
-
i
fi
il
i
i ,jn'fff
it
fill
il
i
i

)] e, Semaeoeeee oo
P e P A
T e e e e
=} P e ey 10
£ 0 Lo TETE “'._""'" e SRR
[SR o AT T e P S e
=i oA e A S e
£ S E e PR R S
f

05 0

Position

Figure 9.1: Amplitude versus and ¢. Mesh plot of the solution of the advection
equation obtained by the advect program using the FTCS method with N = 20
mesh points and time step 7 = 0.05. The number of iteration steps was set to
nstep= 10L/(cr), so that the wave circles the system 10 times.

where z; = jh and £, = (n — 1)r. Advancing the solution by one step gives

a?+l — An+1e'ikjh _ é-Aneikjh (93)
The coefficient £ = A" /A" is called the amplification factor. The strategy
of the analysis is to insert the trial solution, {9.2), into the numerical scheme
and solve for the amplification factor in terms of the grid spacing, A, and the
time step, 7. A scheme is unstable il the magnitude of the amplification factor
exceeds unity; that is, if |£| > 1. This approach is called von Neumann stability
analysis,

Stability of FTCS for the Advection Equation

To illustrate von Neumann analysis, we'll work through some examples. Recall
frorn Section 7.1 that for the advection equation, the FTCS scheme may be
written as or

a;b+1 =dj - ﬁ(a?“ —a; q) (9.4)
where a is the wave amplitude and ¢ is the wave speed. Inserting our trial
solution, (9.2) and (9.3), we get

i

EAnez'kjh = Angikih %(Aneik(j+l)h _ Aneik(jfl)h)
AT pikih (1 B %(eikh _ e—-ikh)) (9.5)

Dividing both sides by A™e**% we find that the amplification factor is

£ = 1- %(eikh _ g ikh)

7

O STABILITY ANALYSIS 251

i sin{kh) {9.6)

= 1—qi—:=
h

The magnitude of the amplification factor is

€| = \/1 + (%)Zsinz (kh) (9.7)

In gencral, the magnitude of £ is greater than cne. The solution is unstabie
since its amplitnde grows with each time step.

Most of the modes are numerically unstable, but some grow faster than
others. We find the fastest-growing mode, kmax, by solving sin® (kmaxh) = 1.
Since k = 2n/A, where A is the wavelength, then Apax = 4. Compare this
result with the mesh plot in Figure 9.1.

Stability of the Lax Scheme

As a second example, let’s apply the von Neumann analysis to the Lax method
for solving the advection equation. Recall that the Lax scheme may be written
as)
| er ,
a;—l+ = ~2~(a;}+1 taji_y)— Z—h(a;‘ﬂ —aj_) (9.8)

As before, we insert the trial solution, af = A™e™ and, a,j;‘*l = La}, to get

gAﬂeikjh _ E(Ane'ik(jJrl)h + J_lwe-ik(jfl)h) o %(Anet’k(j+l)h - Aneék(j—ljh-)
2 2
. Amgikih %(ez’kh e ibhy _ ;_;(Eikh iRy (9.9)
:

The amplification factor is thus

£ = cosikh) — z% sin(kh) {9.10)
and its magnitude is
. 2 .

€| = \/ cos?(kh) + (%) sin® (kh) (9.11)

Thus, |£] < 1 if and only if |er/h| < 1, which is the Courant-Iriedrichs-Lewy
(CFL) stability criterion discussed in Chapter 7.

Matrix Stability

The von Neumann approach is not the only way to investigate the stability of
a scheme but, being the easiest to do, it is the most popular. One of its short-
comings is that it neglects the possible influence of the boundary conditions. To
include their effect, we introduce metriz stability analysis.[116]

282 CHAPTER 9. ' PDES 1V: STABILITY & IMPLICIT METHODS

For linear problems, most schemes may be written in the form, x" = Ax™,
where x™ is the solution at time t = (n—1)7. Recall from Section 6.2 the FTCS-
scheme for solving the thermal diffusion equaticn,

T
T;H =17+ E(T;‘H + 17, —2T7) (9.12)
where T is the temperature, £, = h%/2x, and & is the diffusion coefficient. For

Dirichlet boundary conditions {i.e., values of T7* and T3 fixed), we may write
the FTCS scheme as

Tn+] — n _LDTn
T+ 5
- (1 + iD) T" = AT" (9.13)
2,
where
'T{*" (00 0 0 - 0]
T 1 -2 1 0 -0
e 0o 1 -2 1 0
™= |qr{; D=|0o 0 1 -2 0 (9.14)
L TR] |0 0 ¢ 0 - 0]

and T is the identity matrix (I;; = 8;;). Notice that the matrix D has the follow-
ing siructure: Because of the Dirichlet boundary conditions the elements of the
first and last rows are all zero, gnaranteeing that the values of the endpoints (Th
and T} remain unchanged. All the other rows have a —2 on the main diagonal
and a 1 at the first off-diagonal elements.
To determine the stability of T = AT"™, we consider the eigenvalue prob-
lem for the matrix A,
Avk = /\ka (9.15)

where v}, is the eigenvector corresponding to the eigenvalue Ap. We label the
eigenvalues in decreasing order, so [A1] > [Aa] > ... > [An]|. Assuming that the
eigenvectors form a complete basis, we may write our initial condition as

N
']:‘1 = Z Ckvk (9.16)
k=1
From Equation (9.13},
Tl = AT" = A(AT"}) = AT (9.17)

In other words, the solution at time step n + 1 may be obtained by repeatedly
multiplying the initial condition n times by the matrix A. Using our decompo-
sition, (9.16),

N N
T = Z e AV = Z CrlAg) VR {9.18)
L—1 k=1

DA STABHEEY ANALYSIS 2843

16° — ‘ ——
10°)
[]
3 *
E
o
w10+ :
=
m -
a
m
'100' * * Foo— e — -
10_1 B B S— P
107 107 1¢” 10" 10°
Time step

Figure 9.2: Spectral radiug p{A) as a function of 7 for N = 61 grid points sce
equation (9.13)]. Notice that p{(A)=1for 7 <#, = 1.

Clearly, il |Ag| > 1 for any eigenvalue, then |T"| — oo as n — oo.

The spectral radius of the matrix A is defined as p(A) = |Ay|, that is, as
the magnitude of the largest cigenvalue. A scheme is maltrix stable if the spec-
tral radius s lesg than or equal to unity. There are many powcerful theorems
that allow us to set bounds on the spectral radius (e.g., the Gerschporin circle

theorem [93]).

Alternatively, we way obtain the spectral radius by numerically computing
the eigenvalues. In MATLAB the cigenvalues of a matrix may be obtained using
the built-in eig function. With this function, the speciral radius is p{A} =
nmax(abs (eig(A))). Figure 9.2 shows the spectral radius of the matrix A used
by the FTCS scheme in solving the diffusion equation with Dirichlet boundary
conditions [Equation (9.13)]. Notice that the spectral radius is less than onc
only if the time step is less than t,. This agrees with our empirical findings
from Section 7.1,

Power Method

The ideas developed above for matrix stability may be turned around to con-
struct an algorithm for computing cigenvalues and eigenvectors. Consider the
gencral cigenvalue probilemn

I\/I\’k = /\kvk (919)

284 CHAP'PER 9. PDES IV: STABILETY & IMPLICTT METHODS

where vy is the (normalized) cigenvector corresponding o the (nondegeneraie)
cigenvalue Ay, Take any vector x; write it asg*

N

X = Z CLVE (9.20)

k=1

We assume that x is not orthogonal to any of the cigenveetors, so e 7 0.

The power method [3] 18 a simple technique for computing Ay, the largest
cigenvalue, and vy, its corresponding eigenvector. First, we repeatedly multiply
the vector x by the matrix M. Deing so n times, we have

Mix =M™ [> cpvi | =Y erdivg (9.21)
k k

Since the A’s are ordered by decrcasing magnitude,
M"x 3 ¢1 AT vy (9.22)

as n — n0. The eigenvectors are normalized, that is,
first cigenvector

vi| =1, 80 we obtlain the

M"x
C|Mnx|
as n — oc. To use the power method we iteratively compute M%x until the
value of v; has converged to the desired accuracy. Given vy, use {9.19) to get
A1.

Using MATLAB interactively, here's a simple example of the power method
with n = 10:

Vi

(9.23)

>>M=[2 -1 0;-1 2 -1;0 -1 2];
>»x=[1; 1; 11;

>>y=M"10%*x;

>>v=v/norm(v)

v =
0.5000
-0.7071
0. 5000

>>my = Mkv,
>>lambda = mv(1)/v (1)

lambda =

3.4142

“Here we assume that the eigenvectors form a complete basis. There are exceptional
matrices {e.g., Jordan matrices] for which this assumption is not valid. The power method
still works, but the derivation is longer.

DA STABILITY ANALYSIS 285

This eigenvalue problem was considered in Section 5.3: the eigenvalues and

cigenvectors are given by {5.61) and (5.63). The power method correctly gives

the eigenvector a, corres ling to the largest eigenvalue w . = 2442

HE Blpenvector ay corresponding to the largest cigenvaly W o= V2.
There are several ways to modify the power method to accelerate its con-

vergence 1o the largest eigenvalue. The method may also be exlendad to obtain

the next largest eigenvalue by forming the new mairix

AL o
T.l {(vivi) (9.24)
v L V1

M=M -

where v is the franspose of vi. This matrix has the same eigenvalues and
cigenvectors as M, except that, A1 s replaced by zero. This method is called
deflution.

The power method is useful if we reqaire only the frst fow largest eigenvalues,
It we need to compute all the eigeuvalues, then there are more efficient methods.
Finally, you could use the power method to compuie the spectral radius and
determine the matrix stability of a PDE scheme. However, you would essentially
be running the scheme and secing if the solution diverged as t — oo,

EXERCISES

1. Apply the von Nenmann stability analysis 10 the FTOS scheme for the diffusion
equation. Confirm that the method is stabie only if 7 < 4%/ 2. [Pencil]
2. Another method for solving the advection equation is the Lax-Wendroff scheme,

wtl _ on €T [1 o Cr o, , o n
G == R) - S v -)

Apply the von Neumann stability analysis Lo this scheme, Confirmn that the method
is stable only if 7 < h/|e| (i.e., the CFL criterion}. [Pencil
3. Another method for solving the advection equation is the eap-frog scherme

=1l n-n oT 0 T v

i —Q.J ~- ‘h—(ﬂ.‘j%_] _ﬂj By
Apply the von Nenmann stability analysts to this scheme: notice that vou will have a
quadratic equation for £, Confirm that the method is stable only if < hflel (ie., the
CFL criterion). [Pencil]
4. The Richardson method for solving the diffusion equation uses centered derivatives
in both space and time:

-1 w—1 4 e
I;h_l_— rzin . 17;3.1 + l—-i”

a7 h2

Apply the von Neumann stability analysis to this scheme; notice that you will have 2
quadratic cquation for £. Show that this scheme Is unconditionally unstable, [Pencil]
5. The two-dimensional diffusion equation for temperature (Fourier ecquation) may
be solved using the FTCS schome as,

sT

I Tt ¥ T '.’l: I skl Sy e
Tzn,_H =1"+ I_‘—Q‘(EH»LJ + Tén—i.j =277 + %(Ti?.lﬁw + A5 =270

256 CHAPTER 9. PDES IV: STABILITY & IMPLICIT METHODS

where Ry, by are the o and y grid spacings, respectively. Apply the von Neumann sta-
bility analysis to this schewe and show that it is stable if 7 < & (h;2 + hy_?}f1 . [Pen-
cil]

6. Write a function that computes the largest cigenvalue of a matrix using the power
method. Establish a suitable criterion for when to stop the iteration provess. Use this
function to evaluate the spectral radius of the matrix A defined in Equation (9.13)
and reproduce Fignre 9.2,

7. A stricter condition for matrix stability is that the norm of A. |{A[], is less than
or cqual to unity. This condition is stronger since p(A) <|JA]|. There are a variery
of ways of defining the norm; two of the easicst to corupute ave the L-norm,

i=1

and the oc-norm,

N
oo = 3 Ay
Al = max ¢ |Aql
i=1

Evaluate ||A[|: and {JA||o where A is given by Equation {0.13). Compare your resuits
with Pigure 9.2. [Pencil]

8 The FTCS scheme for the advection equation with periodic boundary conditions
mway he written as

an-H _ (I - ;—:B) an _ Aan
13

where
at] t 0 - 0 =1
ah -1 0 1 - 0 0
At = 0y . B = o -1 0 - 0 0
' L1 0 0o --- =1 0

Demonstrate that this scheme is unconditionally unstable by finding the spectral radius
of A using: (a) the power method 'Computer]; {b) MATLAIYs eig eigenvalae function
[MATLAB]; (¢) ||A4|]1 and [[A}|cc 2 estimates for the spectral radius (see Exercise 9.7)
[Pencil].
9. The Lax scheme for the advection equation with periodic boundary conditions may
be writien as)

oo (Lo T)a - Ae

h
where a anéd B are defined in the previous exercize and
. 01 0 01
r 01 - 0 0
c—| 0 10 o0

100 --- 1 0
Demonstrate thay the matrix stability for the Lax scheme is given by the CFL con-
dition. Specifically, find the spectral radius of A nsing: {a) the power method [Com-
puter]; (b) MATLAB’s eig eigenvalue function [MATLABR]: (¢) [|A]]. and lAlloc a8
estimates for the spectral radius {see Excrcise 9.7) [Peneil].

9.2. IMPLICIT SCHEMES 287
9.2 IMPLICIT SCHEMES

Schrodinger Equation

As a physicist you need no introduction to the Schridinger equation. For a
particle of mass m in one dimension, it may be written as

ih%yﬁ(m, t = ——Ff——.@b + V{2 (9.25)

where 3(z,) is the wave function and V() is the potential. In operator nota-
tion, we may write the Schridinger equation as

‘iﬁ%—?f =Hy (9.26)
where H is the Hamiltonian operatar,
I
The formal solution of {9.25) is
Wz, t) = exp {;?—Et} iz, 0) ' (9.28)

As before, we discretize space and time in increments of i and 7, respectively;
Planck’s constant always appears as A, so there should be no confugion with the
grid spacing h. In our notation, the discretized wave function is vy = (z;, ta).
The FTCS scheme discretizes the Schridinger equation as

N A TR
T 2m k2

— 2gn
Vi, Vi (9.29)

where V; = V(x;).
Since the Hamiltonian is a linear operator, we may write the previous equa-
tion as o .
. U}? - w‘? _ X LTl .
ih—— = hz_:l Hjpph (9.30)
where the matrix H is the discretized form of the Hamiltonian operator

R G511, + 0516 — 285
ij = ——2»“?’;’; 1 ;12 =y V:;(S;k (9.31)
* Solving (9.30) for w?“ gives us our mmmerical scheme; in matrix notation it

may be written as

gl = (I - %H) o (9.32)

where ¥ i3 a columnn vector and I i3 the identity matrix. Equation (9.32) is the
explicit FT'CS scheme for solving the Schrédinger equation. Since e™* == 1 — z,
we can interpret (9.32) ag using first term in the Taylor expansion of (9.28) to
advance the solution by one time step.

288 CHAPTER 9. PDES IV: STABILITY & IMPLICIT METHODS

I'mplicit Schemes

The disadvantage of the FT'CS scheme is that it is numerically unstable if the
time step is toolarge. This stability problem motivates us to consider alternative
approaches. For example, suppose that we apply the Hamiltonian to the future

value of 1,
¢n+l J n

Z Hypyntt (9.33)
or .

ol = pn ”?—:pr”“- (9.34)

Collecting ¥™*! we have
(I+ %H) gl — gn (9.35)

Solving for 7+ we have

—1

gl — (I +2 H) g (9.36)

This scheme is called the implicit F TCS method; compare it with the explicit
FICS scheme, Equation (9.32). Note that since (14 ¢)™> = (1—€) as ¢ > 0,
our implicit and explicit schemes are equivalent in the limit + — 0. Since
e * =1/e* = (14 2) !, we can interpret (9.36) as an alternative way of using
the first term in the Taylor expansion of (9.28) to advance the solution by one
time step. .

Our new method requires the evaluation of a matrix inverse; this is a common
feature of implicit schemes. Of course we wouldn’t even consider doing this
extra work without some benefit. The advantage of the implicit FTCS scheme
i3 that it is uneconditionally stable, 58 may be shown using von Neumann stability
analysis. Unconditional stability is a general feature of implicit schemes.

While the fully implicit scheme is very appealing because of its stability, we
also want a method to be accurate. Just because the solution doesn’t blow up
doesn’t mean that it is correct. A more accurate scheme is the Crank-Nicolson
method. Basically it takes the average between the implicit and explicit FTCS
schemes
o5+ - vy
S

N
1 IR
h = ikZlij(wk + Pt (9.37)

In matrix form it may be written as

gt — g ﬁH(\I:” o Ly (9.38)

(1 + ;FH) gl = (1 - ;—;H) " (9.39)

or

9.2, IMPLICIT SCHEMES 289

Finally, isolating the ¥"*! term on the left-hand side we have

, -1 ;

2 ir

) A) N | I-__H)|o" 9.40}

"o o (8.40

As nasty as this looks, the Crank-Nicolson scheme is the best of the three

schemes since it is unconditionally stable and centered in both space and time.
A Péde approximation for the exponential is

N 1-z
T 14z

—Z

(9.41)

so we can interpret (9.40} as an alternative way of using this Pade approxi-
mation of the formal solution (9.28). Note that if z is imaginary, then (e¢7%)*
(asterisk denotes the complex conjugate) is the inverse of e™%, which means
that e~ is unitary. The operator exp { —£Ht} in (9.28) is unitary. Of the three
approximations we have considered for the exponential, 1 — z, 1/(1 + z), and
(1= 2)/{1 + z), only the Pdde approximation retains this unitary property.[57]

Wave Packet for a Free Particle

Before putting together a program to solve the Schridinger equation, we need
to think about what initial conditions we want to use. A reasonable initial
condition would be the wave packet for a particle localized about x4 with a
packet width of og and an average momentum py = hkpy (ko is the average wave
number}.
We will use a Gaussian wave packet; the initial wave function is
Pz, t=0) = ——1~*e’“""”"’"e*(””*’m)z/2Erg (9.42)
O'()ﬁ

Notice that this wave function is normalized so that [~ [¥{*de = 1. The
Gaussian wave packet has the special property that the uncertainty product
AxAp has its minimum theoretical value of 1/2.

In free space (i.e., V(x) = 1), the wave function evolves as

1 90 ikolempot/am) o~ (a0 —pot/m)? /207 (9.43)

Pl t) = \/T_ﬁ o

where a? = oF + iht/m. The probability density P(z,t) = | (x,1)]? is

o oo\ (z— z0 — pot/m)*
Pz, 1) = — l—(“) LAk (9.44)

aPy 0T el ol

thus, P(x,t) remaing a Gaussian in time.
By symmetry, the maximum of the Gaussian equals the expectation value
{zg) = [2Pz, t)dz. In time, it moves as {x) = zy + pot/m; that is, the

290 CHAPTER 9. PDES iV: STABILITY & IMPLICET METHODS

Initial wave function
02| —_— T — - - i

O.15L
|
0.1‘

0.08H

- ‘
* -
R Q;

*0.05.‘

0.1}

7015"

g T

Figure 9.3: Real and imaginary parts of y(x, t =0y, as computed by schro for
N =30.

packet moves with a velocity po/rn. The Gaussian spreads in time; its standard

deviation is
4 2 e
o ho#?
a{t) = oo (u) =g/l + —=53 (9.45)
\J 70 o,

The details of this caleulation are in any undergraduate quanturm mechanics
text.[111, 112

Crank-Nicolson Program for a Free Particle

The program schro solves the Schrbdinger equation using the Crank-Nicolson
scheme (see Table 9.1). The initial condition is a Gaussian packet (9.42). The
bhoundary conditions are periodic, so when the particle moves out the right side,
it reappears on the left. The interior rows of the Hamiltonian matrix are defined
according to Fquation (9.31); in this version the potential, ¥ (x}, is zero. The
first and last rows of the Hamiltonian matrix arc

B2 Eop 4+ dng — 201

qo.o- 46)
T 2 hZ (9.46)
h? 8y + On_1g — 208k
Hr —_ - e : 4
Nk 2m h? (9-47)

0 as to give periodic boundary conditions.

The wavefunction is complex and we plot the real and imaginary parts sep-
arately. For N = 30 grid points, the coarsening of the initial condition due to
the discretization, as shown in Figure 9.3, is rather noticeable. The program
computes (x. 1) up to a fime such that the pulse should circle the system once
Dol emteems e #he ;omter Ac discussed above, the width of she pulse increases

9.2, IMPLICIT SCHEMES 291

Table 9.1: Outline of program schro, which computes the evolution of a Gaus-
gian wave packet by solving the Schrddinger equation using the Crank-Nicolson
scheme.

o Initialize parameters (k, 7, etc.).

e Set up the Hamiltonian operator matrix (9.31).

» Compute the Crank-Nicolson matrix (I + 4 H) (I- £H).

o Initialize the wave function (9.42).

¢ Plot the initial wave function {rcal and imaginary parts).

o Initialize loop and plot variables.

* Loop over desired number of steps (wave packet circles system once).

— Compute new wave function using the Crank-Nicolgson scheme (9.40}.

— Periodically record values for plotting.

s Plot probability P(z, t) versus position at various times.

See pages 300 and 302 for program listings.

Probability density at various times

0.06
S \
0.057\ ’.’ \/ﬂ /\ /f \\/ \/(\
a b
0.04f, o
[=] ‘ L , o \.‘
= ‘ ."F -‘/ | /I ‘ f ". \u” "‘
2po3| 4 | Pl \ A
= A
S i / a '\ r' Vot
0oz Y / J,» Iy \ o / .
\ \‘\\ '\\ ;" "J ﬂ-" ‘ "-" \
0015\ / /\
AN\ IIYi Qxé/
BN
0
X

2o

Figure 9.4: Probability density for the particle as a function of position for
various times for N = 30. Notice that the packet moves to the right and, due
to the periodic boundary conditions, reappears from the left. The time step is

T =1.0.

292 CHAPTER 9. PDES IV: STABILITY & IMPLICIT METHODS

Initial wave function

-0.05¢-
-01r
-G.15¢
-0.2r

0%, 0 50

Figure 9.5: Real and imaginary parts of ¢(x,t = 0) as computed by schro for
N = 8&0.

with time as given by Equation (9.45). The plot of |y:(z,)| versus & for various
values of ¢ is shown in Figure 9.4. Notice that the evolution appears normal,
except that the pulse travels only about half the expected distance. If we lower
the time step, the result is not significantly affected.

However, if we increase the number of grid points to N = 80, the spatial
discretization is less prominent; the plot of the wave function is smoother (Fig-
ure 9.5). The probability density, {¢(z,t)]?, versus © for various values of ¢, is
shown in Figure 9.6. This resuli looks much better because the pulse almost
returns to the origin. If wa further increase N, we get even better results.

Our error, when N = 30, arises fromm how well we are representing the
initial condition. The spatial discretization suppresses the shorter wavelengths.
Because of this suppression of the higher wave number modes, the discretized
Gaussian pulse ¢ has a lower momentum than ¥(x,#). This error arises from
the same aliasing problem we encountered in Section 5.2. Our highest wave
number is limited by the grid spacing, so to obtain an accurate solution requires
using a finer grid. Unfortunately, we run into memory problems storing our
large matrices and the computation time for inverting an N x /N matrix rapidly
increases as N°. In the next section we reformulate the Crank-Nicolson scheme
to avoid these difficulties.

EXERCISES

10. Show that the Schrodinger equation, (9.25}, is a parabolic partial differential
equation. [Pencil]

11. Write a program that uses Equation (9.44) to compute and plot P{z,t) = [y (z,)|’
versus 2 for various values of {. Compare with the results from schro. [Computer]
12. ({a) Write a program that solves the diffusion equarion using the implicit FTCS

9.2, IMPLICIT SCHEMES 293

Probatility density at various times

50

0.06, T
f/“ \\ /~\
0.05} A a\]
/ | foy
/ L | f | f \
0.04r, _\ ’;‘ i "\ / i /-” |
v TN / | | Voo
= \ \ | i | "1
20,03 , I I I i
T FANAY ! I \". [
VAVAS AN AN
o.o2r /o /Q Py P /1
}/ / AN fﬁl v \ ! ' L /‘f
' Y ! 5 / |)
ool Lf y,/ \\{ \i’ \\ ’/()(\ 4
\ i / N/ A \\
. s
—%G 0
X

Figure 9.6: Probability density for the particle as a function of position for
various times for N = 80. Notice that the packet moves to the right and, due
to the periodic boundary conditions, reappears from the left. The time step is
T=1.0.

scheme. Run your program for the parameters given in Figures 6.7 and 6.8 and
comment on the results, {b) Repeat part (a) using the Crank Nicolson scheme. [Com-
puter]

13. ({(a) Using von Neumann stability analysis, show that the Crank-Nicolson scheme
for solving the diffusion equation is unconditionally stable. [Pencil] (b} Show that
the Crank-Nicolson scheme for solving the diffusion equation with periodic bound-
ary conditions is matrix stable by plotting the speciral radius versus time step (see
Figure 9.2). [Computer]

14. (a) Modify the schro program to compute the energy of the particle as

7fd$¢*($;t)?-iw(a:,t) ‘:> Ej’k(lb?)*ij¢]:
— [deyr{z, (e, 0) PR

Plot {E) versus time for various values of N. Is energy conserved? (b} Obtain an
expression for the total momentum of the particle. Modify schro to compute and
graph the total momentumn as a function of time; is it conserved? (c) Repeat parts (a)
and {b) using the Dirichlet boundary conditions, 1/(z = £L/2) = 0. [Computer]

15. Modify the schro program to include the delia function potential V(x) = Ud(x —
L/2). Vary the amplitude ¥ and do runs where it is less than, equal to, and more
than E = h?k3/2m, the energy of the particle. Show that some of the wave function
penetrates the potential even when £ < U. If memory allows, increase L, the system

size, to distinctly separate the reflected and transmitted waves, [Computer]
16. An important PDE from nonlinear acoustics is Burger’s equation,

(&)

Oa Oa &a

_—= = — K

294 CHAPTER 8. PDES IV: STABILITY & IMPLICTT METIIODS

Write a program that solves it by the explicit /implicit scheme

n+l _ _n
aj o o
= i)
- J
1 e+ el —2at a4 alTl 9
+ = a1 41 L4 0 1 i1 J
of B e
) i
where N .
D= Mt G
;= E
2h

Take the initial condition: ¢(x,0) = 1if 2 < 0 and a{z,0) = —1 if z > 0. Use the
Diirichlet boundary conditions: a(+£L/2,¢) = F1; try L = 10, k = 1. Compaie your
results wilh the exact (for I — o0) solution,

3

_ L Fe - Flee)
af{x, t) = ""F(ﬂ?!) + I (—x, t}

Fzt) = %e”—*’ {1 —erf (;rzifft) }

and erf(x) s the crror function. [Computer]
17, An important equation from the theory of solitens is the Korfeweg-de Viies
(KdV) equation [42],

wherc

dp dp & p

Bt~ PP 8at
Write a program that solves it using the explicit/implicit scheme

e T O e O PSRk T S Ry O s
T b 2 20

v+1 o 1|1 T 4

P;'+2 - ZP?-E + ZP;,'-H - ij_izL j

2h3 :

where "
P;"}Ll — -1
Dy =Sl
! 2h
Use Dirichlet boundary conditions, p(z = £L/2) = . Test your program for the
solitary wave solution of the KdV equations: p(z,t) = 2 sech”(x — 4¢). [Computer]

9.3 *SPARSE MATRICES

General Properties

As the complexity of our problems increascs we find ourselves working with
larger and larger matrices. Not only do these large matrices oceupy a large
amount of memory, they are computationally expensive to manipulate (multiply, :
invert, etc.). However, you probably noticed that the Hamiltonian matrix used
in the previous section is very sparsc [i.e., almost all the elements of the matrix |

0.3, *SPARSE MATRICES | 205

are zero). In this section we examine how to exploit this feature to allow us to
work with larger systems.

Sparse matrices fall into two categories, depending on their structure. The
more general case is when the nonzero elements are arbitrarily distributed, such
as in the matrix sketched below:

[0 %« 0 0 % 0 0 O]
+ 0 0 % % 0 0 O
0 = 00 0 0 00
* % %= 0 0 0 0 =%
00 = 0 0 % = 0
000 0 = 000
x x 0 0 0 ¢ * =*

000*0000

where the nonzero elements are indicated by asterisks. Such matrices may be
stored in a compressed format by recording the values of the nonzero elements.
and their locations. Typically this is done using a linked list.[43] '

The simpler and, fortunately, more common case is when the matrix has a
definite, known structure. Some examples of such matrices are sketched below:

(% %« 0 0 0 0 0 0] "% %= 0 0 0 0 0 0
0 = = 0 0 0 00 + = 0 0 0 0 00
00 %« = 0 0 0 0 0 0000000
00 Q0 = x 0 0 O 000 = = = 0 0
0 0 ¢ 0 % = 0 O 0 0 0 « % = 0 0
4 00D 000 % x O 0 0 0 %« * = 0 0
¥ % k % x K * ¥ 0 000 0 0 % =
0000000* LUUOOOU**_

The first matrix is an example of a banded matrix and the second is a block
diagonal matrix.

The solution of sparse matrix problems is so important that a significant
industry has arisen in the numerical analysis comrmunity.[100] It would be far
beyond the scope of this book to go into these specialized methods, but there
is one special case that is so simple and so common that I believe it is valuable
for you to learn it. It also gives you a bit of a flavor of what iz involved when
working with sparse matrices.

Tridiagonal Matrices

The special case we consider is the tridiagonal matrix; it has the following

gtructure:
Bm 0 0 0
a B oy o 0
.- 0

A=| 0 o2 B (9.48)

0 0 0 --- Ba

206 CHAPTER 9. PDES IV: STABILITY & IMPLICIT METHODS

Since only the elements on the main diagonal (the #’s) and on the first sub
and superdiagonals (the a’s and +'s) are nonzero, we may store the matrix in a
compressed (or packed) form using the matrix

7 B
23] Hs e

Ao = oz B3 o1 (9.49)
QON_] ;’3 LY 7

The two corner elements marked with question marks are unused.

We now reformulate the Gaussian elimination algorithm, but specialized for
the case of tridiagonal matrices. The basic method requirves no major modifica-
tion; many operations may be skipped, since most elements of the matrix are
zero. ‘To solve the lincar system Ax = b, the forward climination stage roquires
only that we modify the values on the main diagonal. Thus of = ay, v = 7,
where the prime indicates the value after forward elimination, and

Bi=8i— %1 i=2..,N (9.50)

with 3 = 91. The elements of b are
1 .

o=b— 2, i=2,...,N (9.51)
i—1

with ¥ = b;. For the backsubstitution stage we may easily obtain x using
wn = by /3y and the downward recursion relation

!

,L:b@—_ﬁf—‘ i=N—-1,...,1 (9.52)
Bi

This formnlation of Gaussian elimination for a tridiagonal matrix is sometimes

called the Thomas algorithm. The function tri ge (Table 9.2) performs Gaus-

sian elimination on a packed tridiagonal matrix.

You might expect that we would next assemble a program to compute the
inverse of a tridiagonal matrix. There is only one problem: The inverse of
a tridiagonal matrix is not necessarily sparse. Try using the routines from
Chapter 4.2 to invert some sparse matrices constructed at random. You'll find
that the inverse is almost always a full matrix.

Crank-Nicolson for Tridiagonal Matrices

Returning to the Schrodinger equation, we want to take the Crank-Nicolson
scheme

. -1 .
gntl — (I + %H) (I — ;_‘EH) ot (9.53)

9.3, *SPARSE MATRICES ' 207

Table 9.2: Qutline of function tri_ge, which performs Gaussian elimination for
tridiagonal matrices.

Inputs: Ag, b.

Output: x.

Check that dimensions of A. and b are compatible.

Unpack diagonals of triangular matrix into the vectors . 4, and +.

Perform forward elimination using (9.50) and (9.51).

Perform back substitution using (9.52).

See pages 301 and 305 for program listings.

and rewrite it in such a way that we do not have to compute a maftrix inverse.

Rearranging terms gives
. —L .
gt I+oH) |21—(1+2H|| "
(+ 2h + 2h ¥

, -1
T
= |2 —H) -1|¥ 54
[(1+ o) (9.54)
or
gt o= QT -pTn
Qlyn — g (9.55)

where Q = 1[I+ (ir/2h)H].
The computation of a matrix inverse is avoided by splitting the problem into
two stages. First we solve the following linear system for the vector x;,

Qx =¥" (9.56)
.and then update our solution as
Pl =y g {9.57)

Notice that while we do not have to take the inverse of a matrix, we do have to
solve a linear system, Equation [9.56), at each time step.

Figure 9.7 shows a Gaussian wave packet computed by the sparge ma-
trix Crank-Nicolson algorithm described above. In this case we have Dirichlet
boundary conditions, ¢ = ¥% = 0. Setting the wave function to zerc at =1 /2
is equivalent to having an infinite potential at the boundaries (particle in a box).

208 CHAPTER 9. PDES IV: STABILITY & IMPLICIT MITTHODS

02
015
E 0.1,
1
0.05 i
Ml e
A) Al
.a.-a-rrﬁ-ffm-'-.r#- e
i e
. i wjﬁﬁf#ﬂ#ﬁﬁﬁf@%ﬁ%ﬁ%
100
200 o
00" 0 50
X

Figure 9.7: Square amplitude of the wave function Wz, t) as a function of
£ 1 p ZIRU

position and time. Boundary conditions are oyt =4y = 0. The number of grid

points is N = 200, and the time step is 7 = 1.

Notice the interesting structure in the wave function as it rebounds off the
reflecting wall. After it moves away from the wall, the wave packet regaing its
original Gaussian shape (with the appropriate spreading). For a colleetion of
pictures showing wave packets interacting with potentials, see Saxon [111].

EXERCISES
18, Solve the following problem by hand using the Thomas algorithm,
1 1 0 a0 0 #1 3
12 0 0 0 &y]
0 -1 3 2 0 x| = | 15
a 0 0 4 1 @4 21
o0 0 -1 2 Zs5 6

What do the matrix and the right-hand side look like at the end of forward elimina-
tion? [Pencil]

1% Modify the schro program to use the sparse matrix Crank-Nicolson scheme and
reproduce Figure 9.7,

20, Using the tri_ge function for the Crank-Nicolson scheme is inefficient for two
reasons. The first part of forward elimination (9.50) is repeated at every time step
even though the matrix Q is fixed. Second, several terms are recomputed at every
time step cven though they remain constant. Ireprove the efficiency by hreaking up
the tri_ge function into two separate functions. The first function will be invoked
once outside the main loop and the sccond function will be invoked at each iteration.
You will essentially he implementing LU decomposition. [Computer]

BEYOND THIS CHAPTER 299

21. Modify the schro program to use the sparse matirix Crank-Nicolson scheme using
the potential,

i=N/4,¢=3N/4
otherwise

Vig)=Io[d(z + L/ + 8z —L/4)] = W= { UYOM

which makes the center of the system a “box.” Due to tunneling, the particle is not
contained by the box even when its energy is less than 7. Compute the probability
that the particle is inside the box,

3N/4

CP(ta)= Y W)

i=N/4

where t, = (n — 1)7. Plot P(t) versus ¢ for various values of Up. [Computer]

22. For periodic boundary conditions the Hamiltonian matrix is not tridiagonal. The
elements at the opposite corners, ham{1, N) and ham(N, 1), are nonzero. Derive a
modified version of the Thomas algorithm that can perform Gaussian elimination on
matrices of this type. Write a function that implements this algorithm and demon-
strate its use in a modified version of schro. [Computer]

23. (a) Derive a modified version of the Thomas algorithm that applies to pentadiag-
onal matrices, that is, matrices for which only elements on the five central diagonals
are nonzero. [Pencil] (b) Write a computer rousine that implements your algorithm
from part (a). [Computer}

BEYOND THIS CHAPTER

Qur two stability analyses are suitable only for linear partial differential equa-
tions. On the other hand, most interesting research problems involve nonlinear
equations. We may still use von Neumann or matrix analysis by linearizing our
PDE about a reference state. Also, the stability criteria we’ve seen have a phys-
ical basis {e.g.; the CFL condition is given by the time it takes a wave to move
one grid spacing). Going back to the original physical problem, you can usually
find some characteristic time scale to guide your selection of a time step. Fi-
nally, there are some specialized techniques (e.g., energy stability analysis) that
can sometimes be used with nonlinear PDEs. See Richtmyer and Morton [107]
for a more complete discussion.

This chapter covers two techniques for studying stability. A related problem
is determining the dissipation and dispersion of a numerical scheme. We saw in
Section 7.1 that the Lax scheme had an undesirably large numerical dissipation
- when the time step was t00 small. Furthermore, we want our numerical scherne
to preserve the same dispersion relation as the original PDE. Both dissipation
and dispersion may be studied by a simple extension of von Neumann stability
analysis: see Anderson, et al. [10] for details.

Tmplicit techniques are more difficult to use in higher-dimensional problems.
This is because the conventional extension would require us to manipulate huge
matrices. A more efficient approach 18 to use operator splitting to separately

300 CHAPTER Y. PDES TV: STABILITY & IMPLICT MIETHODS

perform the irmplicit step in cach direction. This is known as alternating divec-
tion implicit {AD1).[98)

APPENDIX A: MATLAB LISTINGS

Listing 9A.1 Program schro. Computes the motion of a Gaussian wave packet
by solving the Schrodinger equation using the Crank-Nicolson scheme.

% schro - Program to solve the Schrodinger equation
% for a free particle using the Crank-Nicolsonm scheme
clear all; help schro; % Clear memory and print header

%* Initialize parameters (grid spacing, time step, etc.)

i_imag = sqrt(-1); % Imaginary i

I = input{’Enter numoer of grid points: ’);

L = 100; % System extends from -L/2 to L/2
h = L/(N-1); % Grid size

x = h*(0:N-1) - L/2; ¥ Coordinates of grid points
h_bar = 1; mass = 1; % Natural units

tan = input(’Enter time step: *);

#4* Set up the Hamiltonian operator matrix
ham = zeros{N); % Set all elements to zero
coeff = -h_bar~2/(2*nass*h"2);
for i=2:(N-1)

ham(i,i-1) = coeff;

ham(i,i) = -2%coeff; % Set interior rows
ham(i,i+1) = coeff;
end

% First and last rows for periedic boundary conditions
ham{1,N) = coeff; ham(1,1) = -2%coeff; ham(1,2) = coeff;
ham{(N,N-1) = coeff; ham(N,N) = -2%coeff; ham(N,1) = coeff;

%% Compute ths Crank-Nicolson matrix
dCN = (inv(eye(N) + .B*i_imag*tau/h_bar*ham) #* ...
{eye(N) - .b*i_imag*tau/h_bar*ham)):

#* Initialize the wavefunction

x0 = 0; % Location of the center of the wavepacket
velocity = 0.5; ¥ Average velocity of the packet

k0 = mass+velocity/h_bar; % Average wavenumber

sigma0 = L/10; % Stancard deviation of the wavefunction

Norm_psi = 1/{sqrt{sigmaO*sqrt{pi))); % Normalization
psi = Norm_psi * exp(i_imagxkO*x’) .*x ...
exp{-(x’-x0). 2/ (2*sigmald~2));

%* Plot the initial wavefunction
figure(il): cif;

APPENDIX A: MATLAB LISTINGS

plot(x,real(psi),’—’,x,imag(psi),’——’);

title(’Initial wave function’);

xlabel(’x’); ylabel(’\psi(x)’); legend (*Real’,’Imag’);
drawnow; pause(l);

%+ Initialize lcop and plot variables

max_iter = L/{velocity+*tau); Y Particle should circle system
plot_iter = max_iter/20; % Produce 20 curves

p_plot(:,1) = psi.*conj(psi}; Y% Record initial condition
iplet = 1; ’

figure(2); clf;
axisV = [-L/2 L/2 0 max(p_plot)]; % Fix axis min and max

%* Loop over desired number of steps (wave circles system once}
for iter=1l:max_iter

Y Compute new wave function nsing the Crank-Nicolson scheme
psi = dCN+psi;

%% Periodically record values for plotting

1£(rem(iter,plot_iter) < 1)
iplot = iplot+i;
p_plot (:,iplet) = pei.*conj(psi);
plot{x,p_plot(:,iplot)); % Display snap-shot of P(x)
¢label (?x’); ylabel(’P(x,t}’);
title(sprintf(’Finished %g of g iterations’,iter,max_iter));
axig(axisV); drawnow;

end

end

Y# Plot probability versus position at various times
pFinal = psi.*conj (psi);
plot(x,p_plot(:,1:3:iplot),x,pFinal);

xlabel(P’x’); ylabel(’P(x,t)’);

title{’Probability density at various times’);

301

Listing 9A.2 Function tri.ge. Gaussian elimination routine for tridiagonal ma-

trices.

function x = tri_ge{a,b)

¥ Function to solve b = a*x by Gaussian elimination where
% the matrix a is a packed tridiagonal matrix

% Inputs

wooa Packed tridiagonal matrixz, N by N unpacked

% b Column vector of length N

% Output

% ox Solution of b = a%x; Column vector of length W

302 CHAPTER 9. PDES IV: STABILITY & IMPLICHT METHODS

%#* Check that dimensions of a and b are compatible
[N,M] = size(a);
[NN,MHM] = size(b);
ifC N "= HN | MM "= 1)

error(’Problem in tri_GE, inputs are incompatible’};
end

%% Unpack diagenals of triangular matrix into vectors
alpha{(1:N-1) = a(2:N,1};

beta(1:N) = a(1:N,2};

gamma{l:N-1) = a(1l:0-1,3);

%* Perform forward elimination

for i=2:N
coeff = alpha(i-1}/beta(i-1);
beta(i) = betal(i) - coeffxgamma{i-1);
b(i) = b(i) - coeff*b(i-1);

end

%* Perform back substitution
(M) = b{N) /beta(N);
for i=N-1:-1:1

x(i) = (b(1) - gamma(i)*xz(i+1))/betali);
end
x =x.7; % Transpose x to a column vector
return;

APPENDIX B: C++ LISTINGS

Listing 9B.1 Program schro. Computes the motion of a Gaussian wave packet. by
solving the Schrodinger equation using the Crank-Nicolson scheme. Uses cinv {Listing
9B.3).

// schro - Program to solve the Schrodinger equation
// for a free particle using the Crank-Nicolson scheme
#include "NumMeth.h"

“void cinv(Matrix Reald, Matrix Imagh,
Matrix& RealAinv, Matrixk Imaglinv);

void main() {

//* Initialize parameters (grid spacing, time step, etc.)
cont << "Enter number of grid points: "; int N; cin >> X;
double L = 100; // System extends from -L/2 to L/2
donble h = L/{N-1); // Grid size

APPENDIX B: C++ LISTINGS . . : \ - 305

double h_bar = 1; double mass = 1; // Natural units
cout << "Enter time step: "; double tau; cin >> tau;
Matrix x{N);
int i, j, k;
for{ i=1; i<=¥; it+)

x(i) = h*(i-1) - L/2; // Coordinates of grid points

//* Set up the Hamiltonian operator matrix
Matrix eye(N,N), ham(N,M);
eye.zet(0.0); // Set all elements to zero
for(i=1; i<=N; i++) // Identity matrix
eye(i,i) = 1.0;
ham.set(0.0); // Set all elements to zero
double coeff = —h_bar*h_bar/(2*mass*h*h) ;
for{ i=2; i<=(-1); i++) {
ham(i,i-1) = coeff;
ham(i,i) = -2%coeff; // Set interior rows
ham(i,i+1) = coeff;
}
// First and last rows for periocdic boundary conditions
ham(1,N) = ceoeff; ham{1,1) = -2#coeff; ham(1,2) = coeff;
ham(N,N-1} = coeff; ham{N,}¥) -2%coeff; ham(N,l) = coeff;

//* Compute the Crank-Nicolson matrix
Matrix Reall{N,N), Imagh(N,N), RealB(N,N), ImaghB (N,N) ;
for{ i=1; i<=N; i++)
for(j=1; j<=N; j++) {
Realh(i,j) = eyeli,j);
Imagh(i,j) = 0.5+tau/b_bar*ham{i,j};
RealB{i, j) eye(i,j);
ImagB(i,j) = -0.5%tau/h_barsham(i,j);
¥
Matrix RealAi(N,N), Imaghi(N,K);
cout << "Computing matrix inverse ... " << flush;
cinv(RealA, Imagh, Realdi, Imagdi); // Complex matrix inverse
cout << "dome" << endl;
Matrix RealD(N,N}, ImagD(N,N); // Crank-Nicolson matrix
for{ i=1; i<=N; i++)
for(j=1; j<=N; j++) {
RealD(i,j) = 0.0; // Matrix (complex) multiplication
Imagh(i,j) = 0.0;
for(k=1; k<=N; k++) {
RealD(i,j) += Realdi(i,k)*RealB(k,j) - Imaghi (i,k)*ImagB(k,3);
ImagD(i,j) += Realldi(i,k)*ImagB(k,j) + Imaghi(i,k)*RealB(k, j};
}
1

//* Initialize the wavefunction
const double pi = 3.1415692654;
double x0 = 0; // Location of the center of the wavepacket

304 CHAPTER 9. PDES IV STABILITY & IMPLICIT METHODS

double velocity = 0.5; // Average velocity of the packet
double kO = mass*velocizy/h_bar; // Average wavenumber
double sigma0 = L/10; // Standard deviation of the wavefunction
double Norm_psi = 1/(sqrt(sigmaO*sqrt(pi))}; // Normalization
Matrix RealPsi(N), ImegPsi(N), rpi(N), ipi(N);
for(i=1; i<=N; i++) {
double expFactor = exp(-{(x{i)-x0)*{x(i)-x0)/(Z*sigmal+sigmal));
RealPsi{i) = Norm_psi * cos(x0%x(i)) * expFactor;
ZmagFsi{i) = Norm_psi * sin(x0%x(i}) #* expFactor;
pi(i) = RealPsi(i); // Record initial wavefunction
ipi(i) = ImagPsi(i); // for plotting

//= Initialize loop and pleot variables
int nStep = (int}{L/{velocity*tau}); // Particle should circle system

int nplots = 20; // Number of plots to record
double plotStep = nStep/nplots; // Iterations between plots
Matrix p_plet(N,nplots+2);

for{ i=1; i<=N; i++) // Record initial condition

p_plot(i,1) = RealPsi(i)*RealPsi(i) + ImagPsi(i)=*ImagPsi(3i);
int iplet = 1;

//* Loop over desired number of steps (wave circles system once)
int iStep;

Matrix RealNewPsi (N}, ImagNewPsi(F);

for(iStep=1; iSsep<=nStep; iStep++) {

//+ Compute new wave function using the Crank-Nicolson scheme
RealNewPsi.set{0.0); ImagNewPsi.set(0.Q);
for(i=1; i<=N; i++) // Matrix multiply D#psi
for{ j=1; j<=N; j++) {
ReallewPsi{i) += RealD(i,j)#*RealPsi(j) - ImagD(i,j)=*ImagPsi(j};
ImaglewPsi{i) += RealD(i,j)*ImagPsi(j) + ImagD(i,j)*RealPsilj};
}
RealPsi = ReallNewPsi; // Copy rew values into Psi
_magPsi = ImagNewPsi;

//*% Periodically record values for plotting
if(fmod{(iStep,plotStep) < 1) {
iplot++;
for(i=1; i<=N; i++)
p_plot(i,iplet) = RealPsi(i)*RealPsi(i) + ImapPsi(i)*ImagPsi(i];
cout << "Finished " << iStep << " of " << nStep << " steps” << endl;
T
h
// Record final probability density
iplot++;
for(i=1; i<=N; i++)
p_plot(i,iplet) = RealPsi(i)*RealPsi(i) + ImagPsi(i)+*ImagPs:{(i);
nplots = iplot; // Actual number of plots recorded

APPENDIX B: C++ LISTINGS 305

//* Print out the pletting variables: =x, rpi, ipi, p_plot
ofstrean x0ut (“x.txt"), rpilut{('rpi.txt"), ipiQut("ipi.txzt"),
p_plotOut ("p_plot.txt");
for(i=1; i<=N; i++)} {
x0ut << x(1) << endl;
rpilut << rpi(i) << endl;
ipilut << ipi{i) << endl;
for(j=1; j<mplots; j++)
p_plotOut << p_plot{i,j} << ", *;
p.plotlut << p_pleot(i,nplots) << endl;
}
}
/#*+x+ To plot in MATLAB; use the script below skssbisbksitikkkdokddkk
lead x.txt; load rpi.tzt; load ipi.tzt; load p_plot.txt;
%* Plot the initial wavefunction
figure(1); clf;
plot{x,rpi,x,ipi);
title{’Initial wave function’);
xlabel(’x*}; ylabel(’\psi(x)’); legend(’Real’,’Tmag’);
#* Plot probability versus position at various times
figure(2); clf;
[mp np]l = size{p_plot);
plot(x,p_plot{:,1:3:np),x,p_plot{:,np));
xlabel(’x?); ylabel(’P(x,t}’);
title(’Probability density at various times’);
axisV = [-1/2 1/2 0 max(p_plet)]; % Fix axis min and max
s koo o o e ool o o o K o o sk o ok o o o e ko sk o o sk koo ook o sk ko ok ok ok stk ek /

Listing 9B.2 Function tri_ge. Gaussian elimination routine for tridiagonal ma-
trices.

#include "NumMeth.h"
double trige{ Matrix A, Matriz b, Matrix& x) {

// Function to solve b = A*x by Gaussian elimination where
// the matrix A is a packed tridiagonal matrix

// Inputs

/A Packed tridiagonal matrix, N by N unpacked
/b Column vector of length ¥

N7 Output

// x Solution of b = A#x; Column vector of length N

// determ Determinant of A
//#* Check that dimensions of a and b are compatible
int N = 4.nRouw();
assert(N == b.nRow () && A.nCol{} == 3);

//* Unpack diagonals of triangular matrix into vectors

306 CHAPTER 9. PDES IV: STABILITY & IMPLICET METHODS

Matrix alpha(l), beta(N), gamma(N);
int i;
for(i=1; i<=(N-1); i++) {
alpha(i) = A(i+1,1);
beta(i) = A(i,2);
gamma(i) = A(i,3);
}
beta{lN) = A(N,2);

//* Perform forward elimination

for{ i=2; i<=N; i++) {
deuble coeff = alpha(i-1)/beta(i-1);
beta(i) -= coeff+gamma(i-1);
b(i) -= coeff*b(i-1);

}

//* Compute determinant as product of diagonal elements
double determ = 1.0;
for{ i=t; i<=N; i++)

determ #*= beta(i);

//#% Perform back substitution
x(N) = b(W)/beta(ll);
for(i=N-1; i>=1; i--)
x(i) = (b(i) - gamma(i)#*x(i+1))/betali);

return(determ);

Listing 9B.3 Subroutine cinv. Computes the inverse of a complex matrix using

Gaussian elimination with pivoting.
#include "NumMeth.h"
// Compute inverse of complex matrix

veid cinv(Matrix Reald, Matrix Imagh,
Matrix& Realdinv, Matrix& Imaghinv)

// Inputs

// Realh - Real part of matrix & (N by N)

/f Imagi - Imaginary part of matrix A (N by N)

7/ Outputs

// Realdinv - Real part of inverse of matrizx A (N by N)
// Imaghinv - Imaginary part of A inverse (N by X)

{

int N = Realh.nRow();
assert(N == RealA.nCol{} &% N == Imagh.nRow({)
&& N == Imagh.nCol{());
Realdinv = Reald; // Copy matrices te ensure they are same size

APPENDIX B: C++ LISTINGS _ 307

Imaghinv = Imagh;

int i, j, k;
Matrixz scale(N); // Scale factor
int #index:; index = mew int [N+1];

//* Matrix B is initialized to the identity mairix
Matrix RealB{(WN,N), ImagB(N,N);
RealB.set(0.0); ImagB.set(0.0);
for{ i=1; i<=N; di++)
RealB{i,i) = 1.0;

//* Set scale factor, scale(i) = max(la{i,j)|), for each row
for{ i=1; i<=N; i++) {
index[i] = 1i; // Initialize row index list
double =zcaleMax = O.;
for(j=1; j<=N; j++) {
double Magh = Reald(i,j)+*Reald(i,j) + Imagh(i,j)*Imagh(i,j);
scaleMax = (scaleMax > Magh) 7 scaleMax : Magh;

p
scale(i) = scaleMax;
¥
//* Loop over rows k =1, ..., (N-1}

for({ k=1; k<=N-1; k++) { .
//* Select pivot row from max(la(j,k)/s{j)] 3
double ratiomax = 0.0;
int jPivet = k;
for{ i=k; i<=N; i++) {
double Magd = RealA(index[i] ,k)*Reald(index[i] k) +
Imagh(index[i] k) *Tmagh (index[i], k%) ;
double ratic = Magh/scale(indexlil):
if (ratio > ratiomax) {
jPivot=i;
ratiomax = ratio;
¥
}
//#% Perform pivoting using row index list
int indexJ] = index[k];

if(jPivet '= k) { // Pivot
indexJ = index[jPivot];
* index[jPivot] = index[k]; // Swap index jPivot and k
index[k] = indexJ;
H

/ /% Perform forward elimination
for(i=k+1; i<=N; i++) {
double denom = Realh{indexJ,k)*Reallk(indexJ,k)
+ Imagh (indexJ,k)*Imagh (indexJ,k);
double RealCoeff = (RealA(index[i],k)#Reall(indexJ,k)
+ Imagh(index[i],k}*Imagh(index],k))/denom;

308 ' CHAPTER 9. PDES TV: STABILITY & IMPLICHT METHOIS

doubtle ImagCoeff = (Imagh{index[il,k)+Realh (indexJ, k)
- Reald(index[i],%) *ImaghA{indexJ,k))/denom;
for(j=k+1; j<=N; j++ Yy o
Reald(inde®{il,j) -= RealCoeff*Reald(indexJ,j)
- ImagCooff*Imagh(indexJ,j);
ImaghA{index[i],)} -= RealCoeff*Imagh(indexJ,j)
+ TnagCoeff*Realh{indexJ,J);
3
RealAd{index[i],k) = RealCoeff;
Imagh (index[i],k) = ImagCoeff;
for(j=1; j<=N; j++) {
RealB(index[il,j) -= Reald (index[i],%)*RealB(indexJ, j)
- Imagh(index[i] ,k)*ImagB(index]J,j};
TmagB(index[i],j) -= Reall(index[i],k)*TmagB{index],]}
+ Imagh(index[ill,k)+RealB{index],j);
¥
}
T

//* Perform backsubstitution
for{ k=1; k<=N: k++) {
double denom = Reall (index[N],N)*3ealld (index[N],N)
+ Imagh(index[N] ,N)+*Imagh (index[N],W);
Realldinv(N,k}) = (RealB(index[X],k)+*RealA(index{N] N}
TmagB (index [N] ,k) *Imagh (index [N],N}) /denon;
(ImagB{(index [W] ,k)*RealA(index [N], W)
RealB{index [N],k)*Imagh (index[N] ,N}) /denom;
for{ i=N-1; i>=1; i--} {
double RealSum = RealB(index[i].,k);
double ImagSum = ImagB(index[i],k}:
for(j=i+l; j<=N; j++ Y {
RealSum -= RealA(index[il,j)+*Reallinv(j k)
- Imagh(index[il,j)*Imaghinv(j,k);
ImagSum -= Feald(index[i],j)*Imaghinv(j,.k)
+ Tmagh(index[il,j)*ReaZAinv(j,k);

+

ImagAinv(N,k)

}

double denom = Realh{index[i],i)#*RealA{index[i],i)
+ Imagh{index[i],i)*ImagA{index[il,i);

(RealSum*RealA (index[i],i)

ImagSum*Imagh (index[i],1i))/denom;

{ImagSum*Reald (index [1i] ,i)

RealSum*Tmagh (index[i],1))/denom;

RealAinv(i,k)

+

%magﬁinv(i,k)

+
+

delete []1 index; // Release allocated memory

Chapter 10

Special Functions and
Quadrature

You can go quite far with the clementary transcendental functions (exponential,
sine, ete.). However, eventually you will find it useful to add more functions to
your toolbox. This chapter discusses two important special functions: Legendre
polynomials and Bessel functions. The second topic of this chapter is quadra-
ture, a fancy term for evaluating integrals numerically. Two general-purpose
methods are covered: Romberg and Gaussian integration,

10.1 SPECIAL FUNCTIONS

Eigenfunctions

In Section 8.1 we solved the Laplace equation in rectangular coordinates using
separation of variables, Our PDE was separated into ODEs, all of which were

of the form P
Ew?f(x) Tk f(z) =0 (10.1)

The general solution of this simple equation is a linear combination of trigono-
metric functions,
f(z) = Acos{kz) + Bsin(kz) (10.2)

where the coefficients 4 and B are determined by the boundary conditions.
This ODE is a special case of the Sturm-Liouville equation,

Lfilz) — Aiplz) fi{z) =0 (10.3)

where), is the eigenvalue and f; is its corresponding eigenfunction. The linear
differential operator £ is

d d
L= . (Z)E + g{x) (10.4)

310 CHADPTER 10. SPECIAL FUNUTIONS AND QUADRATURE

and p(ax) is a weight function.
Tt is not difficult to show that this operator, with homogeneous boundary
conditions” in the interval [a, 0], is Hermitian,

b b
[f@eswin= [fi@es (10.5)

whoere the asterisk denotes complex conjugate. This Hermitian property leads
to the two important results: (1) the eigenvalues A; are real (e, A; = A7), and
{2) the cigenfunctions are orthogonal,

b
[ot fite) e = Nis (10.6)

where A is the normalization. If this sounds vaguely familiar, you probably
recall that in quantum mechanics the Hamiltonian operator (which is Hermi-
tian} has real eigenvalues. These cigenvalues are the cnergy levels, and the
cigenfunctions are the wave functions of those states.

When separation of variables is performed in a nonrectangular coordinate
system {e.g., spherical, evlindrical), we commonly obtain ODEs of the form
given by (10.3). The solutions of these more complicated problerns are impor-
tant enough to be studied as named functions. In this section we cover two
of these special functions: Legendre polynomials and Bessel functions. Special
functions are also discussed in the standard mathematical physics texts, such as
Boas [24] and Arfken {11]; many useful identities may be found in Abramowitz
and Stegun 2.

Legendre Polynomials

Laplace’s equation is V2 @(r) = 0; in spherical coordinates it may be written as

P& 19 a o
vz b B(r.0,¢) = I
(r‘ 52t a0 " o T 2o 09) (rf,0) =0 10.7)

We'll assume that our problem is azimuthally symmetric, so € is independent
af the angle ¢ To use separation of variables, we inserg

®{r,8) = U(r) P(8) (10.8)

into (10.7) and obtain the pair of equations

1 d al”
i (oG) +ar 0 1)
, d? dls
.,.__;f_?(. (10.10)
[£5

*The houndary condition is homogeneous if f = 0 {Dirichlel) or df /dz = 0 (Neumanun) or
a lincar combination of f and & /dw is zero {mixed) at the boundary,

o mem e e

10.1. SPECIAL FUNCTIONS 311

Table 10.1: Legendre polynomials Fy through Ps.

Pylz)=1 Py(z) = §(52° — 3z)
Plz)y==x Py(z) = £(3527 — 3022 + 3)

Py(x) = 5(3¢® — 1) | Ps(z) = £(632° — T02® + 152)

The former equation may be solved by power series expansion in cosf. We find
that the solution is finite at # = 0 and 8 = = only if A = n{n + 1), where n is
an integer, '

The solution of the radial equation, (10.10), is

U(r) = e1r™ + cyr U (10.11)

where the constants ¢; and ¢g are determined by the boundary conditions.
It is convenient to rewrite {10.9) as

d d
-1 - il
dr dr

by using the change of variable z = cos#. Note that this is the Sturm-Liouville
equation (10.3) with p(z) = 1 - 2%, ¢(z) = 0, A,, = n{n+ 1), and p(z} = 1.
The power series solution of (10.12) terminates after a finite number of terms,
80 P,(x) is a polynomial of degree n.

The most compact way to write the Legendre polynomial F,(x) is by the
Rodrigues formula,

2?) —— Pp(x) + nln + D) Py(z) =0 (10.12)

1 d\", 4 "
The first few polynomials are listed in Table 10.1 and plotted in Figure 10.1.
The Legendre pclynomials are orthogonal in the interval [—1, 1] with the nor-
malization

! 2
/_1 B (@) Pplx)de = En—ﬁdm,n (10.14)

Many other Legendre polynomial identities are compiled in Abramowitz and
Stegun. '

For the purpose of numerical computation, the most useful identity is the
recursion relation {(see Exercise 10.3},

fn+ 1P (z) = (2n+ DaPyz) —nb,_((2) (10.15)

Since the first two polynomials are trivial to compute [Py(z) = 1; Pi(z) = =],
we may use this recursion relation to bootstrap up to the desired P,. The

312 CHAPTER 10. SPECIAL FUNCTIONS AND QUADBATURI:

1|' " e
05F Nn=5 . pn=3 - .
—_ , el -‘\\\ //,./// ‘\\ S
E oo S S ﬁ
0 L R ity Tl el
_O.SE’;/ - - - -
-1 T \ \ |
-1 -0.5 ¢ 0.5 1
X
T : ; .1
'y f’#
Ao.s.‘._\\\ n=6 n=4 T
¢, s Ny e - S ,
~ 0 '\\ ' s ! \‘_‘_(o T .
-0.5] - TTh=o) '
_1| T L J—
-1 -05 0 0.5 1
X

Figure 10.1: Graph of the first few Legendre polynomials, Pr(x). Solid line
indicates n = 1 and n = 2; dashed line is n = 3 and n = 4; dash-dot line is
n=>5andn==6.

function legndr returns a vector containing the values [Py (x) Pi(z) ... Po(x)]
(see Table 10.2). To compute P, using (10.15), we need to compute all the lower
index values, so we might as well return them since often they arc also needed
(e.g., in evaluating the serics solution (10.31)). Note that MATLAB has a built-
in function, legendre, which computes the associated Legendre functions.

Bessel Functions

A ubiquitous PDE in mathematical physics is the Helmholtz equation,
V3(r) + B2 =0 {10.186)
In cylindrical coordinates it is

(18 d] L o* o

it 5ot e | vl d e 20 = 0.17
pappap + & 92 T 322) vip.d,z) HR7 =10 {10.17)

*

Using the separation of variables substitution, ¥ (p, ¢, z)= R(r)Q@(é)Z{z), we
find that the cquasions for () and Z have solutions

£

N

o
|

1 cos(me) + o sin{me) (10.18)
Z{(z) = czceos{az)+ eqsinfoz) {10.19)

where ¢, ..., ca, m, and o are constants fixed by the boundary conditions.

Wi, SPECIAL FUNCTIONS 313

Table 10.2: Outline of function legndr, which computes the values of Legendre
polynomials [Po(z), ..., Pr()] using upward recursion.

o Inputs: n, x.
o Output: [Fy(z), ..., Bulz)].

e Perform upward recursion using (10.15), starting from Py(z) = 1 and
P (x) =z

See pages 334 and 336 for program listings.

s

050 /|

J_(x)

S ‘
0% 5 10 15 20

Figure 10.2: Bessel function J,,(x) for m = 0 to 3.

The radial component is given by Besscl’s equation

2
o fz,ﬁ 1o — ety —mlR =0 (10.20)

If we require that R be regular on the z-axis (i.e., finite for g = 0), the solution
* s the Bessel function of the first kind
R(p) = Jn (WK — a?p) (10.213
See Figure 10.2 for a plot of J,,(x) for the first few values of m.
To evaluate J,(x} numerically we make use of the recursion relation {see

Exercise 10.7)
T (2) = 2mje)Jn(z) — Jmp (2) (10.22)

314 CHAPTER 0. SPECIAL FUNCTIONS AND QUADRATURDE,

Table 10.3: Ou‘r]ine of function bess, which returns valucs of Bessel functions

[]0() . m }

Iaputs: m, x.

Output: [Jo(z),. .., (2]

Perform downward recursion (10.22) from initial guess.

Normalize using (10.24) and return requested values.

Sce pages 334 and 337 for program listings.

There are two reasons why this equation is not as easy to use as the recursion
relation for Legendre polynomials. First, the functions Jy(x) and Ji{x) are not
as simple to evaluate as the first two Ltgondre polvnomials. There are, however,
tabulated polynomial approximations for the low order Bessel functions.

The more serious diffieulty is that when m > upward recursion is numeri-
cally unstabic. However, the recursion relation is stable if we iterate downward.
To illustrate how this works, let’s evaluate Jy(0.3). The idea is to take advantage
of the fact that

] E"i? ’ - - . ¥
donlx) N (ﬂ) a8 1M — 00 (10.23)

thus, J, () < 11 m > x. We start the recursion using the (incorrect) values
J(0.3) =tk J4(0.5) =1

The values af this stage are arbitrary sicce we are going to renormalize the
result in a moment. Using (10.22) we obtain

J3(0.5) =167 L{05) =191; J,(0.5) = 1512; Jo((L3) = 5BBT
Finally, we normalize the values by using the identity (see Exercise 10.8),

Our final resuit is J;(0.5) ~ 585776241 = 0.938471; tables give 0.938470. Of
course, our estimate for J4(0.5) &2 1/6241 = 1.6023 x 10" 4 is not as accurate
(tables give 16074 x 107"). The function bese, which computes [Jolz), Ji(2),
- Jm(x)] using downward recursion, is outlined in Table 10.3. Note that
MATLAR has several built-in functions (besselJ bessely, besselh,ctc.) that
compute the various flavors of the Bessel function.

10.1. SPECIAL FUNCTIONS 315

Zeros of the Bessel Function

The Bessel function T, (%) is oscillatory in a fashion similar to the trigonometric
functions. This fact is evident from the graph of the function (Figure 10.2) and
from the asymptotic formula

™

2 _
I (@) = \/E cos(x — 5= g) (10.25)

as # — oc. Like the trigonometric functions, the Bessel function has an infinite
number of zeros, but the zeros of J,,, are not evenly spaced.
The sine function satisfies the well-known orthogonality relation

L
L
f sin{oe/ L) sin(oya /1) de = Edi‘j (10.26)
0
where a; = 71 is the ith zero of sin(x). The Bessel function, J,, (), satisfies a
gimilar orthogonality relation
2

H
. R
| I st B DGt Bopdp = T B (G (1027)

where (, 5 is the sth zero of J, ().
Roots of the Bessel function may be computed using Newton’s mechod (Sec-
tion 4.3). Specifically, the iteration

Jn{zn) d .
Zntl = An — ’J::n(z'n}; J(z2) = alm(z) (10.28)

converges to 2, = (s a8 1 — 20, 80 long as 21 & (., (i.¢., initial guess is close
to the desired root). For the initial guess, we use the asymptotic formula

-1 4{p—13(7u—31)

. — I _
Gns 25—~ 5(85)3 (10.29)

where 8 = (s + 2m — $)7 and p = 4m?®. This formula is valid for s > m. If
m < s, then (10.29) is not an accurate estimate for ¢, ;. However, it lands us
close enough to the root that we converge after only a few iterations.

Newton’s method needs the derivative of J,,,(2); this is easy 1o obtain from
the recurrence relation (see Exercise 10.9)

Tl@) = 1 (&) + = (a) (10.30)

The funetion zeroj, which computes ¢, , using Newton’s method, is outlined
in Table 10.4. For a more advanced algorithm, see Temme [125].

In the next two sections we use special functions to solve some physics prob-
lems. You'll discover that we need to solve integrals of special functions, moti-
vating us to find a way of computing them numerically.

316 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

Table 10.4: Qutline of function zeroj, which returns the sth zcro of J,,(x).

Inputs: m, s.

Qutput: (s

o Use asymtotic formula (10.29) for initial guess.

Use Newton’s method to locate the root.

See pages 335 and 338 for program listings.

EXERCISES

1. {a) Show that the diffusion equation, 3T/t = kV>T, gives the Helmoltz equation
after the separation of variables substitution T(r,t) = ()} (r}. (b) Show that the
wave cquation, 820/ = c*V2a gives the Helmoltz equation after the separation of
variables substitution a{r,) = ©(£)¥(r). [Pencil]

2. One of the most useful identities for Legendre polynomials is

- A" P,
1= 2h$ + h? Z

where the left-hand side is called the generating funetion for P, (z). Using this identity,
show that

1 o0
T = Z n+LP (cos8)

'

where r and r’ are three-dimensional vectors, cos @ = r - v'/|x||t’|, r< = min(|r|, [¢"),
and v+ = max{|r|, |¢'|}, [Pencil]

3. Using the generating function (see Exercise 10.2}, derive the recursion relation

{10.15). {(Hint: Differentiate with respect to h.) [Pencil|
4. Using the generating function (see Exercise 10.2), show that if % is even, then

(=1)"*(n — 1)1

P (0) 271,/2 ??}/2‘][

where n!l = x (n—2) x ... x5 x 3 x 1 and P, (0) = 0 if n is odd. [Pencil]
6. Using the Rodrigues formula, show that if n is odd, then

. v
N (_1)(11 1)/2(ﬂ_ ?)11
./(; Py (z)dx = 20n+112((n + 1)/2)!

where pll =nx {(n—2) x ... x5 x3x 1 and fol P.iz)dz = 0 if n is even. [Pencil]
6. Write a function that finds &, i, the ith root of F,{z}, using Newton’s method.
The derivative of the Legendre polynomials may be found using,

(2" —) PL(x) = naPr(n) — nPu_1ix)

10.1. SPECIAL FUNCTIONS _ 317

Since a good initial guess is crucial for locating the right root, you may want to use the
following facts: (1) ¢1,1 = 0; {2} all the roots are real; and (3) the roots are intertwined,
80 Cnt1,i < Cnyi < Cnt1,i41. Compare your results with the Gauss-Legendre quadrature
nodes (see Table 10.7). [Computer]

7. A useful Bessel function identity is

N ofle (- 1)) £ o

m—=—00

where the left-hand side is called the generating function of Jn, (x}. Using this identity
derive the recursion relation, Equation (10.22). (Hint: Differentiate with respect to
h.} [Pencil]

8. Using the generating function (see Exercise 10.7}, derive the normalization identity,
Eguation {10.24). [Hint: J_m{x} = (—1)™Jm(z).! [Pencil]

9. Using the generating function (see Exercise 10.7), derive the recursion relation,
Eguation (10.30). [Pencil]

10. Modify the function bess to use polynomial approximation (see [2]} with upward
recursion when m < z. Compute J2(z) using the old and new routines and plot the
absolute difference for 0 < 2 < 10. [Computer]

11. The spherical Bessel function of the first kind is defined as

. k3
Write a function that computes jn {z) using the recursion relation

2m+1 .
Jm(®)

Jm—1(2) 4+ fmy1(x) = p
Use upward recursion with the starting values jo(x) = sin ¢ /z and j1{z) = sin z/2* —
cosz/x. Show that this scheme works well except when © < m. [Computer]
12. The second solution to Bessel’s equation is Y5, (x), the Bessel function of the
second kind. Write a function to compute Y;, (x) using upward recursion

2 .
Yt = =2V (@) — Yoa(2)

To obtain the starting values for recursion, use the identities

Yolx) = %{1]1(9:/2) + v} o(z) — é Z(*Ukw
B

and
JiE)Yo(x) = Jo(2)¥1(r) = ﬂ%

where v & 0.577215664. Demonstrate your routine by producing plots of ¥, (x) for
0 < x < 50 and various m. [Computer]

318 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURT

10.2 BASIC NUMERICAL INTEGRATION

Laplace Equation in Spherical Coordinates

Asg an application of our special functions, we consider the following clectrostat-
ics problem. Take a sphere of radius R; the outer surface of the sphere is held
at the fixed potential V{8). Using (10.8), the solution of Laplace’s equation in
spherical coordinates for azimuthally symmetric problems is [75]

oo
O(r,8) = Z[An_‘r” + B~ P (cos) (10.31)
=0
To find the potential everywhere outside the sphere, we need to obtain the
coefficients 4,, and B, that match the boundary conditions.
The implicit boundary condition at infinity requires that the potential gocs
to zero as 7 — oo, To meet this requirement, the A.’s must all ve zero. Match-
ing the poteriial at the swface of the sphere

[
Vigy = B,R "YU P, (cosh) (10.32)

n=0

To solve for B,,, we multiply both sides by P, {vos#) and integrate,

/ @6 sin 6Py, (cos)V (8)
0

= / dd sinﬁ‘Rn(cosé‘)ZBnR NP {cos8) (10.33)

a n=(

It

Z B, Rl / df sin@F,, (cos), {cosd)
n=>0

0
Using the orthogonality relation, equation (10.14), we may solve for B, as

m+1 o [
B, = %_R”"‘!j V() P, (cos 8) dcos 8)

9, !
= TRRJ“ / Viz) Py () de (10.34)
—1
The problem is now reduced to solving this integral to obtain the B’s.
< Unfortunately, (10.34) is not always simple 1o evaluate for an arbitrary pe-
tential V(8). One example that is not so difficult is the split hemisphere poten-
tial

cemn | Vo 0B < o2 .
v={ T 050 (1035
where 17, is a constant. In this case, (sce Exercise 10.5) we obfain
{(n—1)/2 ¢ .
‘ 1 2n - L)in — 2)!!
B, =VR"™ - S dd 10.36
a (2) [L(n + 17] (n odd) (10.36)

10.2. BASIC NUMERICAL INTEGRATION | 319

Figure 10.3: General trapezoidal rule for estimating integrals.

and B,, = 0 for n even.

Ideally, we would like to compute the coeficients for an arbitrary potential
V(8). In fact, we may not even know this potential as a function; we may just
have a table of values for selected angles. This motivates our study of numerical
integration.

Trapezoidal Rule

Consider the integral
b
= [Flz)dz (10.37)

Our strategy for estimating [is to evaluate f{z) at a few points and fit a simple
curve (e.g., piecewise linear) through these polnts. First, subdivide the interval
[a,5] into N — 1 subintervals. Define the points x; as

I =a, &y = b, 35]_ < Ty < ... < BN <IN {1038)

The function is only evaluated at these points, s0 we use the short-hand notation
fi = fl=).

The simplest, most practical quadrature scheme is the trapezoidal rule. As
illustrated in Figure 10.3, straight lines connect the points, and this piecewise
linear function serves as our fitting curve. The integral of this fitting function
is easy to compute since it is the sum of the areas of trapezoids. The area of a
single trapezoid is

T; =

2| —

(@ir1 —) (fir1 + fi) {10.39)
The true integral is estimated as the sum of the areas of the trapezoids, so
ITaelr=T++...+Tn {10.40)

Notice that the last term in the sum is N — 1 since there is one fewer panel than
grid point.

320 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

The goneral formula simplifies if we take equally spaced grid points. "The
spacing s h = f;}_”l cs0 o = a-+ (i - 11, Our ormala for the area of a trapezoid

reduces to

Ty = Sh(fiet +) (1041)
The trapezoidal rule for equally spaccd points is
Iplh) = %'i.fl +hfs+hfs+ .. —hfnog+ éh-fw
1 N1
= Fhli+fe)+h ; fi (10.42)

Notice that for all the interior points the cocfficient i h, while ou the two
exterior points (4 = 1 and i =) it is fz/2. This is hecause each interior pomg
appears in two trapezoids: it is on the right of one trapezoid and on the left of
the neighboring trapesoid.

A quick example shows vou that something as simple as irapezoidal rule
does quite well. Consider the error function

X

v dy (10.143)

erf() =
VED
For @ = 1, erf(1) =~ 0.842701. The trapezoidal rule with N = 5 gives a value of
(.83837, which is good to about two decimal places. Of course, the integrand
in this cxample is very smooth and well behaved.

Mosl numerical analysis texts give the truncation error for trapezoidal rle
as

I—Ip(h) = f%(b —a)h O (10.44)

for some ¢ in [a,b]. An alsernative way of writing the truncation error makes
use of the Euler-Maclaurin formula

L.)
I—Tp(h) = — 12112[FB) — fla)] + Oh) (10.45)
Notice that the crror is proportional to h?, and the latter cxpression warns you
that the trapezoidal rule will have difliculties if the derivative diverges at the
end points. For example, the invegral an Vb da s problematic (see BExercise
10.13).

Romberg Integration

5

A common question is, “How many pancls shonld Tuse?” One way to decide on
the number of panels is (o repeat the calcularion with a smaller interval. Tl the
answer doesn’t change significantly, then we accept it as correet. We might get
tricked by pathological functions or in unusual scenarios, but don’t he paranoid
about this. With trapezoidal rule, if the number of panels is a power of two, we
can halve the inlerval size withoul having to recompute all the poinis.

-~

10.2. '/BASJ'.C NUMERICAL INTEGRATION 321

fix)

1 X

a b
r=1 x 42
n=2 x X, X,
n=3 x X, X3 X, X5

Figure 10.4: Intervals used by recursive trapezoidal rule.

Define the sequence of interval sizes,

hy=(b—a), ha= %(bf)y ... hp= in_l (b a) (10.46)
For n = 1 we have only one panel, so
Ie(h) = 30— @)lf(@) + FO] = ghalf@) +fB] (104D
For n = 2, an interior point is added (Figure 10.4) so
i) = Shalfia) + FO)]+ hafla+ ho)
= %IT(hl) + ho fla + heo) (10.48)

There is a simple recursive formula for calculating Ir(A,) using I7(hn—1):
211—2

Fr(ha) = 3 Ir(tnca) + hon 3 fla+ (20 = o) (10.49)

i=1

The second term of the right-hand side gives the contribution from the interior
points that are added when the interval size is halved {Figure 10.4).

By using the recursive method described above, we can keep adding panels
until the answer appears to converge. However, we can greatly improve this
process by using a method called Romberg integration. Tl first describe the
mechanics of Romberg integration and then show yvou why it works. The method
computes a lower-triangular table of the form:

iy - - -
Roey Rpo -
R = Ryq Rss Ras - (10.50)

392 CHAPTER 10. SPECTAL FUNCTIONS AND QUADRATURE

Table 10.5: Outline of function rowbf, which computes integrals using the
Romberg algorithm.

Inputs: a, b, N, f(z: A}, A
s Outpul: R.

Compute the first term Ry 1.
e Loop aver the desired number of rows, i = 2,..., V.

— Compute the summation in the recursive trapezoidal rule (10.49).

— Compute Romberg table entries His, .., R;; using (10.52).

See pages 335 and 338 for program listings.

Table 10.6: Outline of function errintg, which returns the integrand of the
error function integral.

o Inputs: x, A (not used).

o Output: f = exp(—2?)

See pages 336 and 339 for program listings.

The formula for the first column is just the recursive trapezoidal rule
Rip = Ir(hi) (10.51)

The successive columns to the right are computed using the Richardson extrap-
olation formula

1
Ripign = Ripng + gy i~ Higl (10.52)

The most accurate estimate for the integral is Ry, w, the value at the bottom-
right corner of the table.

Romberg Integration Routine

The function rombf performs Romberg integration for a given integrand and
interval (Table 10.5). The integrand, flx;), is defined as a separate function
with an optional parameter A. For example, the simple routine errintg, out-
lined in Table 10.6, returns the integrand of the error function (10.43). Working

10.2. BASIC NUMERICAL INTEGRATION | 323

interactively from the command line in MATT.AB, we obtain the small Romberg
table shown below:

>>format long Y% Print answer to full precision
>>2/sqrt(pi)*rombf(0,1,3, errintg’ ,0)

ans =

(.77174333225805 0 0
0.82526295669675 0.84310283004298 0
0.83836777744121 0.84273605138936 0.84271159947912

Our best estimate of the integral is given by the bottom right entry in the
table, Rz 3. Comparing it with the exact result (0.842701), we find that we
have almost five digits of accuracy using only four panels! Again, this is a very
smooth integrand; life is not always so kind.

Tt is useful that the function returns the entire table and not just the last
entry, since this gives us an estimate on the error. One should not be too eager
to use an excessive amount of computer time to make the table as large as
possible. Eventually, round-off error begins to degrade the answer (see Exercise
10.13), so it is better to quit while you're ahead.

Why Romberg Works

To understand why the Romberg scheme works, consider the truncation error
for trapezoidal rule, Ep(hy,) = I = It(hn). Using (10.45),

Br(h) = —35h1f () = (@) + O(hd) (10.53)
Since Apt1 = hn/2,
Brlhain) = - ghalf'®) = £/(@)] + O(k}) (10.54)

Consider the second column of the Romberg table. The truncation error for
Rn+1,2)is .

- R@+12) = {4 3linlh) - Tl
= Brlhe) + %[ET(hnH) ~ Frlhy)] (10.55)
1 1/1 1 ot pte ;
- -l (Em)| B - rei-om
= o)

Notice how the A2 term serendipitously cancels out, leaving us with a truncation
error that is of order 2. The next (third) coluran of the Romberg table removes
thig term, and so forth.

324 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURIC

Returning to the electrostatics problem from the beginning of this section,
we wanted to evaluate (10.34) numerically. We could quickly write a program
to compute the cooflicients 13, using our existing Romberg function. However,
remember how the Legendre polynomials are computed using the recursion re-
lation. To get I, () we also compute P, (), ..., Pof{z). It would be wasteful
not to make use of these values. In fact, it’s not difficult to construct a pro-
gram that compuses all the coefficients, B, simultaneously. I'll leave that as
All eXercise.

EXERCISES

13. Use Romberg integration to numerically evaluate the integrals below:
{a) “1 e du (b) .]'027(sint(8x)dr (c) fcl adr
@) [IVi—@¥de (o) [Puol@yde () [Piede

In cach case, evaluate the integral analytically and graph the absolute error for the
main diagonal of the Romberg table, &, versus i. Show that the crror normally
decreases with increasing 4, bul can increase due to round-off. [Computer|

14. A popular integration scheme Is Simpson’s rule,

b

h

/ flx)de = E[_f(a) +4fla+h)+2f(a+2R)— ...

+2f(b—2h) +4f(b—h) + FB)]
Show that this rule is cquivalent to the gecond column of Romberg integration, thal
i, Ri2. [Pencil
15. Richardscn extrapolation can be used to improve our formulas for cstimating
derivalives. Take the centered first derivative approximation,

flr+h) — flo —)
2h,

Dy = = ['(x) + O

with ;41 = %h@ and define the Richardson extrapolation

Digi v =D + F]i_l[D1+l,J — D; ;]
(a) Using Taylor expansion show that |/ (z)— Dy 2| = O(A]). [Pencil] (b) Write a func-
tion, similar to rombf, that computes the Richardson extrapelation table for deriva-
tives. Test the function by graphing |f'(z) — Dy 1| and |f' (&) — Ds i versns @ for
Flx) = cxpl) at 2 = 10 taking k1 = 1. [Compuzer]
16. Debye theory tells us that the heat capacity of a solid is

] o L Ta 26"
' = 9kN — B
COv(T) = 9k 9%/0 e

where #p is the Debye temperature, N is the number of atcms, and k is Boltzmann’s
constant. Produce a graph of the molar specific heat of copper (8p = 30¢ K) from
T =0 K to 1083 K (melting point). [Computer,

10.3. *GAUSSIAN QUADRATURE 325

17. Whrite a program to compute and graph K(z), the complete elliptic integral of
the first kind {see Section 2.2). [Computer]
18. In Fresnel diffraction you meet the Fresnel integrals,

C('w):[(:os(%mcz)di S(w):] SiIl(%Wﬂ?z)d.’B
0 0

Wiite functions that compute C'{w) and §(w), and produce & graph of S{w) versus
C(w) for w =0 te 5. Your plov will be a Cornu spiral. [Computer]

19. Write a program to compute the coefficients, By, for Equation {10.34). Don’t do
it by brute force using rombf. Instead, write a new Romberg routine designed to use
legndr. Your program should compure all the coefficients simnltaneously. Test your
program with the split-sphere potential. [Computer]

20. An azimuthally symmetric potential has a dipole moment of B, [see Equation
(10.34)]. Modify your program from the previous exercise to evaluate the potentials:

(a) V(@) =cosf (b) V(8) = cos® 6

1 if 8<w/4
ic) V{g)= —1 if é>3n/4
0 otherwise

Using the coefficients, produce a contour plot of ®(r, 8). Compare it with the potential
for a point dipole with the same dipole moment. Computer]

91. Consider the following electrostatics problem: A hollow cylinder has radius R
and heighs L. The potential on the top disk is an arbitrary function V(p). All other
cides are beld at zero potential. Show that the separation of variables solution is

B{p,z) = i AsJa (Co,s%) sinh (g“g,s %)
s=1

where (o is the sth zero of Jo{z). Obtain an explicit expression for the coefficients
A, in terms of V(p). [Pencil]

92, Write a program thar numerically evaluates the electrostatic potential in the previ-
ous exercise by numerically evaluating the integrals and summing the series. Produce
a contour plot of ®{p,z) for the potential (a) Vip) = Y (b) Vip) = 1 - p/E; (c)
Vip) = e~ /% [Computer]

10.3 *GAUSSIAN QUADRATURE

Baéic Idea

Qur original formulation of she trapezoidal rule allows arbitrary values for the
grid points ;. For simplicity, we used evenly spaced points, but can anything be
gained if we use uneven intervals? Ts there some optimal choice for the location
of these grid points? If so, shonld some panels carry more weight than others?
In other words, for an integration formula of the form

/.D flr)de =w flz) +...F wx flzw) (10.56)

326 CITAPTER 10, SPECIAL PUNCTIONS AND QUADRATURE

is there an oplimal choice for the grid points {or nodes) #; and the welghts w,”

The questions above lead us to formulate a new class of integration for-
mulas, known collectively as Guussian guadrature. We will use only the most
common formula, namely Ganss-Legendre quadrature. There are many other
kinds of Gaussian quadrature that treat specific types of integrands. For ox-

o7 fla)de. The

ample, Gauss-Laguerre is optimal for integrals of the form]n
derivation of the other Ganssian formmnlas is similar to our analysis of Gauss-
Legendre quadrature.

Tac theory of Gaussian integration is based on the following theorem. Let

g(x) be a polynomial of degree N, such that

0
/ gl)plz)a® de =0 (10.57)

where k= 0.1,..., N — 1 and p(x) is a specified weight function. Call xy, #s,
..., v the roots of the polynomial g{x). Using these roots as grid points, plus
a set of weights wq, wa, ..., wy. we construcl an integration formula of the
form

b
/ Fla)pleide = wy floy) +we f{e) +. .. +wyflen) (10.58)

There exists a set of w’s for which the integral formula will be ezact if f{x) is
a polynomial of degree < 2N,

Think about this for a moment. In general, if we have N data values, we
can {it an N — 1 degree polynomial to the points. This gives us an integration
formula that is exact for polynomials of degree < N. However, using Gaussian
grid points (along with their weights), we have a formula that is exact for
polyromials of degree < 2N, I our integrand is well approximated by a high-
degree polvnomial, then our integral approximation should be very acenrate.

Three-Point Gauss-Legendre Rule

To demonstrate the construction of a Gaussian quadrature rale we’ll work out
the formula for three grid points in the interval [— 1, 1] with p{e} = [This gives
ug a Gaussian-Legendre formula. For integrals in the interval [o, 3], it is easy to

transform thern as ,
i

gl
fla)de = b 5 ¢ / fiz)dz (10.59)
S o =1L
1

using the change of variable ¢ = %(h +a)+5b—a)z
The first step is 1o find the polynomial ¢{z). We want a three-point rule, so
gix) is a cubic _
q{x) = eg + ey + eaw® + ey’ (10.60)
From the theorem, Equation {(10.57), we know that

1 .
[qlz) de = / xgla)de = / w?glx) dr = 0 (10.61)

10.3. *GAUSSIAN QUADRATURE : 327

Plugging in and doing each integral, we get the equations
2 2 2 2 2
2ch + gc‘g = gcl + 5(53 = gCO + gCQ =0 (1062)

A solution of the above equations gives us the polynomialf

3
glz) = 2.’1?3 5T {10.63)

| &

Notice that this is just the Legendre polynomial Ps(x), a result we might have
anticipated given the orthogonality property of these polynomials.

Next we need to find the roots of g(z) = P3(z). This cubic is easy to factor
and its roots are r; = fm, ae = 0, 23 = /3/5. Using these grid points in
Equation (10.58) gives us

[11 F@)da s wr f {[2) +020(0) +wsf (1f2) (10.64)

Finally, to find the weights, we know that the above formula must be exact for
f(z) =1,%,...,2% We can use this to work out the values of w, w2, and ws.
Tt turns out to be sufficient to consider just f(z) = 1, =, and z%. For these three
cases, after some computation, we arrive at the three equations

= wr twet+ws

_ _\/gwl + \/§m3 (10.65)

_ 3 3
= 5’&)14—5'{1!3

Wy o o

This linear system of equations is easy to solve; the solution is wy = %, wy = %,

wg == g. An alternative way of finding the weights is to use the identity

2
{1l —z3){(d/dx) Py (z:) }?

wy i=1,...,N (10.66)
This formula may be derived from the recurrence relation for Legendre polyno-
mials. For our error function example, Equation (10.43), the three-point formula
(10.64) gives 0.842690, almost five digits of accuracy!

After working out the grid points and weights in the above example, [must
confess that I usually look these values up in tables. Grid points and weights
for various values of N are given in Table 10.7; for more extensive tables see
Abramowitz and Stegun [2] or Stroud and Secrest [121]. If for some reason you
need to compute these, your principal challenge will be to locate all the roots
of the polynomial g{x}. :

There are various advantages and disadvantages in using Gaussian integra-
tion: The main benefit is that a very high-order accuracy is obtained for just a

TThe general solution is co = 0, c1 = —a, c2 =0, ¢3 = 5¢/3, where o is some constant.
This araitrary constant cancels out in the second step.

328

CHAPTER 10.- SPECIAL FUNCTIONS AND QUADRATURE

Table 10.7: Grid points and weights for Gauss-Legendre integration.

tx; w; +z; Wy

N=2 N=28

0.5773502682 1.0000000000 | 0.1834346425 0.3626837834
N=3 0.5255324099 (0.3137066459
0.0000000000 0.8888888889 | 0.7966664774 0.2223810345
0.7745966692 0.5555555556 | 0.9602898565 0.1012283363
N=4 N =12

0.3399810436 0.6521451549 | 0.12532334085 0.2491470458
0.8611363116 0.3478548451 | 0.3678314990. 0.2334923365
N=5 0.0873179543 0.2031674267
0.0000000000 D.5688888889 | 0.7699026742 0.1600783285
0.5384693101 0.4786286705 | 0.9041172564 0.1069393260
0.9061798459 0.2369268850 | 0.9815606342 0.0471753364

few points; often the method yields excellent results, using fewer than 10 points.
This is cspecially useful if f{z) is expensive to compute. There are two main
disadvantages: (1) The node points and weights must be computed or obtained
from tables. This step is nontrivial if you want to use many node points. Using
more than N = 20 points is rarely worth it, since badly behaved functions will
spoil the resulis in any case. (2) Unlike Romberg integration, the method does
not lend itself to iteration, nor is it easy to estimate the error.

Quantum Perturbation Theory

Ag a final example of the use of quadrature we consider quantum perturbation
theory. The basic idea of perturbation theory is to start with a problem that is
easy to solve, for example, the hydrogen atom. Next we change (perturb) the
problem slightly; for example, we apply a weak external field. The new problem
is often significantly more difficult to solve, even though the solution changes
only slightly. Perturbation theory approximates the correction to the solution
by making use of the fact that the change is small. The short discussion in this
section is ounly an introduction to the theory; for more details, see any of the
standard quantum mechanics texts, such as Saxon [111] or Schiff [112)].

We gtart’ with the time-independent Schrédinger equation for a particle of
Iass i, in a potential Vir)

Hiy = Ean(r) (10'67)

where H is the Hamiltonian

hQ
H= “"a“q;:"vz + V(r) (1068)

10.3. *GAUSSIAN QUADRATURE 329

The energy levels and their corresponding wave functions are E,, and 1, ve-
spectively. For simplicity, we assume these states are nondegenerate.

Suppose that we know the solution to (10.67) for a given Hamiltonian, HO,
and want to compute an approximate solution for a slightly different Hamilto-
nian. We’ll write our Hamiltonian as

H=H+H (10.69)
where H' is the perturbation. For H°, the energies and wave functions are
HOuy = Enty (10.70)

The wave functions are assumed to be crthogonal, so

[t de = i) =0 (10.71)
if n #m.
First-order perturbation theory approximates £, and ¢, as
E, = E)+E, (10.72)
B YLD A, (10.73)

Using (10.72} and (10.73) in (10.67) we get

(M +H) (U}ﬂ + Z LL;’nrJ,T%"“gm) = (B + E},) (bu + Z Wi Vo) (10.74)
or
HOUO + HS + H Yl ul, + H Zamwm =

Eg(l’l + E! r] + EO Z ainﬂ»wo + E Z a‘mnwm (10'75)

where the first-order terms are 1111derlined and the second-order terms are double
undertined. Using (10.70), the zeroth-order terms drop out. Retaining only
first-order terms

Vn + Z U’mn m m — E' w?a + ET(’]L Z a.inn'wgl (1076)

Applying [dr«* to both sides and knowing that the wave functions are or-
thogonal

f QJ',G*AHJ,U;)O dr B (d}g erlwg)
T eRA T WD)
The first-order energy shift due to the perturbation is thus equal to the expec-
tation value of #'.

E = 10.77)

330 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

Particle in a Can

Let’s work through an example using perturbasion theory. Consider the “par-
ticle in a box problemn” using cylindrical geometry (i.e., the particle in a can).
The container has radius /7 and height .. Because the particle is confined inside
the can, the boundary conditions are

Pp=R,0,2)=v0(p¢d,z=0) =(p, ¢,z =L)= 0 {10.78)

thal is, the wave function goes to zero at the interior surface of the can. This
boundary condition is equivalent to having a potential that is zero inside the
can and infinite at the boundary.

Since the potential inside the can is zero, the Schrddinger equation, (10.67),
is the Helmholts equation, (10.16), with k* = 2m,E /R’ Separation of variables
tells us the solution must be of the form [see Equations (10.18), (10.19), and
{10.21)]

Wip, ¢ 2) = In(VE2 —a2p) x [o roc(md)) + g sin(me)]
% escos(az) + eqsin{az)] (10.79)
The boundary condition at z = () requirces that e3 = 0; the condition at z = L

tells us that o = Ir/L where I = 1,2, Finally, the boundary condition at
p = I requires that

VE2 - 0fR = (nn {10.80)

wherc (18 the nth zero of Jp,{«) (see Section 10.1). Thus

(Cn%)z N (%)2] (10.81)

are the unperturbed energy levels for the particle in a can. You can easily
check that the lowest energy level ocours when I = 1, m = 0, n = 1. The
(unnormalized) ground state wave function is

2
o B

linn — 2
&

W0 = Jo (40,1%) sin (w%) (10.82)

I we take the radius and height of the can to be one Bohr radii, the ground
state energy for an electron is EJ,; = 214 eV.
Now let’s apply the perturbation

*

Vi) = v (%) K (10.83)

where V! is a constant. Using (10.77) and (10.82), we find the perturbation of
the ground state to he

A . pL o~ ey T s 2
I dpp [27 do [T dn(VIpY JRY)I2 (o p) R sin® (n2/ L)

B = : -
o (R dop [2% do 7 dzJ2(Cor p/ R) sin (/L)

(10.84)

10.8. *GAUSSIAN QUADRATURE 331

or |
2V 1 £ i 72

U T4y / <5

017 Ry+2 Jlg(fm)/@ p Iy (Coap/ R)dp (10.85)

The problem is now reduced to quadrature, that is, to evaluating the integral
in (10.85). T'll leave it for you to finish up (see Exercise 10.28).

EXERCISES

23. Tstimate the integrals below using Gaussian quadrature:

(a) f05 e “dr (b) fcl V1-z2dr (o) fol %

@ [z (o [1 Polz)ds (f) [, P ds

using the Gauss-Legendre quadrature formula with N =4, 8, and 12 nodes. Compare
the error in each case with the exact value of the integral. Note that some of the
integrals have singularities. [Computer] _

24. Compute the weights and grid points for the two-point Gauss-Laguerre formula,

f e~ fx) dr s wi f(z1) + waf(22)
0

Test your formula by estimating the integral f OOG e “ cosxdz = §. [Pencil]

25. Any polynomials f(2) (degree <) and g(z) (degree < 2n) may be written as

flo) = Z [[ﬁf(m)

EEa

and g(z) = Q(z)Pa(z) + f(z), where Q(x) is a polynomial of degree <n and Pn{z)
is a Legendre polynomial. From this, prove the Gauss-Legendre quadrature theorem:

The integral
1 i
| st =3 wigte
- =1

1

where
1 n
T -
w; = H I d
=1 =1 &i— g
i
and x1, ..., &, are the zeros of Pp{x). [Pencill

*26, (a) Show that the period of oscillation for a particle of mass m moving in a
potential V(z), which is symmetric about the origin, may be found by solving the
integral (see Section 2.2)

&
m ds
T =am / _de
s /V(ewm)— Vi)
where & = max(z). (b) Write a program to evaluate this integral using Ganssian
quadrature for the potential V(z) = |z|#. Produce a contour plot of the integral for
0< zn < ¢ and 0 < 8 < 4. [Computer]

332 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

27. Find the 10 lowest cnergy states of the particle in a can (lake R = L) by wriling
a program bo comwpute and sort through all the possibilities. [Computer]

28. (a) Write a program to find the shift in the ground state encrgy for the porturbed
particle in a can [ser Equation {10.85)]. TUsc Gaussian guadrature to evaluate the
mtegral for v = ‘5, 1,2, 3, and 4. (b) Repeat part {a) using the perturbation V'(r) =
Vile/R|* for v =1, 2, 3, and 4. [Computer]

29, (a) Consider a particle in a rectangular box of dimensions L. x Ly x L;. Use
separation of variables to solve the Schrddinger equation for the free particle (Ve) =0
inside the box). Find the cigenfunctions and energy levels. Set up your coordinate
system so the origin is in a corner of the box, [Pencil] (b) Usirg your results from
part (), find the first order energy shift for the gronnd state duc to the perturbation
potential Vix,y, 2} = Vie/L,, where V. is a constant. [Tencil] (¢) Using your results
from part (a), writc a program that computes the energy shift, E’ for an arbitrary
separabie potential, i.c., for potentials of the form Vie,y,2) = Vila)Vy{y)Va(z). Set
up your program to find the energy shift for any state, mot just the ground state.
Use your program to find the encrgy shift in the first excited state for the potential
Ve = V! exp(—r®) with L, =1, L, = 2, and L, = 3. [Computer]

30. Consider the two-dimensional irtegral

ol o
1=/ da‘f dy flx,y)

Write a program that nurnerically estimates this integral by dividing it into a pair of
integrals,

b el
I:[Flz)de where F(;]’f):/ flz)y dy

Test your program hy evaluating fow dx LT dy cos(z + y) and IO-I dm jnl dylety+ 17"
using Ganssian quadrature.

31. TUsing your program from the previous exercise, evaluale the rotational inertia
of a thin wedge (Figure 10.5) with # <« L, H < W. Take L = 10, W = 3, and the
mass M = 1. The axis of rotation is perpendicular to the plane of the wedge and
through: {a) the center of mass of the wedge; () the geometric center of the wedge:
() one of the corners on the thick edge. Check your answers with the parallel axis
theorem. [Computer]

BEYOND THIS CHAPTER

There are many more special functions besides the two discussed in this chap-
ter; there is even a rich family of Bessel functions of which .J, (#) is just one
member. Baker presents algorithms for evaluating many special functions and
their auxiliarics (e.g., zeros of functions).[13] Recently, special furctions have
heen used increasingly for solving PDEs in nonrectangular coordinate systerns
by spectral methods.[30]

Reeall that our original formulation of the trapezoidal rule, {10.39), allowed
us o place grid points at arbitrary locations. Consider the function in Fig-
wre 10.8. To evaluate 2 f(x)dr accurately, we should use a fine grid spacing

BEYOND THIS CHAPTER 333

Axis of rotation

Figure 10.5: Rotating wedge.

Ax)

X

a b

Figure 10.6: Function suitable for adaptive quadrature.

near the center of the interval. On the sides, the function is almost constant;
even using a handful of grid points would give us an accurate answer. Integrals
like this are suitable for adaptive integration schemes.[39] The idea is to start
at one end and lay down grid points as we move across the interval. As we go,
we test if the grid size is adequate, increasing or decreasing it as needed. The
mosi commonly used scheme is adaptive Simpson’s rule.

The standard quadrature methods may be extended to multidimensional
integrals (sometimes called cubature).[120] As long as the number of dimen-
sions is small (six or fewer), their efficiency is competitive. Multidimensional
integration can be computation intensive, so high-accuracy techniques, such as
Gaussian quadrature, are especially useful. For even higher-dimensional prob-
lems it turns out to be more efficient to essentially use the general trapezoidal
rule and select the location of the grid points at random. This technique is
known as Monte Carlo integration.[61, 79]

The truncation error for Monte Caxlo integration is O(N~/2), where N
is the number of grid points. For one-dimensional integrals this is very poor,
as compared with trapezoidal rule with evenly spaced grid points. The good
news is that Monte Carlo integration’s truncation error is always O(N —1/2
while the truncation error for deterministic rules deteriorates with dimension.
For example, the truncation error for trapezoidal rule with evenly spaced grid

334 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

points is O(N—*/%) for a d-dimensional integral.[76]

APPENDIX A: MATLAB LISTINGS

Listing 10A.1 Function legndr. Computes Legendre polynomials [P {z) .. L Py(x)].

function p = legndr{m,x)

% Legendre polynomials function

% Inputs

pA n = Highest order polynomial returned

)4 x = Value at which polynomial is evaluated

% Output

% p = Vector centaining P(x) for order 0,1,...,n

%* Perform upward recursion

piii=1; % P{x) for n=0
if{n == 0) return; end
p(2)=x; % P(z) for n=1

for i=3:n+1 ¥ Use upward recursion to cbtain other n’s
pli) = ((2%i-3)+x*p(i-1) - (i-2)*p(i-2))/(i-1);

end

return;

Listing 10A.2 Function bess. Computes values of Besscl functions [Ja (@] ... Jo(a)].

function jj = bess{m_max,x)
% Bessel function

% Inputs

% m_max = Largest desired order

% ¥ = Value at which Bessel function J(x) is evaluated
% Dutput

4 jj = Vector of J(x) for all orders <= m_max

Y% Perform downward recursion from initial guess

m_top = max(m_max,x)+15; % Top value of m for recursion
p_top = 2¥ceil(m_top/2); % Round up to an even number
j{m_top+l) = 0;

j{m_top) = 1;

for m=m_top-2:-1:0 % Dounward recursion
jlm+1) = 2«(m+l)/{(z+eps) j (mt2) - jlm+d);

end

%#* Normalize using identity and return requested values
norm = j(1); ¥ NDTE: Be careful, m=0,1,... but
for m=2:2:m_top % vector goes j{11,j(2),...

APPENDIX A: MATLAB LISTINGS 335

norm = norm + 2%j(m+l);

end

for m=0:m_max % Send back only the values for
3j(m+1) = jim+1)/morm; % m=0,...,m_max and discard values

end % for mem_max+l,...,m_top

Listing 10A.3 Function zeroj. Computes the §°P zero of Jn, ().

function z = zeroj(m_oxrder,n_zero)

% 7eros of the Bessel function J{(x)
% Inputs

% m_order
% n_zero

% Dutput

% =z = The "n_zerc th" zero of the Bessel function

Order of the Bessel function
Index of the zero (first, second, etc.)

U

n

%* Use asymtotic formula for initial guess .

beta = (n_zeroc + 0.5¥m_order - 0.20)#%pi;

mu = 4+*m_order”2;

z = beta - {(mu-1)/(8%beta) - 4% (mu-1) * (T#mu-31)/ (3% (8*beta) "3} ;

%% Use Newton’s method to locate the root
for i=1:5
jj = bess(m_order+l,z};
¥ Use the recursion relation to evaluate derivative

deriv = -jj(m_order+2) + m_order/z * ji{m_order+l);

z =7 - jj(m_order+1)/deriv; Y Newton's root finding
end
return;

Listing 10A.4 Function rombf. Computes integrals using the Romberg algorithm.

function R = rombf(a,b,N,func,param)
¥ Function to compute integrals by Romberg algerithm
% R = rombf(a,b,N,func,param)

% Inputs

4 a,b Lower and upper bound of the integral

% N Romberg table is I by N

% func HName of integrand function in a string such as

% func=’errintg’. The calling sequence is func(x,param)
A param Set of parameters to be passed to function

% Output

% R Romberg table; Entry R(N,N) is Dbest estimate of

% the value of the integral

%* Compute the first term R(1,1)
h=">b- a; % This is the coarsest panel size

336 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURIL

np = 1; % Current number of panels
R(1,1)} = h/2 = (feval(func,a,param) + feval (func,b,param));

%* Loop over the desired number of rews, i = 2,.,.,N
for i=2:N

#* Compute the summation in the recursive trapezeidal rule

h = h/2; % Use panels half the previous size
np = 2%np; % Use twice as many panels
sumT = 0;

for k=1:2:mp-1 % This for loep goes k=1,3,5,...,np-1
sumT = sumT + feval(func, a + k+h, param};
end

%* Compute Romberg table emtries R{i,1), R(i,2), ..., R{i,i)
R(i,1) = 1/2 * R(i-1,1} + h * smT;

2
4xm;
R(i,j) = R(i,j-1) + (R{(i,j-1) - RGi-1,j-1))/(m1);
end
end

=]

return;

Listing 10A.5 Function errintg. Defines the error function integrand for rombt.

function f = errintg(x,param}
% Error function integrand

% Inputs

A x Value where integrand is evaluated
% param Parameter list (not used}

% Output

% 1 Integrand of the error function

f = exp(-x"2);

return;

APPENDIX B: C++4 LISTINGS

Listing 10B.1 Function legndr. Computes Legendre polynomials [P, (). .. Pal)].

#include "NumMeth.h"

void legndr(int n, double x, Matrixg p){

APPENDIX B: C++ LISTINGS 337
// Legendre polynomials function
// Inputs
// n Highest order polynomial returned
// x Value at which polynomial is evaluated
// Dutput
/7 P Vector containing P{x) for order 0,1,...,n
//* Perform upward recursion
pi1) = 1; [/ B{x) for n=0
if(n == 0) return;
pi2) = x; // P(x) for n=1
// Use upward recursion to obtain other n’s
int i;
for(i=3; i<=(n+1); i++)
pli) = ((2%i-3)*x#p(i-1) - (i-2)*p(i-2))/(i-1);
}
Listing 10B.2 Function bess. Computes values of Bessel functions [Jm (2) ... Jo(z)].

#include "NumMeth.h"

void bess(int m_max, double x, Matrix& jj) {
// Bessel functiom

// Inputs

I/ m_max Largest desired order

/f x = Value at which Bessel function J(x) is evaluated
// Dutput

/7 jj = Vector of J(x) for order m =0, 1, ..., m_max

//* Perform downward recursion from initial guess

int maxmx = (m_max > x) 7 m_max : ((int)x); // Max(m,x)

/1 Recursion is dewnward from m_top (which is even)

int m_top = 2+{{int) { (maxmx+15)/2 + 1 });

Matrix j{m_top+l);

jlm_top+l) = 0.0;

jlm_top) = 1.0;

double tinyNumber = le-1€;

int m;

for(m=m_top-2; m>=0; m—--) // Downward recursion
jlm+1) = 2*(m+1}/ (x+tinyNumber)*j(m+2) - j{mt3);

//* Normalize using identity and return requested values
double noxrm = j(1); // NOTE: Be careful, m=0,1,... but
for(m=2; m<=m_top; m+=2) // vector pgees j{1),j(2),...
norm += 2%j(m+l};
for(m=0; n<=m_max; m++) // Send back only the values for
jitm+ly = j{m+l)/norm; // m=0,...,m_max and discard values

338 CHAPTER 10. SPECIAL FUNCTIONS AND QUADRATURE

Listing 10B.3 Function zeroj. Computes the s zero of Jm ().
#include "NumMeth.h"
void bess{ int m_max, double x, Matrix& jj) ;

double zercoj(int m_order, int n_zero} {
// Zeros of the Bessel function J(x)

// Inputs

// m_order Order of the Bessel function

// n_zero Index of the zero (first, second, etc.)

// Output

// z The "n_zero™th zerc of the Bessel function

//* Use asymtotic formula for initial guess
double beta = {n_zero + 0.5*m_order - 0,25)*(3,141592654);
double mu = 4*n_order¥m_order;
double beta8 = 8+%beta;
double z = beta - (mu=-1)/betad
- A% (mu-1)*(7+*mu-31) / (3*beta8*betaf*betal);

//* Use Newton’s method te locate the root

Matrix jj{m_order+2);

int i; double deriv;

for(i=1; i<=b; i++) {
bess(m_order+l, z, jj); // Remember j(1) is J_0(z)
// Use the recursion relation to evaluate derivative

deriv = -jj{m_order+2) + m_order/z * jj(m_order+l);
z -= jjlm_order+i)/deriv; // Newton's root finding
X
return(z);

Listing 10B.4 Function rembf. Computes integrals using the Romberg algorithm.

#include "NumMeth.h"

void rombf(double a, double b, int N,
double (#func)(double x, Matrix param),
Matrixz param, Matriz& R) {
// Function to compute integrals by Romberg algorithm
// R = rombf(a,b,N,func,param}

// Inputs

/ a,b Lower and upper bound of the integral

/f N Romberg table is W by N

/f func Integrand function; the calling sequence

/7 is: double (*func){ double x, Matrix param }

APPENIDIX B: C++ LISTINGS

// param Set of parameters to be passed to function
// Output
// R Romberg table; Entry R(N,N) is best estimate of
7/ the value of the integral
//% Compute the first term R{1,1)
double h = b - a; // This is the coarsest panel size
int np = 1; // Current number of panels
R(1,1) = h/2 * ({(*func) (a,param) + (*func)(b,param));

//* Loop over the desired number of rows, i1 = 2,...,N
int i,j,k;
for(i=2; i<=N; i++ } {

1

}

//* Compute the summation in the recursive trapezcidal rule
h /= 2.0; // Use panels half the previous size
np *= 2; // Use twice as many panels
double sumT = 0.0;
for{ k=1; k<=(ap=1); k+=2)
sunT += (*#func)(a + kxh, param);

//* Compute Romberg table entries R(i,1), R{(i,2), ..., R(i,1)
R(i,1) = 0.5 * R{(i-1,1) + h # sumT;
int m = 1;
for(j=2; j<=i; j++) {
m ¥= 4;
R{i,j) = R{i,j-1) + (R(i,j-1) - R(i-1,j-1))/{m-1);
}

339

Listing 10B.5 Function errintg. Defines the error function integrand for rombf.

#include "NumMeth.h"

double errintg(double ¥, Matrix param) {
// Error function integrand

// Inputs

// X Value where integrand is evaluated
“/ param Parameter list (not used)

// Dutput

// £ Integrand of the error function

}

double f = exp(-x*x);
return(f);

Chapter 11

Stochastic Methods

Many methods in computational physics involve a stochastic or random element.
INot surprisingly, most applications of stochastic methods are in statistical me-
chanics. These algorithms are sometimes called Monte Carlo methods in honor
of the famous casinc in that European city-state. Central to any stochastic
method is the generation of random numbers. In this chapter we discuss some
basic stochastic techniques and apply them to problems in the kinetic theory of
gases.

11.1 KINETIC THEORY

Molecular Dynamics

One of the first applications of probability theory in phyvsics was in the kinetic
theory of dilute gases.* Consider the following maodel for a monatomic gas: a
system of volume V' containg IV particles. These particles interact, but since the
gas 1s dilute, the interactions are always two-body collisions. The criterion for
a gas to be dilute is that the distance hetween the particles! is large compared
to d, the effective diameter of the particles. This effective diameter may be
meagured, for example, by scattering experiments. Our criterion for a gas to be
considered dilute may be written as

d<« VN (11.1)

“An alternative view of this eriterion is to say that a gas is dilute if the volume
occupied by the particles is a small fraction of the total volume.

The interactions between particles in a dilute gas may be accurately modeled
using classical mechanics. Assume the particles interact by a pairwise force that

“If you'rve a little rusty on probability theory, you may want to review onc of the standard
texts, for example Feller [45],

t Actually we should say the average distance between the particles, since the particles are
not uniformly spaced. We alteady see the probabilistic formulation creeping in.

342 CHAPTER L. STOQCUHASTIC MIZTHUDS

depends only on the relative separation
F,;j:F(r,;frj_) = 7Fﬁ (112)

where F;; is the force on particle ¢ due to particle j; the positions of the particles

arc r; and ry, respectively. The explicit form for F may either be approximated

from experimental data or cormputed thearetically using quantum mechanics.
Once we fix the interparticle force, the dynamics is given by the equation of

motion .
d? 1
—r; = — F,;: (11.3)
dt* m %1: 4

where m is the mass of a particle. From the initial conditions, in principle,
the future state can be computed by cvaluating this system of ODEs. This
numerical approach is called molecular dynemics, and it has been very guccessful
in computing microscopic properties of fluids.[6, 9, 67]

In Boltzmann’s time there was no hope of evaluating (11.3) numerically, and
even today molecular dynamics is limited to very sinall systems. To understand
the scale of the problem, consider that in a dilute gas at standard temperature
and pressure, the munber of particles in a cubic centimeter, Loschmidt’s num-
ber, is 2.687 x 107, A molecular dynamics simulation of a dilute gas containing
a million particles represents a volume of 0.037 cubic microns. Even on a su-
percomputer, an hour of computer time will evolve the system for only a few
nanoseconds of physical time.

Maxwell-Boltzmann Bistribution

Instead of being overwhelmed by the huge mumbers, we can use them 1o our
advantage. The basic idea of statistical mechanics is to abandon any attempt
to predict the instantaneous state of a single particle. Instead, we obtain prob-
abilities and compute average quantities, for example, the average speed of a
particle. The large numbers of particles now work in our favor because cven in
a very small volume we are averaging over a very large sample.

For a dilute gas we usually take the gas to be ideal; that is, we assume that
a particle’s energy is all kinetic encrgy,

1 2
E(r,v) = gm|v]” (11.4)

In a dilute gas this is a good approximation, since the ‘nterparticle forces arce
short-ranged.

Our starting point is the fundamental axiom of the canonical ensemble [103]:
Consider a system at thermodynamic equilibrium with temperature T. The
probability that a particle in this system is at a position between r and r + dr
with a velocity between v and v + dv is

Plr,v)drdv = Aexp(—E{r,v)/kT) drdv {11.5)

11.1. KINETIC THEORY . ouo

where k = 1.38 x 1023 J/K is Boltzmann’s constant. The constant A is a
normalization that is fixed by the condition that the integral of the probability
over all possible states must equal unity. The differential elements, drdv, on
each side of the equation serve to remind us that P(r,v) is a probability density.

Since a particle’s energy 1s independent of r, the probability density may be
written as

P(r,v)drdv = [P (r)dr][Py (v)dv]
- [%dr] [Py (v)dv] (11.6)

The particle is equally likely to be anywhere inside the volume V. For example,
suppose that we demark a subregion « inside our gystem. The probability that
the particle is inside « i8

[f [rwa-bf] =

where V,, is the volume of subregion a.

We may further simplify our expression for the probability by making use of
the isotropy of the distribution. In spherical coordinates, the probabilivy that a
particle has a velocity between v and v+ dv is

P, (v)dv = Py(v,8, ¢)v” sin 0 dv df dop
— A(e” Em AT dy)(sin 0 dO) (dg) (11.8)

Since the distribution of velocities is isotropic, the angular parts can be inte-
grated to give

3/2
Py{v)dv = 47 () e~ 2 T gy (11.9)

2akT
where P,(v)dv is the probability that a particle’s speed is between v and v +
dv. Notice that we finally fixed the pormalization constant A by imposing the
condition that f;° Pp(v)dv = 1. This velocity distribution is known as the
Mazwell-Boltzmann distribution (see Figure 11.1).

Using (11.9), it is not difficult to compute various average quantities. For
example, the average particle speed

(v} = fooo vP,(v) dv = %/g\/% (11.10)

2nd the root mean square (r.m.s.) particle speed

’Uz = OOU v = 3 E
v {v?) 1/0 2P, (v)dv \/3\/; (11.11)

From this, the average kinetic energy of a particle is,

Spr (11.12)

SR G
gK}—-(va)fz

344 CHAPTER {1, STOCHASTIC METHODS

-3
2- o N
: \\
i N
1.5 b
. :
n” i ! : "_
1k !
H ;" ' \\
0.5 : \
I \\\‘
ok’ ‘ e
0 200 400 600 800 1000 1200

Velocity (m/s)

Figure 11.1: Maxwell-Boltzmann distribution of particle speed for nitrogen at
T =273 K. The dashed line marks the average speed, {v),

in agreemeni with the equipartition theorcm.
Finally, the most probable speed, 4y, is not an average, but rather is the
speed at which P, (v) has a maximun. Solving

=0 (11.13)

gives

(kT
Unp = \/5-\/ — (11.14)

m
Notice that omp < {v) < /{v?), but they arc all of comparable magnitude and
approximately equal to the speed of sonnd

kT
Vg = /T4) — 11.15
{ \/’Y T (J)

where v = ¢, /ey is the ratio of specific heats. In a monatomic gas, v = 5/3.

. Collision Frequency and Mean Free Path

In general, the particles in a dilute gas interact when their separation is of
the order of their cffective diameter. While the interaction between particles
is continuous, it is also short-ranger, so it is useful to think of the particles as
colliding. In the hard-sphere medel we picture the dilute gas as a cloud of tiny
billiard halls of diameter d. Particles collide elagtically when their separation
equals this diameter. We use this model throughout this chapler becanse it dees
a surprisingly good jobr of representing a real gas.

11.1. KINETIC THEORY * 345

Figure 11.2: Test particle moving amid a field of stationary particles.

The average number of collisions per particle per unit time is called the
collision frequency, f. A related quantity is the mean free path, A, which is the
average distance traveled by a particle between collisions. To compute these
two quantities for a hard-sphere gas, consider the following picture. A test
particle moves with speed v, amid a sea of stationary particles (Figure 11.2).
The particle travels a zigzag path much like the ball in a pinball machine.! Tn
a time increment 4y, the test particle travels a distance I = wig.

Imagine a cylindrical tube of radius d centered on the path of the test par-
ticle. This tube has “elbows” at the locations of collisions, but we approximate
its volume as 7d2l. The number of stationary particles contained within this
cylinder equals the number of collisions experienced by the test particle. On the
other hand, since the gas is homogeneous, the number of particles in the tube
is

Miyype = (number of particles per unit volume) x (volume of tube)
(N/VYrd?u.tg) (11.16)

M

which is also the number of collisions in a time .
The collision frequency is
M N
g M) _Nop (11.17)
to v
There remains one problem: We don’t really have just cne moving particle; all
particles move. This issue is resolved by identifying {v,) as the average relative
speed between particles

W) = (vi=vel) = [[v = val B)P dvi v,

A primitive mechanical entertainment device in common use before the advent of video
games,

346 CHAPTER i1 STOCHASTIC MICTHHODS

4 kT)
= /= (11.18)
VTV m)
where Py(v) is given by {11.8). From the collision frequency, the mean free path
is obtained as

A = (average particle speed) x {average time between collisions)

1V @
= (U.ﬂl = 7 2 A
f o Nwd? {v)

(11.19)

Using (11.10) and (11.19),

p— 1;

T VINRd2
Notice that the mean free path depends only on density and particle diameter;
i 1s independent of temperature.

Using kinetic theory, we can design a mumetical siroulation of a dilute gas. In-
stead of solving the deterministic equations of motion, we will build a stochastic
modal. The probability arguments discussed in this section give us the frame-
work for the numerical scheme. Section 11.2 discusses how to generate random
nunbers, the foundation of any sfochastic method. In Scction 11.3, we bring it
all together to formulate the Monte Carlo simulation of a dilute gas.

(11.20)

EXERCISES

1. Plot {/V/N as a function of temperature for a dilute gas at one atmosphere of
pressure (use ideal gas law). Use a temperature range of 0 K to 500 K; mark the
liquification temperatures of nitrogen and oxygen. The cffective diameters of N» and
Oz are d = 3.78 A and 3.64 A, respectively. Show that inequality (11.1} is satisfied by
air, but not by a wide margin. [Computer]

2. Using the identities

T N s 2,2 n?
[et fa dr — 5 " / pe fe dr = ?
Jo 0

(a) Coufirm that the Maxwell-Boltzmann distribution is correctly normalized. (b) De-
rive the average speed, (11.10). {c¢) Derive the ran.s. speed, (11.11). {Pencil]
3. Derive the expression for the average relative speed, {11.18), by explicitly solving

the jntegrals. You will probably want to make the change of variable to center-of-mass
coordinates. [Pencil]

47 Define v, by fov” Pu(v)dv = a. Inwords, the probability that a particle has a speed
less than v, is a; the median velocity is vy, Write a program that uses quadrature
to compute v,. For nitrogen, plot v, as a function of temperature for o = 0.01, 0.5,
and 0.99; also plot {¢) on the same graph. [Computet]

5. (a) Plot the mean free path in nitrogen as a function of pressure from 10-°
atmospheres to 100 atmospheres. The effective diameter of Ny is d = 3.78 A; assume
T = 300 K. (b) Plot the number of particles in a cubic mean free path as a function
of pressure. Explain why the number of particles decreases wilh increasing pressure.

11.2. RANDOM NUMBER GENERATORS a7

(c) Plot the mean free path in nitrogen as a function of temperature for a pressure
of one atmosphers. Find the temperature at which X = d and compare it with the
boiling peint temperature, 77 K. [Computer]

8. An important model in kinetic theory, and one that is often used in molecular
dynamics simulations, is the hard disk gas. This is the two-dimensional analog of the
hard-sphere gas; the particles are elastic disks moving in a plane. For a dilute hard
disk gas, find (a) the most probable speed; (b) the r.mn.s. speed; (c) the average relative
speed; and (d) the mean [ree path. [Pencil]

11.2 RANDOM NUMBER GENERATORS

Uniform Deviates

To write a computer program that implements a stochastic algorithm, we first
need to know how to generate random numbers. Most languages include a ran-
dom number generator as one of the functions in their math library.§ In MAT-
LAB, rand (n) returns an nxn matrix with each element, set to an independent
random value. C++ has a random number generator in the <stdlib.h> but it
is not intended for scientific programming. We'll use our own simple generator,
double rand{ long% seed), which returns a random value given an integer
“seed.”

Both the MATLAB and C++ versions of rand gencrate uniform deviates,
which means they return random numbers in the interval [0, 1), The distribution
is uniform so all values in the interval are equally probable. Using the variable
R to refer to a uniform deviate

1 0<R<1

Pa(¥) :{ 0 otherwise (11.21)

is probability density of R.

A simple way to generate uniform deviates is by the linear congruentiol
method.[81] Given an initial (seed) integer value, Iy, a sequence of integers, I,
is generated using the mapping

Tiew = (edoa + ¢) mod M (11.22)

where q, ¢, and M are integer constants. As a simple example, if a = 7, ¢ =0,
and M = 10, then one possible sequence is I = {3,1,7,9,3,1,...}. The uniform
« deviate is computed as % = I, /M.
In MATLAB, (11.22) could be computed as

I new = floor{ rem(a*I_ocld + ¢, M));
I_old = 1I_new;
R = I_new/M;

$Because these generators use a deterministic algorithm, they are sometimes referred to as
pseudorandom number generators. Since the definition of random is problematic, ¥ prefer to
avoid these randomer-than-thou arguments.

348 CHAPTER 1. STOCHASTIC METHONS

Since MATLADB has no integer arithmetic, the rem (\rema.indor) function is used
in place of modulo. See the listing of rand {(page 395) to sce how this is u-
plemented in C++. A possible numerical pitfall is that the integer arithmetic
might overflow, that is, exceed the range of allowed integers.

The quality of this generator is highly dependent on the choice of a, ¢, aud
M. There is no single, ideal choice because there are many tesis for validating
generators. A good choice, justified at length by Park and Miller [94], is a = 7,
¢ =0,and M = 251 — 1. If you write your own implementazion of this gencrator,
he sure to check that for an initial sced of one the generator refurns a seed of
1043618065 after 10000 calls. Notice that if Ty # 0, then Loy 70, since M is
a Mersenne prime (do not set the seed to zero).

There is considerable superstition regarding how one should set the initial
sood. There three schools of thought. (1) Use a simple initial sced such as
I, = 1. {2) Use a large integer. [sometimes use my social security munber
(which happens to be primet). (3) Select the seed in a “blind” fashion, for
example, by reading the computer’s internal clock. [don’t feel you can make a
convincing argument why any of these is superior. Howcver, no matler how you
select the initial seed, vou should record its value. For debugging purposes, we
often want to run a program using identical conditions, that is, with the same
set of random numbers,

Beware of gencrators whose seed is shorter than A bytes. They ave unsuit-
able for scientific work becauge they have a short period. For example, most
implementations of the uniform deviate generator in <stdlib.h> rcpeat the
same scquence of numbers after about 33,000 calls.[101] Using a = 75 e =0,
and & = 231 — 1. the linesr congruential generator has a full period; that is,
it repeats after M calls, MATLAB’S built-in gencrator uges a 35 clement seed
and has a period of 21492 =~ 10159,

Iinally. resist the temptation to “improve” a generaior by building a Rube
Goldberg machine; for a cantionary tale see Knuth [81]. One allowed cxception
is 10 generate a set of mumbers and then shuffle them.[104]

Invertible Distributions

The uniform deviate is the bagic building block in the construction of most
random number generators. Let’s start with some simple exarples of how it
can he transformed to deliver a variety of distributions.

Ag a simple example, a single random mumber, i, which is uniformly dis-
tributed in the inerval [a. &), may be obtained as

r=a+{h-aX (11.23)

Given two independent uniform deviates, Ry and Ro, their sum, ¥ = Ry + Ny,
is wriangle disiributed in [0, 2) as

1 <
Py(y):{ v U—ygg1 (11.24)

11.2. RANDOM NUMBER GENERATORS 349

This result may be extended to construct a Gaussian distributed random vari-
able (see Exercise 11.15).

Uniform deviates may be easily transformed to generate random numbers
from invertible distributions. A simple example is the exponential distribution

Py(u) = ;e*“/* (11.25)

where 0 < u < oco. This distribution has mean value (v} = A and variance
{(w — {u))?y = A2, Consider a new random variable, R, defined as

u = —Xln(l — R) (11.26)
80
R=1-e¢%* dR= %e_“/*du (11.27)
Performing this change of variable just as we normally do in integral calculus
Pu(u)du=1-dR = Pa(R)dR (11.28)

Thus the variable R is uniformly distributed in [0,1), that is, it is a uniform
deviate and B = R. Using (11.26), an exponentially distributed random value
u may be computed as

u = - lambda * log(1 - rand{1) J;

in MATLAB.
A more common distribution is the Gaussian (or normal) distribution
1

Qo

P a)dx = emlE 0?20 g (11.29;

which has mean value, {z) = y, and a variance, {(z — {2})*) = o®. You are
probably familiar with the polar transformation trick [105] used for integrating
a Gaussian; to make the Gaussian an inversible distribution, we play the same
game. Congider the product of two similar Gaussian distributions,

P (z)P{y)dzdy = 27302e—(m*”)zmgze_(y*”)yz“z dx dy
= 2;02e*[(m—u)zﬂy—m?}/%z dz dy {11.30)

-

Introducing the polar coordinates, # = peosé +p and y = p sin# + p, we have

P, (p)Ps(0)pdpdf = e=P 12 pdp df (11.31)

2ng?

If we define & supplemertary change of variable,

1
u=p?/20% R = ﬂe (11.32)

350 CHAPTER 11. STOQCHASTIC METNODS

11— -,t ———————————
I . |
21 Taw N
E; F()C) i E SlOpe .= P(.PC)
E o |
o L |
A Plx} - |
— |
a g b+

Figure 11.3: Probability distribution P(z) (light line) and its cumulative distri-
bution function F({z) (heavy line). The interval dR is mapped intc the interval
dx.

then
Pulu)Pr(It) dudR = (e”“ du}{l dR) (11.33)

The variable « is exponentially distributed, while the variable R is uniformly
distributed in [0, 1).

This procedure for obtaining Gaussian distributed random numbers is known
as the Boz-Muller transformation. This transformation is used by the C4+
function randn to gencrate Gaunssian distributed random numbers (see the list-
ing on page 395). MATLAB has a built-in Gaussian generator, randn, with
a syntax similar to rand. Both the C++ and MATLAB generators return
Gaussian distributed random values with ¢ = 0 and & = 1. For the gen-
eral case, transform these values using sigma*randn{1) + mu in MATLAD and
sigmaxrandn{seed) + mu in C++.

To understand why these transformations work, consider a probability dis-
tribution, P, (), where 2 is in the range [0, b). We imtroduce the cumulative
distribution function,

Fo(z) = /.JL P,z da' (11.34)

Note that Fi,(a) = 0 and Fy,{h) = 1. Figure 11.3 illustrates a typical distribution
Py () and its corresponding F, {x). Using the cumulative distribution function,
we map the interval [0,1) into the interval [a,b). Where the slope of F is
small, the interval dR gets mapped inte a large interval dz. In this way the
transformation correctly maps the uniform deviate R into the random varizhle
Z.

Once again, consider the exponential distribution (11.25), whose cumulative
distribution function is

wy
Fylu) = / —eT M !
o A

11.2. RANDOM NUMBER GENERATORS T35

_ [—ef"w’//\]z = 1w {11.35)
Setting F, (1) = R and solving for u gives (11.26), our previous transformation
for the generation of the exponential distribution. Although the method works
in general, if the function Fy (z) is difficult to evaluate or to invert, that is, if
either Fy(z) or F, '(R) does not have a simple form, other techniques may be
more efficient.

Discrete Distributions

So far we have considered continuous probability distributions where the random
variable is a rea) mumber. However, some random processes have only a discrete
set of outcomes. Say that the random variable ¢ takes on integer values in
the interval [a,b] and is distributed with probability F;{i]. For example, with
a die roll, B[1] = B[2] = ... Pi[6] = L. As a more complicated example, the
probability of getting & “heads” when flipping N coins (or one coin NV times) is
given by the binomial distribution,

where k=0,...,N.

For the die roll example, the random variable i may be generated as i = [63t],
where R is a uniform deviate in [0,1). The ceiling of z, [], is the sinallest integer
greater than « (ie., round-up z to an integer). In C++, the random variable ¢
may be generated as

int i = ceil(6*rand(seed));

For the coin toss example, call j the ontcome of & single toss. We may select it
as j = |2R]; the floor of z, |z, is the largest integer less than . In MATLAB,
we may generate j using

i = floor (2*rand{1));

If k is the number of “heads” out of N tosses, it may be selected as

k=0;
for i=1:N

k = k + floor(2*rand(1}));
end

or more compactly, k = sum(floor (2¥rand (N,1))),in MATLAB.
Another algorithm for evaluating a single coin toss is
int j;
if(rand(seed) < 0.5)
j = 0; // Tails
else
j =1; // Heads

302 CHAPTER 11. STOCHASTIC METHODS

in C++. This second approach may seem cumbersome, but it has the advantage
that it may be easily generalized o handle any discrete probability distribution,
A simple algorithm for selecting a random variable ¢ with distribution Fj[f] is
to find the value of ¢ that satisfies the condition

i—1 i
Y Pl <R<d Al (11.37)
i=a ji=a

with Pfa — 1] = 0. In MATILAB, this could be implemented as

R = rand(1); % Uniform deviate in [0,1)

for j=a:b
= gum + P(j); % Cumulative sum of P(i)
if(R < sum)

i =3j; % Pick this value
break; % Jump out of the "for" loop
end
end

We usnally necd many random values drawn from a distribution. In that case,
this algorithm is mare efficient if we use the discrete cumulative distribution

Rl =Y Bl (11.38)

i
We compute F; once and use it as follows:

// Define a, b, and F[j]

double B = rand{seed); // Uniform deviate in {0, 1)
int 1,73;
for(j=a; j<=b; j++)
if(R < F[3]1) {
i=7j; // Pick this value
break; // Jump out of the "for" loop
}
}

-

I'he random variable 4 is selected by the condition
Fili = 1] < | < Fi] (11.39)

(Figure 11.4). The simple search scheme above requires, on average, O(V)
operations, where N is the number of possible values for § (e, ¥ = b —a +
1). Typically, a more efficient, search algorithm can reduce this to O(ln V)
operations.

11.2. RANDOM NUMBER GENERATORS . 303

—_

P, and F;

Figure 11.4: Selection of a discrete random number using the generating func-
tion. Shaded histogram is P;[i] and dark staircase is Fil#].

Acceptance-Rejection

Acceptance-rejection is a useful technique for building generators of arbitrary
distributions. It works equally well for both continuous and discrete random
variables. The general idea is analogous to throwing darts at a dartboard.
There is a low probability of hitting the bull's-eve because its area is a small
fraction of the area of the board.

Consider a continuous random variable z distributed in [a,b) with a proba-
bility distribution P, (x). We select a value F°* with the condition

P > P () (11.40)

for all z. The scheme for selecting a random value for @ is: (1) pick a trial value
Ty = o+ (b - a)Ry; {2) compute P(zy); (3) accept x4y as the generated
random number if

Pl’: p T

Polayy) o, Ry (11.41)

mex —
Pre

where %, and R are independent uniform deviates; and (4) if this condition is
not satisfied, iy 1s vejected, and we return to step (1) and try again.

Figure 11.5 shows a geometric interpretation of this scheme. Picture a rect-
angle bounded by « = [a,b) and ¥ = [0, P2}, We select a random point
{(Ztry, Yery) Inside this rectangle, where yypy = D™ Ry If this point lands in the
shaded region [i.e., below the curve Py(z)], then it is accepted. The larger the
value of Py(zyy), the more likely it is that we’ll accept @iry. The acceptance-
rejection scheme is exact if P satisfies (11.40). However. it is most efficient
when 2% = max{P,(x)), since this minimizes the number of rejections. Fi-
nally, the scheme is easy to adapt to discrete random variables; replace the curve
in Figurc 11.5 with the histogram of the distribution.

354 CHAPTER 11. STOCHASTIC METHODS

MaXx

G
X .

: 3
B
4

\9!
L 00bsg . 4 (i)
i

P(x)

siziy
i

R nSdhe m e,

s i GRS LS

i ————— —— — —
|
Gk
i
T

= -
T,
e
diney

b X
Figure 11.5: Schematic illustrating accentance-rejection method.

EXERCISES

7. A common way of displaying the distribution of a random variable is by a his-
togram. Consider the interval [0, b) divided into M sub-intervals (bins) of length
Azr = (b —a)/M. Given a set of N random values of 2, call Ny the number of values
that fall within the jth interval. The cxpected value of N is

. oy Az NAx .
(N;y = Nf P,(x)de =~ [Pele+ (§ — 1YAD) + Pela+ jAz))
at(j—l)Ae 2
where P,(x) is the distribution for x. (a) Show that the valucs returned by the rand
function are uniformly distributed by counting the numhber in each bin and plotting
the histogram of N; versus j. Generate N = 10°, 107, and 10° random numbers, and
use M = 20 bins. Also plot the expected value {N;) for each bin. (b) Repeat part (a)
for expenentially distributed random values generated using (11.26). Take A =1 and
[a.B) = [0,3X). {c) Repeat part (a) for Ganssian distributed random values generated
using the randn function. Take g =0, ¢ = 1, and [a,b) = [—40, 40}. [Computer]

8. The moments of a distribution are defined as

b
() = / @' Poa)de
where the random variable, x, takes values in the interval [s,6]. Obtain the mo-
ments for the following distributions: (a) uniform deviate; (b) exponential distribu-
tion, {11.25); {¢) Gaussian distribution, (11.29) for g = 0. (d) Show that the variance
may be written in terms of the first and second moments, {((z ~ (2})7) = (£”) — {&)*.
Clompnte the variance of each of the distributions from parts (a) te (¢). [Penel]

9. The moments of a distribution may be estimated given a sample of random numbers
from that distribution. Given the numbers x;, this estimate may be computed as,

) 1 N
@Y

i—1

11.2. RANDOM NUMBER GENERATORS | 355

Write a program that computes this sum to estimate ¢ = 1,...,6. Compare your
numerical estimates with the analytic results from the previous exercise for N = 10,
10, and 10%. [Computer]

10. (a} Write a program that generates a vector of 1024 Gaussian distributed random
values, computes the diserete Fonrier transform using the FFT, and plots the power
gpectrum (see Section 5.2). This time series is an example of white noise. Produce at
least four plots each using a different initial seed. (b) Assemble a time series consisting
of white noise plus a sinusoid of amplitude o and a period of 20 data points. Compute
the power spectrum for a variety of values of . In your judgment, what is the minimum
value of o for which the sinusoid is distinctly seen in the spectrum. [Computer]

11. An extension of the exponential distribution is the germnma distribution,

—x ,m—1
. et
P lx)de = Tmo17 de

where 0 < # < oc. Show that » may be generated using

r = —iln(l — R
=1

where R; is a uniform deviate. [Pencil]
12. Consider a random variable 0 < & < b that is distributed as
(n+ 1)z
Pm '(21'3) dr = W dz
Find the transformation that maps the nniform deviate into . [Pencil]
13. Consider a random variable 0 < z < oo that is distributed as

2
Py(z)de = e /0% dy
Find the transformation that maps the uniform deviate ® into x. [Pencil]

14. The probability distribution for points r = {z,) uniformly distributed within a
circle of radius R is

. - <R
— wR2 r _
Pr(r) { 0 otherwise

Prove that these points may be generated as ¢ = /R cos(2rRz:) and y = /Ry sin(2rR2),
where %, and R are independent nniform deviates. [Pencil]

15. One way to obtain a Gaussian distributed random number, z, is to make use of
the central limit theorem and compute

M
12 Z 1
r=— (ER?, - 5)
i=1

whese the % is a uniform deviate. (a) Show that (x) = 0 and {x*) = 1. [Pencil]
(b) Write a program that generates 10° values of x for M = 2, 6, 12, and 24. Plot
a histogram of each sequence and show that z is approximately Gaussian distributed
when M is sufficiensly large. [Computer]

350 CIHAPTER 11, STOCHASTIC METHODS

16. The Powson distribution is a discrete probability distribution common in statis-
tical mechanics. Tt is defined as
e TN

il

Pli) =

where 0 < 4§ < oo, (a) Write a function that uses the cumulative distribution to
generate Poisson-distributed random integers. Assume that A is never very large so
that a simple search algorithm is adequate. Test your function by showing that the
mean value () = A. (b) Modify vour funclion to use a wore sophisticated search
algorithm for large values of A. For what values of A does the advanced method pay
off? [Compuier]

17. (a) Write a fanction that uses acceptance-rejection to generate the distribution

Pzydr = 3—(1 — %Y

where —1 < z < 1. Test your reutine by generating 10% values and plotting the his-
togram (sce Exercise 11.7). (b) Repeat part (a) for the binomial distribution [Equation
{11.36)]. (c) Repeat part {a) for Polsson-distributed random numbers (see Exercise
11.16). [Computer]

18. Consider the dice gane known as eraps. On the first throw, if you roll 7 or 11 you
win; otherwise the roll essablishes your “mark.” You continue throwing until either you
roll your mark (and win) or roll a 7 or an 11 (and lose). Write a program that sirnulates
the continuous playing of craps. Determine (a) the probability of winning; (b} the
average number of dice rolls in a game; () the probability of rolling 10 times without
hitting your mark; (d) the probability of winning if the dice are “loaded” so that the
probability of rolling a 1 or 6 is twice as probable as any other die roll. [Computer]

11.3 DIRECT SIMULATION MONTE CARLO

General Algorithm

We now turn to the problem of constructing a numerical simulation for a dilute
zas. Again, we don’t want to compute the trajectory of every particle. Instead,
we’ll use kinetic theory to build a stochastic model. The scheme is loosely based
on the Bollzmann equation; it was popularized as a practical numerical algo-
rithm by G. A. Bird. He named it direct simulation Monte Carlo (DSMC) [21],
and it has been called “the dominant predictive tool in rarefied gas dynasnics
for the past decade.”[90)]

The DSMC algorithm is like molecular dynamics in that the state of the
svstem is given by the positions and velocities of the particles, {r;,v;}, for i =
1,...,N. A usctul concept in these types of simulations is that of representative
particles. If each particle were to represent only a single molecule, a simulation
of ambient air would need about 27 million particles per cubic micron. [ustead,
each particle in the simulation is assurmed to represent N molecules in the
physical svstem that are ronghly at the same position with roughly the same
veloeity. The totally democratic dvnamics of the real gystem is represented in

PR DIRECT SIMULATHON MONTE CARLO Ruv

the simulation by a parlianentary subset. Of course, the simulation will not
he accurate if the number of particles, N, is too small. Surprisingly, using 20
or more particles per cubic wean free path is usually sullicient. The concept
of representative particles allows us to rescale length and time to model larger
systems. For example, the system volume is Vo = (N Ngr)/n. where n is the
number density.

The evolution of the systern is integrated in time steps, 7, which are typically
on the order of the mean collision time for a particle. At each time step, the
particles are first moved as if they did not interact with each other. Every
particle’s position is reset as r{t -+ 7) = r;{4) + vi(f)7. In this section we study
homogeneous problems, bus formulate the DSMC algorithm for inhomogeneous
systems, in anticipation of the next section. After the particles move, some are
selecied to collide. The rules for this random seloction process are obtained from
Kinetic theory, After the velocitics of all colliding particles have been reset, the
process is repeated for the next time step.

Collisions

Intuitively, we would want Lo select only particles thai were near cach other
as collision partners. I other words, particles on opposite sides of the system
should not be allowed to interact. To implement this condition, the particles
are sorted into spatial cells and only particles in the same cell are allowed 1o
collide. We could invent more complicated schemes, but this one works well, as
long as the dimension of a cell is no larger than a mean [ree path.

In each cell, a set of representative collisions is processed at each time step.
All pairs of particles in a cell are considered to be candidate collision partners.
regardless of their positions within the cell. In the hard-sphere model, the
collision probability for the pair of particles. @ and j, is proportional to their
relative specd,

IV‘E - VJ‘|

JD(:GU[?:L‘” - -~ N (1142)

Zm:.l Z::L:_ll hrm - Vﬂ‘
where N, is the number of particles in the cell [see Equation (11.17)]. Notice
that the denominator serves to normalize this discrete probability distribution.

It would be computationally expeusive to use (11.42) directly, because of
the double sum in the denominator. Instead, the following acceptance-rejection
scheme is used to seleet collision pairs:

1. A pair of candidate particles, 7 and j, is chosen at random.
2. Their relative speed, v, = |v; — vy |, is computed.

3. The pair is accepted as collision partners if v, > vf***R, where v is the
maximum relative velocity in the cell and R is a uniform deviate in [0, 1},

4. If the pair is accepted, the collision is processed and the velocities of the
particles arc reset.

398 CHAPTER 11. STOCHASTIC METHODS

5. After the collision is processed or if the pair is rejected, return to step 1.

This acceptance-rejection procedure exactly selects collision pairs according to
{(11.42). The method is also exact if we overestimate the value of 7%, although
it is less efficient in the sense that more candidates are rejected. On the whole,
it is computationally cheaper to make an intelligent guness that overestimates
vp% rather than recompute it at each time step.

After the collision pair is chosen, their postcollision velocities, v} and Vi,
need to be evaluated. Conservation of linear momentum tells us that the center
of mass velocity remains unchanged by the collision,

[e—

K l * * * 3
(Vi + Vj,) = i(vt +Vj) =Vem (1143]

Vem = 3
2
From conservation of energy, the magnitude of the relative velocity is alse un-
changed by the collision,

vr = |vi — vy = |vi — V| = (11.44)

Equations (11.43) and (11.44) give us four constraints for the six unknowns in
v; and vj.

The two remaining unknowns are fixed by the angles, & and ¢, for the relative
velocity
v = u,[(sin d cos ¢)% + (sinFsin @)y + cos fz) (11.45)

T

For the hard-sphere model, these angles arc uniformly distributed over the unir
sphere. The azimuthal angle is uniformly distributed between 0 and 27, so it is
selected as @ = 27R;. The 8 angle is distributed according to the probability
density,

Py(8)df = $sin6 df (11.46)
Using the change of variable ¢ = sind, we have Py(q)dg = (3)dg, so q is

uniformly distributed in the interval [—1,1]. We don’t really need to find 6,
instead we compute

cosf = ¢ {11.47)
ginf = 1— 42

to use in (11.45). The post-collision velocitics are sct as

* 4 1 ¥
Vi = Ve T §Vr

* * 1 * -
V=V, — Evr {11.48)

and we o on to select the next collision pair.

LA DHRECT SIMULATION MONTE CARLO 359

Finally we ask, “How many total collisions showld Lake place in a cell during
a time step?” From the collision frequency (11.17), the total number of collisions
in a cell during a time 7 18

(11.49)

where 17 is the volume of the ccll. Each collision between simulation particles
represents Ny collisions among molecules in the physical svstermn. However, we
don’t really wanl Lo compute {2,), since that involves doing a sum over all %\f
pairs of particles in the cell.

Recall that collision candidates go through an acceptance-rejection proce-
dure. The ratio of total accepted to total candidates is

M., oy _
Mean _ {02 (11.50)
ﬂ"ﬁ.‘imd 1“][!]dx

since: the probability of accepting a pair is proportional o their relative velocity.
Using (11.49) and (11.50),

T D P
N Ngerd-ol™r

ﬂ"f{_:iin Jd = 2 [’;

{11.51)
which tells us how many candidates we should seleet over a time step 7. Notice
that if we set % too high, we still process the same number of collisions on
average, but the prograie is inefficient because many candidates are rejecied.

DSMC Program

The program dsmceg, which uses the DSMC algorithm to compute the relax-
ation of a monatomic gas to thermodynamic equilibrium, is outlined in Ta-
ble 11.1. The sysiem is assumed t6 be homogeneons n the y- and z-directions,
80 only the s-component of position is recorded. While the problem we study
in this section is also homogeneous in the z-direction, it is better to construct
the more general algorishim for use in the next secrion. The boundaries at @ =0
and & = L arc periodic. If a particle erosses the right boundary, it reappears on
the left and vice versa (Figure 11.6).

In the dsmeceq program, all the particles (argon atoms) have the same iui-
tial speed. The y- and z-components of velocity are initially zero, while the
x-component 18 set to fw,:, where the sign is selected randomly lor cach par-
ticle. We wouldn’t want 1o set all the particle velocities equal, because then
the relative velocities would all be zero and collisions would never take place
(remember that the houndaries are periodic).

The system is divided into cells along the @ direction., The width of a cell,
Fie. should be set Lo & [raction of a mean free pach to ensure that a cell is locally
homogeneous. The time step is sclecled as 7 = aL/{v), where the value of a i3
set to a fraction less thar one {a = (.2 in dsmceq). Thus a particle, on average,
will spend several time stens in a cell.

360 CHAPTER 11. STOCHASTIC METHODS

-~
"'\,.
[SRR
s
S
[y SR

.'c'=L

Figure 11.6: Schematic of the dilute gas system simulated by dsmceq. Notice
that the boundarics at ¢ = 0, L are periodic.

Table 11.1: Outline of program dsmceq, which simulates relaxation to equilib-
rium in a dilute monatomic gas using the DSMC algorithin.

Initialize constants (i, d, N, etc.).

Asgsign random positions and velocitics to the particles.

Plot (MATLAB) or record {C++) the initial speed distribution.

’,me)

Initialize the varizbles used for evaluating collisions (e.g., 1

Declare structure (MATLAB) or object {C++) for lists uscd in sorting.

Loop for the desived number of time steps.

- Move all the particles balligtically.
— Sort the particles into cells (see sorter, Table 11.2).
Evaluate collisions among the particles (see colider, Table 11.3).

- Periodically display the current progress.

Plot (MATLAB) or record (C++) the final speed distribution.

See pages 375 and 383 for program listings.

1030 DIRECT SIMULATION MONTE CARLO 361

Table 11.2: Outline of program sorter, which produces scrted lists used to
select random parsicles from a cell.

Inputs: {x;}, L. [sorting Lists].

Outpul: [sorting Lists].

Find the cell address for each particle.

Count the number of particles in cach cell.

Build the index list as cumulative sum of the nwmber of particles in each

cell.

¢ Build cross-reference ligt.

Sec pages 376 and 386 for program listings.

Table 11.3: Outline of funciion colider, which is called by dsmceq and dsmcne
to evaluate collisions using the DSMC algorithm.

o Inputs: {vi}, o, 7, MZH, [%A‘};ﬁd?rﬂﬂ, [sorting lists].

J . 2 JILAK fextra A
o Outputs: {v;h, v=8% MR M.
e Loop over cells, processing collisions in each cell.

— Skip cells with only one particle.

— Determine number of candidate collision pairs to be sclected in this
cell.

— Loop over total number of candidate collision pairs.

Pick two particles at random out of this cell.

Calculate pair’s relative speed.

Accept or reject candidate pair according to relative speed.

* K ¥ ¥

If pair accepted, select post-collision velocities.

Sec pages 377 and 387 for program listings.

362 CHAPTER 1. STOCHASTIC MEETHODS

Cell 1 Cell2 Cell3 Cell 4

12 1 1 1 2 1
331 7T ! 1
® e o I
36 1 23 ! o9 !
o e : L
Xref = [12, 33, 56, 23, 77, 2, 86, 99, ...]
cell no = [3, 2, 0, 3, ...]
index = [1, 4, 6, 6, ...]

Figure 11.7: Mllustration of particle sorting as done by sorter function.

The particles are sorted into these cells by the function sorter (Table 11.2).
This function creates three lists that are used to sclect particles at random from
cells. Figure 11.7 illustrates how the three lists are built. The cross-refercence
list, Xref, is just a list of particle names sorted by their x-coordinate. The
nurnber of particles in a cell is given by cell n. Finally, index is just the
curnulative sum of celln. When drawing particles at random from a given
cell, index and cell n tell ug where in the crossreference list Xref to lock.
In the example illustrated in Figure 11.7, suppose that we wanted a random
particle [rom cell 4. We should choose one from Xref between 6 (=index(4))
and & {=index(4) + cellmn(4] —1). The three candidates are Xref(€)=99,
Xref(7)=2, and Xref(8)=g86.

The sorting lists arc collected into a structure in the MATLAB version and
into a ¢lass in the C4+ version. This simplifies passing the lists in and out of
routines. In MATLAB the structure is declared and iritialized as

gortData = struct(’ncell’,ncell,
’npart’ ,npart,
’cell_n’,zeros{ncell,1),
?index’ ,zeros(ncell,1),
’Xref’ ,zeros(npart, 1)) ;

The declaration is more complicated in C++ (see the listing ou page 396). For
both MATLAB and C+ +, the data elements are accessed as

DbjectName.DataElement

for example, sortData.¥ref (i) in MATLAB and sortData.Xre:f[i] in O++.
An additional advantage of using a class in C4++ is that the memory allocated
for these lists is automatically released by the destructor when the class oes
out of scope.

The function colider, which processes collisions using the DSMC algorithm,
is outlined in Table 11.3. For each cell, we first determine the number of collision
candidates to be selected. Each candidate pair is drawn at random from the
particles in the cell. Given their relalive speed, the pair is accepted or rejected; if
the pair is accepted, the particles arc said to collide. The past-collision velocit ies
of the particles are computed using (11.45) and (11.48).

3 DHRECTT SIMULATION MONTED CARLO 363

Final distrib., Time = 3.22864e-010 sec.

1500

1060

Number

500 1

G

50 150 250 350 450 550 650 750 850 950 1050
Speed (m/s)

Figure 11.8: Speed distribution as obtained from dsmceq for N = 3000 particles.
Alter 10 time steps, there have been 2720 collisions.

Initially all particles in the dsmceq program have a speed of 413 m/s. Fig-
ure 11.8 shows the distribution afier 10 steps (and 2720 collisions) for a sys-
tem of 3000 particles. At this point, the distribution hag already significantly
relaxed toward equilibrium despite the extremely improbable initial condition
and despite the fact that each particle has only been in fewer than two colli-
sions. Figure 11.9 shows the distribution after 50 steps (and 14,555 collisions).
This latter histogram shows that the system has almost completely relaxed to
equilibrinm in about a nanosecond.

EXERCISES

19. Show that in a collision, the magnitude of the relative velocity remains unchanged.
Is this result maodified if the particles have dissimilar masses? [Pencil]

20. Modify dsmceq Lo compute the expected equilibrium speed distribution histogram
uging the Maxwell-Boltymann distribution (see Exercise 11.7). Plot this distribution
along with the measured speed distribution histogram and demonstrate that the pro-
gram correctly approaches equilibrium, [Computer]

21. Modify dsmceq to compute

Np(v N (v
H(t) = ZA?} :\‘() In ,\(_)
bins
where Ny (v) is the nnmber of particles in a histogram bin of width Av (see Exercisc
11.7). This H-fimetion is proportional to the entropy in the system.[15] Show that
for a system initially out of equilibrium, H decreases with time until the system
equilibraies. [Compuser]

364 CHAPTER 11. STOCHASTIC METHODS

Final distrib., Time = 1.61432e-009 sec.
800 | : |

T
700f
600} —

5001

300 ’7 '
200/|

100 ‘

Number
B
(=)
<)

|

| P
|
\ 11—
50 150 250 350 450 550 650 750 850 9501050
Speed (m/s}

Figure 11.9: Speed distribution as obtained from dsmceq for N = 3000 particles.
After 50 time steps, there have been 14,535 colligions.

22, Modify dsmceq to use specular walls instead of periodic boundaries at © = 0, ..
At a specular wall, a particle is reflected elastically. The pressure at a wall is defined
as the time-averaged change in momentum of partieles that strike the wall per unit
area. Initialize the particles with a Maxwell-Boltzmann distribution and measure the
pressure at the walls. Compare with the expected value as given by the ideal gas
law. [Computer]

23 Modify your program from the previous exercise to measure the w-velocity dis-
tribution of particles that strike a wall. DPlot this distribution as a histogram (see
Exercise 11.7). Show that particles arriving at a wall are distributed according to the
hiased Maxwell-Boltzmann distribution,

B, ('U:z) - i%vazerimyi/zk’r
with the sign being plas for the right wall and minus for the left wall. [Computer]
24, Modify dsmceq to measure the mean free path, X, of the particles. Note that
the program only records the w-component of position while A is the average three-
dimensional distance traveled by a particle between collisions. Couofirm that your
measurement agrees with (11.20). [Computer]
25. Wthile the total number of particles in the dsmceq programn remains constant, the
number of particles in a piven cell fluctuates. Sample and compute the corrclation in
number density between cells, Compare with the theoretical result,

(VN7

(Ai‘\’}ﬁf\%) = <N,>O;’, — T (-’\‘1)
LR

where (N} is the average number of particles in cell i and AN, is the fluctuation in
the number of particles (i.e.. AN: = N — (N [Commuter]

(10 *NONEQUILIBRITAL STATES 365

Black
or hoi §

White
ot cold

¥
tor

x=0 x=1L

Figure 11.10: Schematic illustrating a nonequilibrium steady state with a con-
stant pigment (or temperature) gradient.

11.4 *NONEQUILIBRIUM STATES

Steady States

The statistical mechanics of equilibrium systems is well developed, resting on the
firm foundation of ensemble theory, Unfortunately, we have no similar general
theory for noneguilibrium systems. As such, it would be averly ambitious to
start off trying to tackle a complex problem such as turbulence. Tn this scetion
we consider simple systems that are out of oquilibrium, but at a steady state.
In cther words, quantities such as density aud temperatiure may vary in space
hut are stationary in time,

Ag 2 first example of a nonequilibrium steady state, consider a dilute gagin &
hox of length I and cross section A. Suppose that the particles are tinted either
black or white. Particles that reflect off the left wall are turned black, while
those contacting the right wall are turned white. A particle’s pigmentation is
unaffected by reflections off the other walls or by collisions. After a time, we
reach a steady state, as illustrated in Figure 11.10.

Tn this system, black particles diffuse to the right and white particles diffuse
{0 the left. This means there is a net fux of pigment in the system. I we
assame that the lux, F,, is proportional 1o the eradient of pigment, then

a .

where p(z,1) is the density of pigment and the constant of proportionality, D,
is the coefficient of diffusion. Notice the negative sign on the right-hand side of
this equation; if pigment increases from right to left (negative gradient), then
the flux is from left to right {positive flux).

The time evolution is given by the equation of continuity,

2] ‘ d .
ap(_zr,t,a = gl (11.53)
&2 .
= D&'_gﬁ (11.54)

At the steady state, the flux must be constant across the system. Thus,

play=1—u/L (11.55)

366 CHAPTER 11. STOCHASTIC METHODS

given the boundary conditions p(0) =1 and p(L) = 0.

Consider Fignre 11.10 again, but instead of having the walls of different
pigment, set them at different temperatures. Particles leaving the hot, loft wall
have, on average, a large kinetic cnergy as comparcd with those leaving the cold,
right wall. The scenario is slightly more complicated because, unlike pigment,
kinetic energy is exchanged in collisions. The general picture, however, remains
the same.

We define the mumber density, n(x,.7), as the number of particles per unit
volume and the energy densitv, e(x, £), as the kinctic energy per unit volume.
At the particle level, they are defined as

N
1
n(z,t) = Ade 26[4‘ < @ < &+ da {11.56)
i=1
1 o1
o1 0 3 R — —muld|r <z < ax : .
(e, t) Ademe‘é[T*I"<I+d3] (11.57)

where
1 z<e,<et+ds

0 otherwise (11.58)

8z <z <x+dr] = {
The sums are over all N particles, but with the Kronecker delta functions only
particles located between x and z 4 di are counted. These are strictly mechan-
ical variables, so there is no problem with their definition.

Next, we use the equipartition theorem. (11.12), to define a local, instanta-
neous temperature as
2 ez, t)

Tl t) =+
(@1 3k nix,t)

(11.59)

Aside from a conversion factor involving Boltzimann’s constant k, this tempera-
ture is the average kinetic encrgy per particle. If you've had a rigorous training
in equilibrium statistical mechanics. you should instinctively cringe at (11.59).
‘The proper thermodynainic definition of temperature is based on entropy and in-
volves an average over an ensemble of states. All the same, it is useful to extend
definitions of thermodynamic quantities, such as temperature, to nonequilibrium
systems by using equilibrium identities, such as the equipartition theorem.[87]
Returning to the problem at hand, the energy flux through the system is

9
F.=—a—1T{(e*f 11.80
L= e T,) (11.60)
where o is the thermal conductivity. A related quantity is the thermal diffu-
sion coefficient, s (for a dilute, monatomic gas, & = 2a/3kn). I the thermal
conductivity is a constant, there is a lincar temperaturc gradient across the
systerm.

LA, *NONEQUILIBIRIUM STATES 367

Periodic boundary

T?‘»-vi

Petiodic boundary :
x=0 x=L

Figurc 11.11: Planar Couctte flow. Left and right walls move at constant ve-
locities in opposite directions. The steady state velocity profile in the fluid is
lincar [Equation (11.62)].

Viscosity

Consider a dilute gas contained between two walls moving in opposite directions,
with velocities tuy in the y-direction (Figure 11.11). You can picturc the
walls as infinite plancs or take the boundaries perpendicular to the walls to be
periodic, This simple flow problem is called planar Couette flow.

The momenturn density per unit volume is defined as

1

plx,t) = 1in

N
Z mvid|e <z < 2+ da] (11.61)

i=1

where v; is the velocity of particle 7. The fluid velocity is defined as u{z,t) =
p(z,t)/mn(z, t). At the steady state the velocity of the fluid is

u(z) =ty (%” - 1) ¥ (11.62)

that is, we have a linear velocity profite across the systemn. Particles leave the left
(right) wall with a net downward {upward) momentum, and this y-momentum
diffuses acress the system. Assuming the net flux of y-momentun varics linearly
with the velocity gradient, we may write it as

E, = —fqa%uy(x,t) (11.63)

where 4, is the y-component of the fluid velocity and 5 is the wiscosity of the
fluid.

Before continuing, let’s reconcile this definition with your intuitive notions
about viscosity. Picture a highly viscous fluid, say syrup, in a cup. If we quickly
stir the syrup then let it relax, the motion quickly comes to a halt. The reason
iz that the syrup quickly transports its momentum to the sides of the cup. The
faster the rate of transport, the more viscous the fluid.

We can obtain an approximate expression for the viscosity of a dilute gas
using a heuristic argument first proposed by Maxwell. Consider a vertical plane
located at z = x* (Figure 11.12). From purely dimensional arguments, we

368 CHAPTER LI, STOCHASTIC MICTHODS

v

Stower fluid
Faster fluid
o

e I

Figure 11.12: Schematic for Maxwell’s back-of-the-envelope ostimate of viscos-
ity.

Inow thal the total flux of particles crossing this plane from right to left is
a{v)n, where n is the number density and ¢ is a dimensionless constant. of order
unity.

Particles crossing from right to left had their last contact with other particles
at a distance of about one mean free path from the plane (see Figure 11.12).
Since the y-velocity of the Huid 18 w, (). these particles, on average, cany a
y-momentum of rew,, (z* + X). Similarly, particles crossing from left to right,
on average, carry a y-momentum of mu, (o* — X). Assembling our results, the
y-momentum flux is approximately

Fo, i) o~ Ja{wnmay, (2* — X)) — [ale)nmau, (27 + A)]
= —2al{vyrmA LG Al ot {11.64)
2 _
T 4
o —2al{vdynmA Ty (11.65)
OF | p=g»

From (11.63), the viscosity is
7 & 2onm (Ui (11.66)

Using slightly more sophisticated derivations we find that a lies between é and
f Using a significantly more rigorous approsch {Chapman-Euskog theory) we
find -

T

= ﬁﬂ??l(?.’))\ (11.67)

for 4 hard-sphere gas.[87]
DSMC Nonequilibrium Program

The program dsmcne, which simulates planar Couctte flow in a dilute gas, is out-
lined in Table 11.4. The particles {argon atoms) arc initialized near the steady

Lo ENONBEQUILIBRIUM STATIS 364

Table 11.4: Outline of program dsmcne, which simulates planar Couette How in
a diluve gas using the DSMC algorithm.

Initialize constants {(m, d, N, ete.).

o Agsign random positions and velocities to particles.

Initialize variables used for evalualing collisions (e.g., v"#*).

Declare structure (MATLAB) o: object (C4++4) for lists used in sorting.

Initialize structure and variables used in statistical sampling.

Loop for the desired number of titne steps.

— Movwe all the particles (sce mover, Tabie 11.5).
— Sort the particles into cells (see sorter, Table 11.2).
— Evaluate collisions amnong the particles (see colider, Table 11.3).

— After initial transient, accumulate statistical samples (see sampler,
Table 11.6).

— Periodically display the current progress.
e Normalize the accumulared statigtics.
+ Compute viscosity [rom drag force on the walls.

s Plot average density, velocity and temperaturve.

See pages 379 and 389 for program listings.

state with temperature o', Their thermal velocities are set as Gaussian dis-
tributed random numbers with o = \/&T/m. Furthermore, a linear y-velocity
profile (11.62) is set up across the system. The wall speed is entered in terms of
Mach numher, Ma = w,, /05, where wg is the sound speed. We want, to use a high
wall speed (c.g., Ma = 0.2} to make the velocity profile noticeable abowve the
random fluctuations in the system (remember that we use only a few thousand
particles).

Ag in the program from Section 11.3, the routine sorter {Table 11.2) is
used to sort the particles into cells and the routine colide {Table 11.3) evaluates
collisions in those cells. The function mover (Table 11.5) moves the particles and
evaluates reflections ofl the thermal walls at # = 0, L. When a particle reaches
a wall, its velocity is resel according to the biased Maxwellian distribution,

m

= e 2 (11.68)

P, ()

370 CHAPTER 11. STOCHASTIC METHODS

=
Il
o
><
il
-

PEE SRR - IEEEET N PP s v aexnwar wry e
Frliiiierrianes e fifi:iigﬁiﬁififiii:i:::
&&&!z§§¢§$$6!’é¥ 453 8. 530353 [ESRISEERETREENE]
v v R oo v w 384 vrv&ssv'&»-!s!$x§$ist
FRELABBS 842 & ISR EE N :&8&1&??8 8 81
Wy WM LETEEE [@ss!s@;.vs@@r&% 38R R R
G BEEGEREL B G udy g SN EE BN 3 B3 RESsE B BA BB EE B
i LR RE IR LR AR R X BN = §i@§tt§f1&§s!§i§13
R G ias e PreiEi e sanie s
N?%Qﬁ&&?*?&&i@& & & heisd ssEbin g
............. wrime vEwr s R
PR aR R TY it 4 $?;3W!§
P S et ¥ a e
ERSA S AR PHIETIIIIIGG
IS ERE IR Y]
Tmsseamsmuiiete RS SRR R

Figure 11.13: Equivalence of a thermal wall and a thermal reservoir,

Foy(vy) = \fgogme T/ (11.60)
P lv) = \/ﬁ%ﬁ”“’”f”’”"w (11.70)

where u,, and T, are the y-velocity and temperature of the wall, respeetively.
The sign on the z-velocity is positive for the left wall and negative for the right
wall. After a particle’s velocity is thermalized, it is allowed to move away from
the wall for whatever fraction of the time step remains.

To understand why the », distribution is biased, consider Figure 11.13. On
the left we have a fluid at equilibrium with s thermal wall. The picture on
the right, is similar, except the wall has been replaced with a reservoir of fluid
held at the same temperature as the wall, Particles reflected off a thermal
wall should have the same distribution as particles entering the system from a
thermal reservoir at temperature T,,. Clearly, the disiribution is biased toward
particles with a higher z-component of velocity since those are more likely to
cross the boundary., If it is still not clear how this works, do Exercise 11.23.

After an initial relaxation period, the dsmcne program calls the routine
sampler (Table 11.6) to sample the cclls. This routine measures the instan-
taneous number density, fluid velocity, and temperature in each cell and accu-
mulates the results as running sums. As with the sorting lists, a structure (in
MATLAB) or class {in C++) is used to collect the sampling data into a single
ohject. At the eud of the run, this data is normalized by the number of mea-
sured samples and used to plot number density, fluid velocity, and temperature
Versus .

Notice "that the instantaneous thermal kinetic energy density in cell j is
defined as]

e;(t) = — Z —jm|V1 -, (11.71)
© i inside §
where the sum runs over all the particles within cell § and u; is the inssantancous
fluid velocity in the cell. Since the fluid is moving, we have to remove the center
of mass kinetic energy when computing the thermal kinetic energy. This energy
density s used to obtain the instantaneous temperature from (11.59),

A4 *NONEQUILIBRIUM STATICS 37l

Tahle 11.5: Qutline of function mover, which is called by the dsmene program to
update particle positions. [t also evaluates particles’ impacts with the thermal
walls.

Inputs: {x:}, {vi}, N, L, tmp, Vwall, T

Outputs: {x:}, {vi}, Marikes. DU

Move all particles, pretending walls are absent.
¢ Loop over all particles.

— Test if particle strikes cither wall.
-~ If particle strikes a wall,

* Reset velocity components as biased Maxwellian, (11.68),
(11.69), and (11.70).

* Reset position after leaving wall.

+ Record velocity change for force measurement.

See pages 381 and 392 for program listings.

Table 11.6: Qutline of function sampler, which is called by the dsmcne program
to sample the number density, fluid veloeity, and temperature in the cells.

o Inputs: {x;}, {vi}, N, L, [sampling lists].

o Ouiputs: [sampling lists].

» Compute cell iocation for each particle.

» Initialize running sums of number, velocity and #2.

s For each particle, accumulate running sums for its cell.

» Use eurrent sums to update sample number, velocity, and temperature for
cach cell.

See pages 382 and 394 for program listings.

4

372 CHAPTER 11, STOCHASTIC METHODS

The total y-momentum Hux, F, , may be measured from the change in
mowmentum of particles that reflect off the walls. From: the momentum-impulse
theorem, this flux is related to the time-average drag force on a wall as

1
(faras) = = D_mAwy = ~(F,) (11.72)

where Aw, is the change in y-velocity for a particle striking the wall. The sum
is over all particle collisions with the wall over a fime t. The change in velocity
is measured by the routine mover. The average viscosity is then

n = ifdrag)
duy, fdz

(11.73)

The dsmcne program computes a viscosity from the measured drag force at each
wall.

For the density and temperature used in the simulation, Chapruan-Enskog
theory predicts a viscosity for argon gas of = 2.08 x 107° N -s/m?. For a
short run (1000 steps) using 3000 particles and a wall speed of uy, = 0.2 Ma,
the dsmcne program obtains the estimate of n = 2.29 £ (.35 x 107° N - s/m?;
the answer is reasonable but the error bar is unaccepiably large. Doing a longer
run (50,000 steps), we get the more satisfying value of p = 2.124+0.08 x 107 N
s/m?. You should come to the conclusion that Monte Carlo simulations, by
their statistical nature, often require long rans to accumulate cnough statistical
samples.

EXERCISES

26. I a dilute hard-sphere gas; the thermal diffusivity varics with iemperature as
w{T) = kT, where rg is a constant. (a) Solve the diffusion equation,

ar 8 8
and find the steady state temperature profile in a one-dimensional system with bound-
ary conditions T(r = 0) = T, and T(z = L) = 3. [Peneil] (b) Plot your soluticn for
T, = 300K, T}, = 400K, and compare with the lincar profile obtained when we assume
& is a constant. [Computer]
27. Modify dsmecne so that particles arc labeled “black” or “white.” Particles that
reflect off a wall are turned black with probability ¢ and white with probablity (T - ¢).
Set the walls at equal temperature and make them stationary; give them different,
values of g to set up a pigmentation gradient across the system (sec Figure 11.10).
Measure the average pigment flux, and compute the self-diffnsion cocfficient using
{11.54). Compare your results with

Gir
32

D=

{}A

the value given by Chapman-Enskog theory. [Computer]
28, Modify dsmene to measure energy flux, Fi, in a system with a temperature
gradient. Set up vour simulation with stationary walls at different temperatures.

o PNONEQUILIBRIUM STATIS 373

Compute thermal conductivity, ¢, and compare your results with o = 13nk/4m, the
value given by Chapman-Enskog theory. [Computer|
29. For the small systerns simulated by the dsmene program, our definition of tem-
perature does not exactly reproduce the correct thermodynamic temperature. (a) Do
several runs at thermodynamic equilibrium (i.e., zero wall speed)} and show that the
time average of the instantaneons temperature is

: (Ne) o

{T)y = i)+ 1Tw
where (N.) is the average nunber of particles in a cell. Set {N.) = 20 to produce a
more noticeable effect. (b)) When (N} is very small {{N.} < 10), another problem
arises. Explain what causes it and how to avoid it. [Computer]
30. As mentioned in the previous exercise, the average instantaneous temperature does

not equat the thermodynamic temperature. The correct measurcment of temperature
is

I(y) =2 (%‘7—%)+ () + *(m(y»?:»})

where 1 1

Ei(t) = v Z Em\vdz

+ inside 3

is the total emergy demsity in cell J and the angle brackets indicate time-average.
Modify dsmcne to measure temperature chis way, and show that it produces the correct
value at thermodynamic equilibrinm, T'(y) = T\,. [Compuser]
31. In Couctte flow, the velocity of a fluid near a wall does not exactly equal the
velocity of the wall; this phenomenon is known as slip. Maxwell predicted this effect
and estimated that

idu
=0 & e+ A2
thy (&) the + o
du
w (e =5) = 1y — A2
w, (o) " I

where u, is the y-component of the fluid velocity. Do a variety of runs nsing dsmcne
to verify this estimate. Be sure your system is at least 10 mean free paths wide. [Com-
puter]

32. Consider the following simple one-dimensional flow problem: A constant acceler-
ation, g, 1s applied to the particles in the y-direction. The walls are fixed at constant
temperature and are stationary. This is called planar Peiseuille flow. (a) Modify
dsmcne fo simulate planar Poiseunille flow and confirm that the velocity profile is

g | L7 N R
i { e L/2)~} b

wy(w) = 4

where wi'® is the velocity of the fluid at the wall (sec Excrcise 11.31). Select a value
of g that gives a maximum fluid speed of about Ma = 0.5. (b} Estimate the viscosity
by fitting the velocity profile to a quadratic. [Computer]

33. In Couette flow, the velocity gradient in the fluid produces viscous heating. The
temperature profile is parabolic and given by,

‘ _ ??;pz ME 2 ‘
T(w) = 5-((L/2)" —«") +To

374 CHAPTIER 1 STOCHASTIC METHODS

where v = duy,/de is the velocity gradient and Ty = T(0) = 7(L) is the tempera-
ture of the fluid at the walls. Modify dsmene and fit the temporature profile to the
above quadratic. From your fit, estimabe the ratio of thermal conductivity to viscogity
and compare your result with e/n = 15k/4m. the value given by Chapman-Enskog
theory. [Computer]

BEYOND THIS CHAPTER

I picture my readers’ eyebrows rising to the tops of their heads as they discover
that this chapter does not cover such topics as the Ising model or quantum Monte
Carlo. Yet, I belicve that the kinetic theory of gases is easier to understand and
Just as important. Of course a proper coverage of stochastic methods really
requires & full-length book. Some of the topics I have omitted are discussed
by Gould and Tobochnik [61]. The Metropolis algorithm and its application
to the Ising model is covered in depth by Binder [19, 20] and Heermann [71].
Several introductory articles on the various flavors of quantum Monte Carlo
have appeared in articles in Computers in Physics [84, 106, 126, 127]. In the
more general field of stochastic processes, Gardiner [53] presents an excellent
introduction,

We've seen two different ways to model a fluid: using partial differential
equations and, on a more microscopic level, using particles. In general, the latter
is computationally mmich more expensive. However, particle simulations thrive
in certain “ecological niches.” For example, the PDE description sometimes
breaks down. Define the Knudsen number

A (mean free path) ,
Kn=-= 11.74
U1 (characteristic length) (11.74)

The continuum description of a fluid begins to break down when Kn > 1/10.
Three important cases where this occurs are: (1) flow in narrow channcls, such
as the flow under the write head of a disk drive; (2) sharp fronts, such as
shock waves; and (3) rarefied gas flows, such as high-altitude flight. The DSMC(
algorithm is ideally suited for these scenarios.

This chapter presents only very basic DSMC algorithms; there are many pos-
sible extensions and improvements.[21] To model true gases more realistically,
you can use a more sophisticated potential than hard-spheres. One suceessful
modcl is the variable hard-sphere potential for which the efective cross scetion
of the particles is a function of their relative speed. The scattering angles, ¢
and ¢, are still selccted according to the hard-sphere distribution. The DSMC
method can also simulate chemistry by including an extra selection process at
each collision. Particles react chemically when their relative kinetic energy sur-
passes the activation cnergy of the reaction.[64] Finally, the DSMC method can
be extended to simulate dense gases [7] and liquids [8].

APPIENDIN A: MATLAB LISTINGS 375

APPENDIX A: MATLAB LISTINGS

Listing 11A.1 Program dsmceq. Simulates relaxation to equilibsium in a dilute
gas nsing the DSMC algorithm. Uses sorter {Listing 11A.2) and colider (Listing
11A.3).

4 dsmceq - Dilute gas simulation using DSMC algorithm
% This version illustrates the approach to equilibrium

clear all; help dsmceq; % Clear memory and print header

%* Initialize constants {particle mass, diameter, etc.)

boltz = 1.3806e-23; % Boltzmann’s censtant (J/K)

mass = 6.63e-26; % Mass of argon atom {kg)

diam = 3.86e-10; % Effective diameter of argon atom (m}
T = 273; % Temperature (K)

density = 1.78; % Density of argon at STP (kg/m”~3)

L = le-6; % System size is one micron

npart = input (‘Enter number of simulation particles: Y
eff_num = density/mass*L”3/npart;
fprintf{’Each particle represents ¥g atoms\n’,eff_num};

#* Assign random positions and velocities to particles

rand(’state’,0); % Initialize random number generator
3 = L¥rand(npart,1); % Assign random positions

v_init = sqrt(3xboltz*T/mass); % Initial speed

v = zeros (npart,3): % Only x-component is non-zero

v(:,1) = v_init * {1 - 2#*floor(Z+#rand(npart,1})};

%* Plot the initial speed distribution

figure(1); <¢lf;

wmag = sqrtlv(:,1).72 + v(:,2).72 + v{:,3).72);

vbin = 50:100:1050; % Bins for histogram
bhist(vmag,vbin); title{’Initial speed distribution’);
xlabel(’Speed (m/s)’}; ylabel(’Number’);

%% Initialize variables used for evaluating cellisioms

ncell = 15; % Number of cells

tau = 0.2#%(L/ncell) /v_init; % Set timestep tan

vrmax = 3*v_init*ones{ncell,l); ¥ Estimated max rel. speed
selxtra = zeros(ncell,1); % Used by routine "colider"
coeff = 0.5*eff numtpi*diam”™2+tau/(L"3/ncell);

coltot = 0 ¥ Count total collisions

#* Declare structure for lists used in sorting
sortData = struct{(’ncell’,ncell,
‘npart’,npart,
‘¢ell _n? ,zeros(ncell,l),
’index’ ,zeros(ncell,1),
fref’ ,zeros (npart,1));

376 CHAPTER 11. STOCHASTIC METHODS

%* Loop for the desired number of time steps
nstep = input(’Enter total number of time steps: ')
for istep = l:nstep

%* Move all the particles ballistically
x{:) = x{5) + v{(:,1)*tan; % Update x position of particle
¥ = rem{x+L,L); % Periodic boundary conditions

Y% Sort the particles into cells
sortData = sorter(x,L,sortData);

%% Evaluate collisions among the particles

[v, vrmax, selxtra, coll = ...
colider(v,vrmax,tau,selxtra,coeff,sortData);

coltot = coltot + ceol;

%% Periodically display the current progress

if(rem(istep,10} < 1)
figure(2); clf;
vmag = sqrt({v{:,1)."2 + vi(:,2).72 + v(:,3).72);
hist {vmag,vbin);
title(sprintf{’Done %g of %g steps; %g collislens’,...

istep,nstep,coltot));

xlabel(*Speed (m/s)’); ylabel(’Number’);
drawnow;

end

end

%% Plot the histogram of the final speed distribution
figure{(2); clf;

vmag = sqrelv(:,1).72 + v(:,2).72 + v(:,3).°2);
hist(vmag,vbin};

title(sprintf ("Final distrib., Time = %g sec.’,nstep¥tan));
xlabel (’Speed (m/s)’); ylabel(’Number’);

Listing 11A.2 Subroutine sorter. Produces sorted lisis used by colider to select
random particles from a cell.

function sD = sorter{x,L,sD}
Y% sorter - Function to sort particles imto cells
% sD = sorter(x,L,sD)

% Inputs

% x Pozitions of particles

pA L System size

% sD Structure containing sorting lists
% Output

A sD Structure containing sorting lists

APPENDIX A: MATLAB LISTINGS 377

Y% Find the cell address for each particle
npart = sD.npart;

ncell = sD.ncell;

jx = floor{z*ncell/L} + 1;

jx = min{ jx, ncell*ones(npart,1) J;

Y% Count the number of particles in each cell
sD.cell_n = zeros(ncell,1);
for ipart=1l:mpart

sD.cell_n(jx(ipart)) = sD.cell n(jx{(ipart)) + 1;
end

%% Build index list as cumulative sum of the
% number of particles in each cell
m=1;
for jcell=l:ncell
sD.index(jcell} = m;
m=n + sD.cell_n{jcell);
end

%% Build cross-reference list

temp = zeros{ncell,1); % Temporary array
for ipart=l:npart
jcell = jx(ipart); % Cell address of ipart

k = sD.index(jcell) + temp(jcell);

sD.Xref (k) = ipart;

temp(jcell} = temp(jcell) + 1;
end

return;

Listing 11A.3 Subroutine colider. Called by dsmeceq and dsmcne to evaluate
collisions using the DSMC algorithm,

function [v,crmax,selxtra,coll = ...
colider{v, crmax,tau,selxtra, coeff,sD)
% colide - Function to process collisions in cells
Y% [v,crmax,selztra,col] = colider{v,crmax,tam,selxtra,coeff, sD)

% Inputs

A v Velocities of the particles

“% crmax Estimated maximum relative speed in a cell

% tan Time step

% selxtra Extra selectioms carried over from last timestep
% coeff Coefficient in computing number of selected pairs
% sD Structure containing sorting lists

% Outputs

% v Updated velocities of the particles

% crmax Updated maximum relative speed

% selxtra Extra selections carried over to next timestep

378 CHAPTER 11. STOCHASTIC METHODS

% col Total number of collisions processed
ncell = sD.ncell;
col = 0; % Count number of collisions

Y+ Loop over cells, processing collisiens in each cell
for jcell=l:ncell

%+ Skip cells with only one particle
number = sD.cell_n{jcell};
if(number > 1)

%% Determine number of candidate collisien pairs
¥ to be selected in this cell
select = coeff*number”2*crmax (jcell) + selxtra(jcell):

T L P AL RLy SN P

nsel = floor{select); % Number of pairs to be selected
selxtra(jcell) = select-usel; ¥ Carry over any left-aver fraction
crm = crmax{jcell); % Current maximum relative speed

%+ Loop over total number of candidate collision pairs
P P
for isel=1:nsel

%% Pick two particles at random out of this cell

k = f1oor {rand (1) *number) ;

kk = rem(ceil(k+rand(1)*(number-1)),number);

ipl = <D, Xref (k+sD.index{(jcell)); % First particle
ip2 = &D.Yref (kk+sD.index(jcell)); Y% Second particle

%% Calcwlate pair’s relative speed
cr = norm(v(ipt,:}-v{ip2,:)); % Relative speed

if(cx > crm) % 1f relative speed larger than crm,
crm = CI; % then reset ¢rm to larger value
end

Y* hccept or reject cendidate pair according teo relative speed
if(cr/ermax(jcell) > rand(1))
%% If pair accepted, gelect post-collision velocities

col = col+l; % Collision counter
vem = 0.54(v{(ipl,:) + v(ip2,:)); % Center of mass velocity
cos_th = 1 - 2¢rand{1); % Cosine and sime of
sin_th = sqrt{l - cos_th*2}; % collision angle theta
phi = 2#pirrand(1); % Collision angle phi
vrel(1) = crecos_th; % Compute post-collision
vrel(2) = cr*sin_thacos(phi}; ¥ relative velocity
yrel(3) = cr#sin_th¥sin(phi);
v{ipl,:} = vem + 0.5*vrel; %, Update post-cellision
v(ip2,:) = vem - 0.5*vrel; Y velocities

end

end % Loop over pairs

APPENDIX A: MATLAB LISTINGS - 379

crmax{jcell) = crm; % Update max relative speed
end
end Y Loop over cells
return;

Listing 11A.4 Program dsmcne. Measures viscosity in a dilute gas using the
DSMC algorithm. Uses sorter (Listing 11A.2), colider (Listing 11A.3), mover {List-
ing 11A.5), and sampler (Listing 11A.6).

Y dsmcne - Program to simulate a dilute gas using DSMC algorithm
% This version simulates planar Couette flow

clear all; help dsmcne; Y% Clear memory and print header

%% Tnitialize constants (particle mass, diameter, etc.)

boltz = 1.3806e-23; % Boltzmarn’s constant (I/K)

mass = 6.63¢-26; Y% Mass of argon atom (kg)

diam = 3.66e-10; Y Effective diameter of argon atom {(m)
T = 273; % Initial temperature (K)

density = 2.685e25; ¥ fumber density of argom at STP (m"-3)
L = ie-6; % System size is one micron

Volume = L"3; ¥ Volume of the system {m~3)

npart = input{’Enter number of simulation particles: ’);

eff_num = density*Volume/npart; _
fprintf (*Each simulation particle represents Ng atoms\n’,eff_num};
nfp = Volume/(sq;t(2)*pi*diam“2*npart*eff_num);

fprintf (*System width is ig mean free paths \n’,L/mfp);

npv = sqrt{2+boltzxT/mass); % Most probable initial velocity
vwall_m = input(’Enter wall velocity as Mach number: ’);

vyall = ywall_m * sqri{5/3 * boltz*T/mass);

fprintf(’Wall velocities are %g and %g m/s \n’,-vwall,vwall);

%* Assign random positions and velocities to particles

rand(’state’,1}; % Initiazlize random number generators
randn{’state’,1);
x = L#rand(ppart,1); % Assign random positions

% hssign thermal velocities using Ganssian random numbers
v = sqrt(boltz*T/mass) * randn(npart,3);

¥ Add velocity gradient to the y-component

v(;,2) = v(:,2) + oxywall*(x(:}/L) - vwall;

-
%% Initialize variables used for evaluating collisions

ncell = 20, % Number of cells

tau = 0.2+(L/ncell}/mpv; % Set timestep tan

yrmax = 3*mpviones(ncell,1}; ¥ Estimated max rel. speed in a cell
selxtra = zeros(ncell,1); Y% Used by collision routine "colider"

coeff = O.5*eff_num*pi*diam”2*tau/(Volume/ncell);

¥# Declare structure for lists used in sorting
sortData = struct(’ncell’, ncell,

380 THAPTER 11. STOCHASTIC METHODS

‘npart’, npart,

'cell_n', zeros(ncell,1),
'index’, zeros(ncelil,l),

'Xref’, zeros(npart,1)};

%% Initialize structure and variables used in statistical sampling
sampData = struct('ncell’, ncell,

'nsamp’, 0,

'ave_n’, zercs(ncell,1),

‘ave_u’, zeros(ncell,3),

*ave_T?, zeros(ncell,1));

tsamp = 0; % Total sampling time
dvtot = zeros(1,2); % Total momentum change at a wall
dverr = zeros(1,2); ¥ Used to find error in dvtot

#* Loop for the desired number of time steps
colSum = 0; strikeSum = [0 0];

nstep = input{(’Enter total number of timesteps: ’);
for istep = l:mstep

##* Move all the particles
{x, v, strikes, delv] = mover(x,v,npart,L,mpv,vwall,tau);
strikeSum = strikeSum + strikes;

%* Sort the particles into cells
sortData = sorter(xz,L,sortData);

%* Evaluate collisions among the particles
[v, vrmax, selxtra, col] = ...

colider (v,vrmax,tau,selxtra,coeff,sortData);
colSum = colSum + col;

Y#* After initial transient, accumulate statistical samples
if(istep > nstep/10;

sampData = sampler(x,v,npart,L,sampData);

dvtot = dvtot + delv;

dverr = dverr + delv."2;

tsamp = tsamp + tau;
end

%% Periodically display the current progress

if(rem(istep,10) < 1)
fprintf(’Finished %g of %g steps, Collisions = ¥%g\n’,

istep,nstep,colSum);
fprintf(’Total wall strikes: %g (left) Ug (right)\n’,
strikeSum(1),strikeSum(2));
end
end

%* Normalize the accumulated statistics

APPENDIX A: MATLAB LISTIN G5 Q0L

nsamp = sampData.nsamp;

ave_n = (eff‘num/(Volume/ncell))*sampData.ave_n/nsamp;
ave u = sampData.ave_u/nsamp;

ave T = mass/{3*boltz) * (sampData.ave_T/nsamp);

dverr = dverr/(nsamp-1) - (dvtot/nsamp) . "2

dverr = sqrt(dverrrusamp);

Y* Compute viscosity from drag force on the walls

force = (eff,num*mass*dvtot)/(tsamp*L“2);

ferr = (eff,num*mass*dverr)/(tsamp *L"2);

fprintf (’Force per unit area is \n’);

fprintf (CLeft wall: %e +/- %g \n',force(l),ferr(1));
fprintf (*Right wall: %g +/- hg \n',force(2),ferr(2});
vgrad = 2*vwall/L; % Velocity gradient

visec = 179+ (-force (1) +force(2)) /vgrad; Y Average viscosity
viscerr = 1/2% (ferr{(1) +ferr(2))/vgrad; % Error
fprintt (' Viscosity = %g v/~ Ug N s/m"2\n’ ,visc,viscerr);
eta = 5*pi/32*mass*density*(2/sqyt(pi)*mpv)*mfp;
fprintf(’Theoretical value of viscoisty is g N s/m*2\n’ ,eta) ;

Y% Plot average density, yelocity and temperature

figure(1); clf;

zcell = ({1:ncell)-0.5)/ncell * L;

plot(xcell,ave_n); xlabel(’position’); ylabel(’ Number density’};
figure(2); clf;

plot(xcell,ave_u); xlabel(’position’); ylabel(’Velocities’);
1egend(’x-componept’,’y—component’,’z—component’);

figure(3); clf;

plot(xcell,ave_T); xlabel(’position’); ylabel(’Temperature’);

Listing 11A.5 Function mover. Used by the dsmcne program to update particle
positions. Tt also processes particles striking the thermal walls.

function [x,v,strikes,delv] = mover(x,v,npart,

L,mpv,vwall,tau)
Y mover — Function to move particles by free flight
% Also handles collisiens with walls
% Inputs
s ¥ Positions of the particles
% v Velocities of the particles
% npart Wumber of particles in the system
% L System length
% mpv Most probable velocity off the wall
% vwall Wall velocities
% tan Time step
Y% Ougputs
% %,V Updated positions and velocities
% strikes Number of particles striking each wall

% delv Change of y-velocity at each wall

382 CHAPTER 11. STOCHASTIC METHODS

%* Move all particles pretending walls are absent
z_old = x; % Remember original position
z(:) = x_old{:) + w(:,1)=*tau;

%* Loop over all particles

strikes = [0 0]; delv = [0 0Q];

xwall = [0 L); vw = [~vwall vwalll;

direction = [1 -1]; % Direction of particle leaving wall
stdev = mpv/sqrt(2);

for i=l:npart

%* Test if particle strikes either wall
if(x{i) <= 0)

flag=1; % Particle strikes left wall
elseif{ x(i) >= 1 }

flag=2; ¥ Particle strikes right wall
else

flag=0; % Particle strikes neither wall
end

%* If particle strikes a wall, reset its position

% and velocity. Record velecity change.

if{ flag > C)
strikes (flag) = strikes(flag) + 1;
vyInitial = v{i,2);
%* Reset velocity components as biased Maxwellian,
% Exponential dist. in x; Gaussian in y and z
v{i,1) = directicn(flag)*sqrt{-log{i-rand(1})) * mpv;
v{i,2) = stdev¥randn(1} + vw(flag); % Add wall velocity
v(i,3) = stdev*randn(l);
% Time of flight after leaving wall
dtr = tauwr(x(i)-xwall(flag)}/(x(i)-xz_cld(i}};
%* Reset position after leaving wall
x(i) = xwall(flag) + v(i,1)=dtr;
#* Record velocity change for force measurement
delv(flag) = delv(flag) + {(v(i,2) - vyInitial);

end

end

Listing 11A.6 Function sampler. Used by the dsmcne program to sample the
number density, fluid velocity, and temperature in the cells.

function sampD = sampler{x,v,npart,L,samnpD)
4 sampler - Function to sample density, velocity and temperature

% Inputs
A x Particle positicns
4 v Particle velocities

A npart Number of particles

APPENDIX B: C++ LISTINGS 383

% L System size

% sampD Structure with sampling data
% Dutputs

h sampD Structure with sampling data

Y+ Compute cell location for each particle
ncell = sampD.ncell;
jx=ceil(ncell*x/L);

Y% Initialize rumning sums of number, velocity and V2
sum_n = zeros(ncell,1);
sum_v = zeros(ncell,3);
sum_v2 = zeros(ncell,l1};

Y% For each particle, accumulate running sums for its cell
for ipart=l:npart

jeell = jx{ipart); % Particle ipart is in cell jeell

sum_n{jcell) = sum_n(jcell)+1;

sum_v(jcell,:} = sum _v(jcell,:) + v{ipart,:);

sum_v2(jcell) = sum_v3{jecell) + ...

v{ipart,1)"2 + v(ipart,2)"2 + v{ipart,3)"2;

end

Y+ Use current sums to update sample number, velocity
% and temperature
for i=1:3
sum v(:,i) = sum_v{(:,i)./sum_n(:);
end
sum_v2 = sum_v2./sum_ﬁ;
sampD .ave_n = sampD.ave_n + sum_n;
sanpl.ave_u = sampD.ave_u + sum_v;
sampD.ave_T = sampD.ave T + sam_v2 - ...
(sum_v{:,1)."2 + sum_v(:,2).72 + sum_v{:,3).72);
sampD.nsamp = sampD.nsamp + 1;
return;

APPENDIX B: C++ LISTINGS

Listing 11B.1 Program dsmceq. Simulates relaxation to equilibrium in a dilute
gas using the DSMC algorithm. Uses sorter (Listing 11B.2), colider (Listing 11B.3),
and rand (Listing 11B.7T).

// dsmceq - Dilute gas simulation wsing DSHC algorithm
// This version illustrates the approach to equilibrium

#include "NumMeth.h"

384 CHAPTER 11. STOCHASTIC METHODS

#include "SortList.h"

double rand(longk seed };

int colider{ Matrix& v, Matrix& crmax, double tam, longk seed,
Matrix® selxtra, double coeff, Sortlistk sT);

void sorter(Matrix& x, double L, SortList &sD);

void main() {

//* Initialize constants (particle mass, diameter, etc.)
const double pi = 3.141592654;

const double boltz = 1.3806e-23; /! Boltzmann'’s comnstant (J/K)
double mass = 6.63e-26; // Mass of argon atom (kg)

double diam = 3.66e-10; // Effective diameter of argon atom (m)
double T = 273; // Temperature (K}

double density = 1.78; // Density of argon at STP (kg/m~3}
double L = le-6; // System size is one micron

cout << "Enter number of simulation particles: ";

int npart; c¢in >> npart;

double eff_num = density/mass*L*L*L/npart;

cout << "Each particle represents " << eff_num << " atoms" << endl;

//* Assign random positions and velocities to particles

long seed = 1; // Initial seed for rand (D0 NDT USE ZERO)
double v_init = sqrt{3.0*boltz*xT/mass); // Initial speed
Matrix x(npart), v(mpart,3);
int i;
for(i=1; i<=npart; i++) {

z{i) = L*rand(seed); // Assign random positions

int plusMinus = {1 - 2#((int) (2+rand{seed}}});
v(i,1) = plusMinus * v_imit;

v(i,2) = 0.0; // Only x-component is non-zeroc
v(i,3) 0.0;

//* Record imital particle speeds
Matrix vmagl (npart);
for(i=1; i<=npart; i++)
vmagl (i) = sqre{ v{i,D*v(i,1) + v(i,2)*%v{E,2) + v(i,3)+v{i,3));

//% Initialize variables used for evaluating collisions

int ncell = 15; // Number of cells
double tau = 0.2%¢(L/ncell)/v_init; // Set timestep tau
Matrix vrmax(ncell), selxtra(ncell);

vrmax.set(3*v_init); // Estimated max rel. speed
selxtra.set(0.0); // Used by routine "coliderx"
double coeff = O.B*eff_num*pi*diam*diam*tau/(L*L*L/ncell);
int coltot = 0, // Count total cellisions

//% Declare cbject for lists used in sorting

APPENDIX B: C++ LISTINGS _ oo

SortList gortData(ncell,npart);

//% Loop for the desired number of time steps
cout << "Enter total number of time steps: ";
int istep, nstep; cin >> nstep;

for{ istep = 1; istep<=nstep; istept+)y {

//+ Move all the particles ballistically
for{ i=1; i<=npart; i++ } {
(i) += v(i,l)*tau; // Update x position of particle
x(i) = fmod(x(i)+L,L); // Periodic boundary conditions
}
//* Sort the particles into cells
sorter{x,L,sortData);

//% Evaluate collisions among the particles
int col = colider(v,vrmax,tau,seed,selxtra,coeff,sortData);
coltot += col; // Increment collision count

//% Pericdically display the current progress
if((istepWl0) < 1)
cout << "Dome " << istep << " of " << mstep << " steps; " <<
coltot << " collisioms" << endl;

}

// Becord final particle speeds
Matrix vmagF (npart);
for(i=1; i<=npart; i++)
wmagF(i) = sqrt(v(i,1)*v(i,1) + v(i,2)+v(i,2) + wii, D *v(i,3));

//* Print out the plotting variables: vmagl, vmagF
ofstream vmagIOut("vmagl.txt"}, vmagFOut ("ymagF . txt");
for{ i=1; i<=npart; i++) {
vmagIOut << vmagI(i)} << emdl;
vmagFOut << wvmagF (1) << endl;
¥
¥
/*xddx To plot in MATLAB; use the script below #¥detiiiibkiikintidiok
load vmagl.txt; load vmagF.txt;
% Plot the histogram of the initial speed distribution
vbin = 50:100:1050; % Bins for histogram
hist(vmagl,vbin); title(’Initial speed distribution’);
xlabel (’Speed (w/s)’); ylabel (’Humber’);
%+ Plot the histogram of the final speed distribution
figure(2); clf;
hist{vmagF,vbin);
title(sprintf{’Final speed distribution’));
xlabel (*Speed (m/s)’); ylabel (’Number’);
****************##**************************************s*********l

386 CHAPTER 11. STOCHASTIC METH(ODS

Listing 11B.2 Subroutine sorter. Produces sorted lists used by ¢olider to select
random particles from a cell.

#include "NumMeth.h"
t#tinclude "SortList.h"

void sorter(Matrix& x, double L, SortlList &sD) {

// sorter - Function to sort particles intoc cells

// Inputs

1/ x Positions of particles

' L System size

/ sD Object containing lists used in sorting
// Output

/ sD Object containing lists used in sorting

//* Find the cell address for each particle

int ncell = sD.ncell;

int npart = sD.npart;

int ipart, *jx;

jx = new int [npart+1];

for(ipart=1; ipart<=npart; ipart++) {
int j = (int) (x(ipart)#ncell/L) + 1;
jxlipart] = (j <= ncell) 7 j : mncell;

}

//% Count the number of particles in each cell

int jcell;

for(jcell=i; jcell<=ncell; jcell++)
sh.cell_n[jcell 1 = 0;

for(ipart=1; ipart<=nmpart; ipart++)}
8D.cell nl jxlipart] J++;

//* Build index list as cumulative sum of the
// number of particles in each cell
int m=1;
for(jcell=1l; jcell<=ncell; jcell++) {
sD.index[jcell]l = m;
m += sD.cell_n[jcelll;

} -

//% Build cross-reference list

int *temp;

temp = new int [ncell+il; // Temporary array

for(jcell=1; jcell<=ncell; jcell++)
temp[jcell] = 0;

for(ipart=1; ipart<=npart; ipart++) {
jeell = jxiipart]; // Cell address of ipart
int k¥ = sD.index[jcell]l + templ[jcelll;

APPENDIX B: C++ LISTINGS 387

sD.%ref[k] = ipart;
temp[jcell]l = templjcelll + 1;
}

delete [1 jx;
delete L[] temp;

Listing 11B.3 Subroutine colider. Called by dsmceq and dsmcne to evaluate
collisions using the DSMC algorithm. Uses rand {Listing 11B.7).

tinclude "NumMeth.h"
#include "SortList.h"

double rand(longk seed };

int colider({ Matrix& v, Matrix& crmax, double tau, longk seed,
Matrixf selxtra, double coeff, Sortlisté sD Y £

// colide - Function to process collisions in cells

// Inputs

/f v Velocities of the particles

// crmax Estimated maximum relative speed in a cell

7/ tan Time step

7/ geed Current random number seed

7/ gelxtra Extra selections carried over from last timestep
4 coeff Coefficient in computing number of selected pairs
I sD Object containing sorting lists

// Dutputs

// v Updated velocities of the particles

// crmax Updated maximum relative speed

// gelxtra Extra selections carried over to next timestep

I col Total number of ccllisions processed (Return value)

// General variables

int necell = sD.ncell;

int col = O; // Count number of collisioms
const double pi = 3.141692654;

//* Loop over cells, processing collisions in each cell
int jcell;
for{ jcell=1; jcell<=ncell; jcell++ Y £

//* Skip cells with only one particle

int number = sD.cell_n[jcelll;

if{ number < 2) continue; // Skip to the next cell

//* Determine number of candidate collision pairs

388

}

CHAPTER (1. STOCHASTIC METHODS

// to be selected in this cell
double select = coeff*number*numbercrmax(jcell) + selxtra(jcell);

int nsel = (int)(select); // Nunber of pairs to be selected
selxtra{jcell) = select-nsel; // Carry over amy lsft-over fraction
doubls crm = crmax(jcell); // Current maximum relative speed

//* Loop over total number of candidate collisiom pairs
int isel;
for(isel=1; isel<=nsel; isel++) {

//* Pick two particles at randem out of this cell

int k = (int) (rand(seed)*number);

int kk = ((int) (k+rand{seed)*{number-1))+1} % number;

int ipl = sD.Xref[k+sD.index[jcell] 1; // First particle
int ip2 = sD.Xref[kk+sD.index[jcelll 1; // Second particle

//#% Calculate pair’s relative speed
double cr = sqrt{ pow(v(ipl,1)-v{ip2,1),2) +
pow(v(ip1,2)-v(ip2,2),2) + // Relative speed
pou{v{ip1,3)-v(ip2,3),2));
if(cr » crm) // If relative speed larger than crm,
crm = crT; // then reset crm to larger value

//* hccept or reject candidate pair according to relative speed
if{ cr/crmax(jcell) > rand(seed)) {
//* If pair accepted, select post-collision velocities

col++; /{ Collision counter
Hatrix wvem(3), vrel{3);
int k;
for{ k=1; k<=3; k++)

vam(k) = 0.5¢(v(ipl,k) + v(ip2,k}); // Center of mass velocity
double cos_th = 1.0 — 2.0*rand{seed); // Cosine and sine of
double sin_th = sqrt{1.0 - cos_th¥cos_th); // collision angle theta
double phi = 2.0+pi*rand(seed); // Collision angle phi
vrel(1) = cr*cos_th; // Compute post-collision
vrel(2) = cr#*sin_th*ces(phi}; // relative velecity

vrel(3) = cr#sin_th*sin(phi);
for(%k=1; k<=3; k++) {
v(ipl,kx) = vem(k) + 0.5%vrel(k); // Update post-collision
viip2,k) = vem(k} - O.b*vrel(k); // velocities
) t
} // Loop over pairs
crmax(jcell) = crm; // Update max relative speed
}
// Loop over cells

return(col J;

}

APPENDIX B: C++ LISTINGS 389

Listing 11B.4 Program dsmcne. Measures viscosity in a dilute gas using the
DSMC algorithm. Uses sorter (Listing 11B.2), colider (Listing 11B.3), mover (List-
ing 11B.5), sampler {Listing 11B.6), and rand (Listing 11B.7).

// dsmcne - Program to simulate a dilute gas using DSMC algorithm
// This version simulates planar Couette flow

#include "NumMeth.h"
#include “SortList.h"
#include "SampList.h"

double rand{ longd seed);
double randn(longg seed);
int colider(Matrix& v, Matrixk crmax, double tau, long& seed,
Matrix& selxtra, double coeff, SortList& sD);
void sorter(Matrix& x, double L, SortList &sD };
void mover{ Matriz& x, Matriz& v, int npart, double L,
double mpv, double vwall, double tau,
Matrizk strikes, Matrixzk delv, longk seed);
void sampler{ Matrix& x, Matrix& v, int npart, double L,
SamplList& sampD);

void main{) {

//# Initialize constants ({particle mass, diameter, etc.)
const double pi = 3.141592654;

const double boltz = 1.3806e-23; // Boltzmann’s constant (J/K)
double mass = 6.63e-26; // Mass of argom atom {(kg)

double diam = 3.66e-10; // Effective diameter of argon atom (m)
double T = 273; // Temperature (X)

double density = 2.685825; // Wumber density of argon at STP (m"-3)
double L = 1e—6; // System size is ome micron

double Volume = L*L*L; // Volume of the system

cout << "Enter number of simulation particles: ";
int mpart; c¢in >> npart;
double eff_num = density*L*L#L/npart;
cout << "Each particle represents " << eff_num << " atoms” << endl;
double mfp = Volume/(sqrt(2.0)*pi¥diam*diam*npart+eff num};
cout << "System width iz " << L/mfp << " mean free paths" << endl;
double mpv = sqrt(2¥boltz+T/mass}; // Most probable initial velocity
cout << "Enter wall velocity as Mach number: ",
double wwall_m; cin >> vwall_m;
double vwall = wwall_m * sqrt(5./3. * boltz*T/mass);
cout << "Wall velocities are " << -wvwall << " and "
<< vwall << " m/fs" << endl;

//* Assign random positions and velocities to particles

long seed = 1; // Initial seed for rand (DO NOT USE ZERO)
Matrix x(npart), v{(npart,3);

int i;

390 CHAPTER tl. STOCHASTIC METHODS

for(i=1; i<=npart; i++) {
x(i} = L#rand{seed); // Assign random positions
// Initial velocities are Maxwell-Boltzmann distributed
v{i, 1) = sqrt{boltz*T/mass) * randn(seed) ;
v(i,2) sqrt (boltz#T/mass) * randn(seed);
v(i,3) gsqrt (boltz+T/mass) #* randn(seed) ;
// Add velocity gradient to the y-component
v(i,2) += vwall * (x(i)/L - 0.5);

}

//%¥ Initialize variables used for evaluating collisions
int ncell = 20; // Number of cells
double tau = 0.2#(L/ncell) /mpv; // Set timestep tau
Matrix vrmax(ncell), selxtra(ncell);

vrmnax.set (3xmpv) ; // Estimated max rel. speed
selxtra.set(0.0); // Used by routine "colider"

double coeff = 0.S*eff_num*pi*diam*diam*tau/(L*L*L/ncell);

//* Declare object for lists used in sorting
SortList sortData{ncell,npart):

//*% Initialize object and variables used in statistical sampling
SampList sampData(ncell);

double tsamp = Q; // Total sampling time

Matrix dvtet(2), dverr(2);

dvtot.set{0.0); // Total momentun change at a wall
dverr.set(0.0): // Used to find error in dvtot

//*% Loop for the desired number of time steps

int c¢olSum = §; // Court total collisions
Matrix strikes(2), strikeSum(2);
strikeSum.set(0.0); // Count strikes on each wall

cout << "Enter total number of time steps: ";
int istep, mstep; cin >> nstep;
for(istep = 1; istep<=nstep; istep++) {

//* Move all the particles

Matrixz delv(2); delv.set(0.0);

mover(x, v, npart, L, mpv, vwall,
tan, strikes, delv, seed);

strike3um(1) += strikes(1);

strikeSum(2) += strikes(2);

//* Sort the particles into cells
sorter(xz,L,sortData);

//* Evaluate collisions among the particles
int ¢ol = colider(v,vrmax,tau,seed,selxtra,coeff,sortData);
colSum += col; // Increment collisien count

ALEISNIIN B G0 LISTEINGS 391

//* Bfter initial transient, accumulate statistical samples
if(istep > nstep/10) {
sampler{x,v,npart,L,sampData) ;
// Cummulative velocity change for particles striking walls
dvtot (1) += delv(1); dvtot (2} += delv(2};
dverr(1) += delv(1)*delv(1); dverr(2) += delv(2)xdelv(2);
tsamp += tan;

//* Periodically display the current progress
if((istep®100) < 1} {

cout << "Dome " << istep << " of " << nstep << " steps; " <<
colSum << " collisions" << endl;
cout << "Total wall strikes: " << strikeSum{l) << " (left) "
<< strikeSum(2) << " (right)" << endl;
}
}

//* Normalize the accumulated statistics
int nsamp = sampData.nsamp;
for(i=1; i<=ncell; i++) {
sampData.ave_n[i]l #= (eff_num/(Volume/ncell)) /msamp;
sampData.ave_ux[i] /= nsamp;
sampData.ave_uy[i]l /= nsamp;
sampData.ave_uz[i] /= nsamp;
sampData.ave_T{i] *= mass/(3*boltz*nsamp);
}
dverr(1l) = dverr(1)/(nsamp-1) - (dvtot(1)/nsamp)+(dvtot{1)/nsamp);
dverr(l) = sqrt(dverr{(l)*nsamp);
dverr(2) = dverr(2)/(nsamp-1) - (dvtot (2} /nsamp)+ (dvtot (2) /nsamp) ;
dverr(2) = sqrt(dverr(2)*nsamp);

//* Compute viscosity from drag force on the walls
Matrix force(2), ferr(2);

force(l) = (eff_num*mass*dvtot (1))/(tsamp*L4L);
force(2) = (eff_numtmass*dvtot(2))/(tsamp*LsL};
ferr(l) = (eff_num*mass*dverr(l))/(tsamp*L*L);
ferr{2) = (eff_num*mass+dverr(2))/(tsamp*L*L);
cout << "Force per unit area is" << endl;

cout << "Left wall: " << force(l) << " +/- " << ferr(l} << endl;
cout << "Right wall: " << force(2) << " +/- " << ferr(9) << endl;
double vgrad = 2*vywall/L; // Velocity gradient

double visc = 0.5+ (~force(1)+force{2))/vgrad; // Average viscosity
double viscerr = 0.5%(ferr{l)+ferr(2))/vgrad; // Error
cout << "Viscosity = " << visc << " +/- " << viscerr
<< "N s/m"2" << endl;
double eta = 5.4pi/32.*mass*density*(2./sqrt (pi)+mpv)+mip;
cout << "Theoretical value of viscoisty is " << eta
<< "N s/m"2" << endl;

392 CHAPTER 1. STOCHASTIC METHODS

//* Print out the plotting variables:
/r ¥cell, ave_n, ave_ux, ave_uy, ave_uz, ave_.T
ofstream xcellOut("xcell.txt"), ave_nOut("ave_n.txt"),
ave_uxOut ("ave_ux.txt"}, ave_uyOut("ave_uy.txt"),
ave_uzOut ("ave_nz.txt"), ave_TDut("ave_T.txt");
for(i=1; i<=nceil; i++) {
xcellQut << (i-0.5)*L/ncell << endl;
ave_nQut << sampData.ave_n[i] << endl;
ave_uxOut << sampData.ave_ux[i] << endl;
ave_uyOut << sampData.ave_uy[il << endl;
ave_uz0ut << sampData.ave_uzfi] << endl;
ave_TOut << sampData.ave_T[i] << endl;

}
¥
/Ar4xx To plot in MATLAB; use the script below sxsxkkbkkkkikitrstiik
load xcell.txt; load ave_n.txt; load ave ux.txt;
load ave_uy.txt; load ave_uwz.txt; load ave_T.txt;

figure(1); cif;

plot(xcell,ave_n); xlabel{’position’); ylabel(’Number density’);
figure(2); clf;

plot(xcell,ave_ux,xcell,ave_uy,xcell,ave_uz);

¥label (‘position’); ylabel(’Velocities’);

legend (’x-component’, ’y-compenent’, ’z-component’) ;

figure(3); clf;

plot{xcell,ave_T); xlabel{’pesition’); ylabel(’Temperature’);

ko koo ok ok ok ok kR R o e ok Rk ook Rk koo ok skokok ok Rk b ok ook /

Listing 11B.5 Function mover. Used by the dsmcne program to update particle
positions. It also evaluates collisions between the particles and the thermal walls, Uses
rand (Listing 11B.7).

#include "NumMeth.h"

double rand(longk seed);
double randn(long& seed);

void mover(Matrix& x, Matrix® v, int apart, double I,
double mpv, double wvwall, double tau,
Matrix& strikes, Matrix delv, longk seed) {

<

// mover — Function to move particles by free flight

/f A1so handles collisions with walls

// Inputs

/! X Positions of the particles

/f v Yelocities of the particles

rf npart Number of particles in the system
/7 L System length

/f mpv Most probable velocity off the wall

AL rLNIAA 1Y U LA LLYaD Wiy

/!
!/
1/
/!
1/
/f
//
1/

vwall Wall velocities
taun Time step
seed Random number seed

fJutputs
I,V Updated positions and velocities
strikes Number of particles striking each wall
delv Change of y-velocity at each wall
seed Random number seed

//* Move all particles pretending walls are absent
Matrix x_old(npart);
x_old = x; // Bemember original position
int i;
for(i=1; i<= mpart; i++)

x€i) = x_old{i) + v{i,1)*tau;

//% Check each particle to see if it strikes a wall

strikes.set(0.0); delv.set (0.0},

Matrix xwéll(?), ww(2), direction(2);

wmwall(l) = 0; xwall(2) = L; // Positions of walls
vw(l} = —vywall; ww{(2)} = vwall; // Velocities of walls

double stdev = mpv/sqrt(2.);
// Direction of particle leaving wall
direction{l) = 1; directiomn{2) = -1;
for(i=1; i<=ppart; i++) {

//* Test if particle strikes either wall
int flag = 0;
if(x{i) <= 0)

flag=1; // Particle strikes left wall
else if{ x(i) >=1L }
flag=2; // Particle strikes right wall

//* If particle strikes a wall, reset its position
// and velocity. Record velocity change.
if(flag > 0} o
strikes(flag)++;
double vyInitial = v(i,2);
//* Reset velocity components as biased Maxwellian,
// Exponential dist. in x; Gaussian in y and z
v(i,1) = direction(flag)+*sqrt(-log(l.-rand(seed}})} * mpv;
v{i,2) = stdevsrandn(seed) + vw(flag); // Add wall velocity
v(i,3) = stdev*randn(seed);
// Time of flight after leaving wall
double dtr = tau*(x(i)-xwall(flag))/(x(i)-x_old(i));
//+ Reset position after leaving wall
x(i) = xwall(flag) + v(i,1}=dtr;
//* Record velocity change for force measurement
delv(flag) += (v(i,2) - vyInitial);

394 CHAPTER L1 STOCHASTIC MISTHODS

Listing 11B.6 Function sampler. Used by the dsmcne program to sample the
number density, fluid velocity, and temperature in the cells.

#include "NumMeth.n"
#include "SampList.h"

void sampler(Matrix& x, Matrizk v, int npart, double L,
SampList% sampD) {

// sampler - Function to sample density, velocity and temperature
// Inputs

7/ x Particle positions

’ v Particle velocities

/7 npart Number of particles

/f L System size

/7 sampD Object with sampling data
// Dutputs

// sampD Structure with sampling data

//* Compute cell location for each particle
int ncell = sampD.ncell;
int *jx; jx = new int [npart+l];
int 1;
for(i=1; i<=npart; i++)
jx[i] = (int)ceil(nceli*x(i)/L);

//* Initialize rumning sums of number, velocity and v72
Matrix sum_n(ncell), sum_vz(ncell), sum_vy(ncell),
sum_vz (ncell), sum_v2(ncell);

sum_n.set(0.0);

sum_vx.set (0.0);

sum_vy.set(0.0);

sum_vz.set(0.0);

sum_v2.set{D.0);

//* For each particle, accumulate running sums for its cell
for(i=1; i<=npart; i++) {

int jeell = jx[il; // Particle i is in cell jcell

sum_n(jcell)++;

sum_vx(jcell) += v(i,1);

sum_vy{jcell) += v(i,2);

sun_vz(jcell) += v(i,3);

sum_v2(jcell) += v(i,1)*v(i,1) +

vii,2*v(i,2) + v(i,3)%v(i,3);

SALTETEAN LIRS 130 Gt LD B INGLD JHu

//* Use current sums to update sample mumber, velocity
// and temperature
for(i=1; i<=ncell; i++) {
sum_vx{i) /= sum_n{i);
sum_vy(i) /= sum_n{i);
sum_vz{i) /= sum_n(i);
sum_v2{i) /= sam_n(i);
sampD.ave_n[i] += sum_n(i);
sampD.ave_ux[i] += sum_vx(i};
sampD.ave_uy[i] += sum_vy(i);
sampD.ave_uz[i] += sum_vz(i);
sampD.ave_T[i] += sum_v2(i)} - (sum_vx{i)*sum_vwx(i} +
sum_vy (i) *sum_vy{i) + sum_vz (i) *sum_vz(i));
}

sampl) .ngamp++;

delete E] jx;
}

Listing 11B.7 Function rand. Returns random numbers wniformly distributed in
[0,1) {i.e., uniform deviates).

#include "NumMeth.h"

// Random number generator; Uniform dist. im [0,1)
double rand{ longh seed) {

// Input

/7 seed Integer seed (DO NOT USE A SEED QOF ZERQ)

// Output

// rand Random number uniformly distributed in [0,1)}

const double a = 16807.0;
const double m = 2147483647.0;
double temp = a * seed;

seed = (long){fmod(temp,m));
double rand = seed/m;

return{ rand);

Listing 3118.8 Function randn. Returns normal {Gaussian) distributed random
numbers with zero mean and unit variance. Uses rand {Listing 11B.7).

#include "NumMeth.h"
double rand(longd seed);

// Random number generator; Normal (Gaussian) dist.
double randn{ longk seed) {

396 CHAPTER L STOCHASTHC MEETHODS

// Input

// seed Integer seed (DO NOT USE A SEED OF ZERD)
// Outpuat

I/ randn Random number, Gaussian distributed

double randn = sqrt{ -2.0%log(1.0 - rand(seed}))
* cos(6.283185307 * rand(seed));
return(randn);

Listing 11B.9 Class SortList. Used by dsmceq and dsmcne 1o manage sorting
lists,

clags SortlList {
public:

// Class data (sorting lists)
int ncell, npart, *cell_n, *index, *Xref;

// Default Constructor.

SortList () {
initLists(1,1);

}

// Regular Constructer.
SortList{int ncell_imn, int npart_in) {
initLists(ncell_in,npart_in);

}

// Destructor. Called when a SortList object goes out of scope.
“SortList () {

delete [] cell_n; // Release allocated memory

delete [] index;

delete [] Xref;
}

F 7 ARk Rk ok ok ok ok ok ok ko o KKK S K ok K o o6 ok ok o o ok R ok R ok ko ok Rk k ok
private:

// Initialization routine

void initLists(int ncell_in, int npart_in)} {
ncell = ncell_in;
npart = npart_in;
cell_n = nev int [ncell+l]l; // Allocate memory
index = new int [ncell+1];
¥ref = new int [npart+1i];

APPENDIX B: C++ LISTINGS

int i;

for(i=1; i<=ncell; i++) {
celi_n[i] = 0;
index[i] = 0;

}

for(i=1; i<=npart; i++)
Xref[i] = 0;

}; // Class Sortlist

397

Listing 11B.10 Class SampList. Uscd by demcne to manage sampling data vec-

tors.

class SampList {

public:

// Class data (sorting lists)
int ncell, nsamp;
double *ave_n, *ave_ux, *ave_uy, *ave_uz, *ave_T;

// Default Constructor.

SampList{) {

initlLiats(1);

}

// Regular Constructor.
SampList (int ncell_in) {
initLists(ncell_in);

}

// Destructor. Called when a Samplist object goes out of scope.

“SampList ()

delete

delete

delete

delete

delete
}

[
0]
0]
[1
(]

{

ave_n; // Release allocated memory
ave_ux;

ave_uy;

ave_uz;

ave_T;

J 7 ek et s ok ok ok ook ok sk sk ok ok o o ook ok e sk o o R Sk ok 3 Kok ok ok o ok ok ke ok ok ok ok ok o o ok kR

private:

// Initialization routine
void initLists{int ncell_in) {
ncell_in;

ncell

398 CHAPTER 11. STOCHASTIC METHODS

neanp = 0;
ave_n = new double [ncell+1]; // Allocate memory
ave_ux = new double [necell+i];
ave_uy = new double [ncell+l];
ave_uz = new double [ncell+i];
ave_ T = new double [ncell+1];
int i
for(i=1; i<=ncell; i++) {
ave_n[i] = ©;
ave_ux[i] = 0;
ave_uyiil = 0;
ave_uz[il
ave_T[1l = 0;
}
}

1!
<

}; // Class SampList

Bibliography

[1] M.B. Abbot, An Introduction te the Method of Characteristics (New York:
American Elsevier, 1966).

(2] M. Abramowitz and 1. Stegun, Hendbook of Mathematical Functions (New
York: Dover, 1972).

[3] F.5. Acton, Numerical Methods thet Work {New York: Harper & Row,
1970).

[4] R.K. Adair, The Physics of Baseball (New York: Harper & Row, 1930).

[5] C.G. Alder and B.L. Coulter, “Galileo and the Tower of Pisa experiment,”
Am. J. Phys., 46, 199-201 (1978).

[6] B.J. Alder and T.E. Wainwright, “Studies in molecular dynamics. I. Gen-
eral method,” J. Chem. Phys., 31, 458-66 (1959).

[7} F.J. Alexander, A.L. Garcia, and B.J. Alder, “The consistent Boltzmann
algorithm,” Phys. Rew. Lett. T4 5212-5 (1995).

[8] F.J. Alexander, A.L. Garcia, and B.J. Alder, “The consistent Boltzmann
algorithm for the van der Waals equation of state”, Physica A, 240, 196-
201 (1997).

9] M. Allen and D. Tildasley, Computer Simaulation of Liquids (Oxford:
Clarendon Press, 1987).

[10] D. Anderson, J. Tannehill, and R. Pletcher, Computational Fiuid Mechan-
ics and Heat Transfer (New York: Hemisphere, 1084).

[11] G. Arfken, Mathematical Methods for Physicists (New York: Academic
Press, 1970).

[12] U.M. Ascher, R.M.M. Mattheij, and R.D. Russell, Numerical Solution
of Boundary Value Problems for Ordinary Differentiol Equations (Upper
Saddle River, N.J.: Prentice Hali, 1988).

[13] L. Baker, C Mathematical Function Hendbook (New York: MeGraw-Ifill,
1992).

400

[14]

(15]

[L6]

23]

[24]

23]

[26]

BIBLIOGRAPHY
D .M. Bates and D.G. Watis, Nonlinear Llegression Analysis and Its Ap-
plications (New York: Wiley, 1088).

A. Bellemans and J. Orban, “Velocity-inversion and irreversibility in a
dilute gas of hard disks,” Phys. Lett., 24A, 620 1 {1967).

E. Benton and G. Platzman, “A table of solutions of the one-dimensional
Burgers equation,” @, Appl. Math., 30, 195 212 (1972).

R.E. Berg and T.S. Marshall, “Wilberforce pendulum oscillations and
normal modes,” Am. J. Phys., 59, 32 & {1991).

I’ Bevington, Date Reduction and Errov Analysis for the Physical Sciences
2d ed. (New York: McGraw-Hill, 1992).

K. Binder ed.; Monte Carlo Methods in Statistical Physics, Topics Current
Physics, vol. 7 (Berlin: Springer, 19793,

K. Binder ed., Applications -of the Monte Carlo Method in Statistical
Physics (Berlin: Springer, 1984).

G.A. Bird, Moleculor Ges Dynamics and the Direct Simulalion of Gas
Flows (Oxford: Clarendon Pross, 1994).

C.K. Birdsall and A.B. Langdon, Plusma Physics via Computer Simula-
tion (New York: MeGraw-TTill, 1985)

J.A. Blackburn, H.LT. Smith, N. Grenbech-Jensen, “Stability and Hopf
bifurcations in an inverted pendulum,” Am. J. Phys., 60, 903-8 (1992).

M.L. Boas, Mathematical Methods in the Physical Sciences, 2nd od, (New
York: Wiley & Sons, 1983).

R.C. Booton, Computational Methods Jor Electromagnetics and Mi-
eroweves (New Yori: Wiley, 1992).

S. Brandt, Statistical and Computational Methods in Data Analysis {Am-
sterdami: North-Holland, 1970).

E.Q. Brigham, The Fast Fourier T ransform and Its Applications (Upper
Saddle River, N.J.: Prentice Hall, 1988).

C.G. Broyden, in Numerical Methods for Unconstrained Optumnization,
edited by W. Murray, (New York: Academic Press, 1972).

R.L. Burden and J.D. Faires, Numnerical Analysis, 1th ed., (Boston: PWS-
Kent, 1989).

C. Canuto, M.Y. Hussaini, 4. Quarteroni, and T.A. Zang, Spectral Meth-
ods in Fluid Dynamics (Berlin: Springer-Verlag, 1988),

BIBLIOGRAPHY 401
[31] D.G. Childers, ed. Modern Spectrum Analysis (New York: TEEE Press,
1978).

[32] B.V. Chirikov and V.V. Vecheslavov, “Chaotic dynamics of comet Halley,”
Astron. Astrophys., 221, 146-54 (1989).

33] S. Conte and C. de Boor, Elementary Numerical Analysis {New York:
McGraw-Hill, 1980). '

[34] J.W. Cooley and J.W. Tukey, “An algorithm for the machire calculation
of the complex Fourier series,” Math. Comput., 19, 297-301 (1965).

135] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol, IT (New
York: Interscience, 1962).

[36] A. Cromer, “Stable solutions using the Fuler approximation,”
Am. J. Phys., 49, 455-9 (1981).

[37] J.M.A. Danby, Fundamentals of Celestial Mechanics, 2nd ed. {Richmond,
VA: William-Bell Inc., 1088).

138] S.R. Davis, C++ for Dummies (Foster City, Calf.: IDG Books, 1994).

139] P.J. Davis and P. Rabinowitz, Numerical Integration (Waltham: Blaisdell,
1967). -

[40] C. de Boor, A Practical Guide to Splines (New York: Springer-Verlag,
1978).

41] J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK
Users’ Guide (Philadelphia: Society for Industrial and Applied Mathe-
matics [STAM], 1979).

[42] P.G. Drazin and R.S. Johnson, Solitons, An Introduction (Cambridge:
Cambridge University Press, 1989).

[43] 1.8. Duff, A.M. Erisman, and J.X. Reid, Direct Methods for Sparse Ma-
trices (Oxford: Clarendon Press, 1989).

[44] D. Etter, Introduction to MATLAB 5 (Upper Saddle River, N.J.: Prentice
Hall, 1999).

[45] W. Feller, An Introduction to Probability Theory and Its Applications
{New York: Wiley, 1971).

[46] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on
Physics, vol. T (Reading, Mass.: Addison-Wesley, 1963).

[47] C.A.J. Fleicher, Computational Technigues for Fluid Dynamics, vol. |
(Berlin: Springer-Verlag, 1988).

A02
[48]

9]

164]

BIBLIOGRAPHY

C.AJ. Fletcher, Computational Galerkin Methods (New York: Springer-
Verlag, 1984).

G.F. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for
Mathematicsl Computations, (Upper Saddle River, N.J.: Prentice Hall,
1977).

G.E. Forsythe and C.B. Moler, Computer Solution of Linear Algebraic
Systerns (Upper Saddle River, N.J.: Prentice-Hall, 1967},

C. Frohlich, “Aerodynamic drag crisis and its possible effect on the flight
of baseballs,” Am. J. Phys., 52, 325 34 (1984).

G. Galilel, Two New Sciences, translated by Stillman Drake {Madison:
University of Wisconsin Press, 1974).

C.W. Gardiner, Handbook of Stochastic Methaods for Physics, Chemistry
end the Natural Sciences (Berlin: Springer-Verlag, 1985).

C.W. Gear, Numerical fnitial Volue Problems in Ordinery Differential
Equations (Upper Saddle River, N.J.: Prentice-Hall, 1971).

N.J. Giordano, Compuiational Physics (Upper Saddle River, N.J.: Pren-
tice Hall, 1997).

J. Gleick, Chaos, Moking o New Science (New York: Viking Press, 1987).

A. Goldberg, H. Schey and J. Schwartz, “Computet-generated motion pic-
tures of one-dimensional quantum-mechanical transmigsion and reflection
phenomena,” Am. J. Phys., 35, 177-86 {1967).

| H.I. Goldstine, A History of Numerical Analysis from the 16th through

the 19th Century (New York: Springer-Verlag, 1977).

G.H. Golub and C.F. Van Loan, Matriz Computations, 2d cd. (Baltimore:

Johns Hopking University Press, 1989).
A. Gore, Earth in the Balance, Ecology ond the Human Spirit (New York:
Plume, 1992).

H. Gould and J. Tobochnik, An Introduction to Computer Simulation
Methods, 2nd ed. {Reading, Mass.: Addison-Wesley, 1996).

1.S. Gradshteyn and T.M. Ryzhik, Table of Integrals, Serics and Products
(New York: Academic Press, 1965).

J. Guckenhcimer and P. Holmes, Nonlinear Qscillations, Dynemical Sys-
tems and Bifurcations of Veetor Fields (New York: Springer-Verlag, 1983).

B.L. Haas and J.ID. McDonald, “Validation of chemistry models employed
in a particle simulation method,” J. Therm. and Heat Transfer, 7, 42-8
{1993).

BIBLIOGRAPHY 403
[65] R. Haberinan, Mathematieol Models (Upper Saddle River, N.J.: Prentice
Hall, 1977).

[66] W. Hackbusch, Multi-Grid Methods and Applications (Berlin: Springer-
Verlag, 1985).

[67) J.M. Haile, Molecular Dynamics Simulation (New Yerle Wiley, 1892).

[68] G.J. Haltiner and R.T. Williams, Numerical Prediction and Dynemic Me-
teorology, 2nd ed. {New York: Wiley, 1980).

[69] R.W. Hamming. Digital Filters (Upper Saddle River, N.1.: Prentice Hall,
1977).

[70] D.C. Hanselman and B.C. Littlefield Mastering MATLAB 5: A Compre-
hensive Tutorial and Reference (Upper Saddle River, N.J.: Prentice Hall,
1997).

[71] D. Heermann, Computer Simulation Methods in Theoretical Physics
{Berlin: Springer, 1986).

[72] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles
(Bristol: Adam Hilger, 1988).

(73] M. Holt, Numerical Methods in Fluid Dynamics, (Berlin: Springer-Verlag,
1977).

[74] P.J. Huber, Robust Statistics (New York: Wiley, 1981).
[75] J.D. Jackson, Classical Electrodynamics, 2d ed. (New York: Wiley, 1975).

[76] F. James, “Monte Carlo theory and practice,” Rep. Prog. Phys., 43, 1147-
89 (1980).

[77] G. Jenking and D. Watts, Spectral Analysis and Its Applications (San
Francisco: Holden-Day, 1968).

[78] T.P. Jorgensen, The Physics of Golf (New York: AIP Press, 1994).

[79] M.H. Kalos and P.A. Whitlock, Monte Cario Methods (New York: Wiley,
1986).

[80. B.W. Kernighan and D.M. Ritchie, The C Programming Language (Upper
Saddle River, N.J.: Prentice Hall, 1978).

[81] D. Knuth, Seminumerical Algorithms, vol. 2 of The Art of Computer Pro-
gramming (Reading Mass.: Addison- Wesley, 1981).

(82] P. Lancaster and K. Salkavskas, Curve and Surface Fitting (London: Aca-
demic Press, 1986).

83] L. Landau and E. Lifshitz, Mechanics (Oxford: Pergamon, 1976).

104
[84]

[85]

[90]

[92]

[93]

[94]

[95]

BIiBLIOGRAPIY

M. Lee and K. Schimidt. “Green’s Funciion Monte Carlo,” Comput. Phys.,
6 192-7 (1992).

A. Luchrmann, “Orbits in the Solar Wind—a Mini-Research Problep,”
Am. J. Phys., 42, 361-71 (1971).

J. Mathews and R. Walker, Mathematical Methods of Physics (Menlo
Park, Calif.: W. A. Benjamin, 1970),

J. McLennan, Introduction to Non-Equilibrium Statistical Mechanics (Up-
per Saddle River, N.J.: Prentice Hall, 1989).

W. Mendenhall, R.L. Scheaffer. and D.D. Wackerly, Mathematical Statis-
tics with Applications (Boston: Duxbury Press, 1981).

P. Morse and H. Feshbach, Methods of Theoretical Physics, vol. 1 (New
York: MeGraw-Hill, 1953).

E.P. Muntz, “Rarcfied gas dynamics,” Ann. Rev. Fluid Mech., 21, 387-417
(1989}.

5.G. Nash, ed. A History of Seientific Computing (New York: ACM Press,
1990).

G. Nicolis and L Prigogine, Self-Organization in Nonequilibrium Systems
(New York: Wiley, 1977).

J. Ortega, Numerical Analysis—A Second Course (New York: Academic
Press, 1972).

S.K. Park and K.W. Miller, “Random number generators: good ones are
hard to find,” Comm. A.C.M., 32, 1192-1201 (1988).

C. Penland, M. Ghil, and K.M. Weickmann, “Adaptive filtering and max-
imum cutropy spectra with application to changes in atmospheric angular
momentam,” J. Geo. Res., 96, 659-71 (1991).

F.L. Pedrotti and L.S. Pedrotti, Introduction to Optics, 2nd ed. (Upper
Saddle River, N.J.: Prentice-Hall, 1993).

T. Y. Petrosky and R. Broucke, “Area-preserving mappings and deter-
ministic chaos for nearly parabolic motions,” Celestial Mech., 42, 53-75
(1988).

R. Peyret and T.D. Taylor, Computational Methods for Fluid Flow (Now
York: Springer-Verlag, 1983).

E.C. Piclou, An Introduction to Mathematical Fcology (New York: Wiley,
1969].

S. Pissanetsky, Sparse Matriz Technology (London: Academic Press,
1984).

BIsLIOGIRAPHY AN

(1ol

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

[115]

116]

1. Plauger, The Standurd C Library (Upper Saddle River, N2 Prentice
Hall, 1992).

P.J. Planger, The Draft Standard C++ Library (Upper Saddle River, N.J.:
Prentice Hall, 1995).

I. Pohl, O+ for FORTRAN Programmers (Reading, Mass.: Addison-
Wesley, 1997).

W. Press, B. Flannery, 8. Teukolsky and W. Vetterling, Numerical Recipes
in FORTRAN, 2nd ed. (Cambridge: Cambridge University Press, 1992).

F. Reif, Fundamentals of Statistical and Thermal Physics {(New Yorl:
McGraw-11ill, 1965).

P. Revnolds, J. Tobochnik, and 1. Gould, “Diffugion Mente Carlo,” Com-
put. Phys., 4, 662-8 (1990).

R.D. Richtmyer and K.W. Morton, Difference Methods for Inilial Value
Problems, 2nd ed. (New York: Wiley, 1967).

W. Rosser, An Introduction to Statistical Physics (Chichester: Ellis Hor-
wood, 1986).

P.J. Roussecuw and A M. Leroy, Robust Regression and Outher Detection
(New York: Wiley, 1987},

M.N.O. Sadiku, Numerical Techniques in Electromagnetics (Boca Ratorn,
Fla.: CRC Press, 1992).

D. Saxon, Elementary Quantum Mechanics (San Francisco: Holden-Day,
1968).

L. Schiff, Quantum Mechanics (New York: MeGraw-Hill, 1968).

G.AF. Seber and C.J, Wild, Nonlinear Itegression (New York: Wiley,
1989).

R. Serber, The Los Alamos Primer, The First Lectures on How to Buid
an Atomic Bomb (Berkeley: University of California Press, 1992).

R. Scydel, From Equilibrium to Chaos, Practical Bifurcation and Stability
Analysis (New York: Elsevier, 1988).

G. 1. Smith. Numerical Solution of Partiol Differential Equations: Finite
Difference Methods, 3d ed. (Oxford: Oxford University Press, 1985).

C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange At-
tractors (Noew York: Springer-Veriag, 1982).

J. Stoer and R. Bulirsch, Infreduction to Numerical Analysis (New York:
Springer-Verlag, 1980).

406 BIBLIOGRAPHY

[119] B. Stroustrup, The C++ Programming Languoge, ond ed. (Reading,
Mass.: Addison-Wesley, 1991).

[120] A.H. Stroud, Approzimate Colculation of Multiple Integrals (Upper Saddle
River, N.J.: Prentice Hall, 1971).

[121] AH. Stroud and D. Secrest, Gaussion Quadrature Formulas (Upper Sad-
dle River, N.J.: PrenticeHall, 1966).

[122] W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson, “A computer
simulation methcd for the calculation of equilibrium constants for the

formation of physical clusters of molecules: application to small water
clusters,” J. Chem. Phys., 76, 637-49 (1982).

[123] K. Symon, Mechenics (Reading Mass.: Addison-Wesley, 1971).

[124] T. Tajima, Computational Plasma Physics: With Applications to Fusion
and Astrophysics (Redwood City, Calif.: Addison-Wesley, 1989).

125" N.M. Temme, “An algorithm with ALGOL 60 program for the computa-
:) B
tion of the zeros of ordinary Bessel functions and those of their deriva-
tives,” J. Comp. Phys., 32, 270 (1979).

[126] J. Tobochnik. G. Batrouni, and H. Gould, “Quantum Monte Carlo on a
lattice,” Comput. Phys., 6, 673-80 (1992).

[127] J. Tobochnik, H. Gould, and K. Mulder, “An introduction to quantum
Monte Carlo,” Comput. Phys., 4, 431-5 (1990).

[128] D.J. Tritton, Physical Fluid Dynamics, 2d ed. (Oxford: Clarendon Press,
1988).

[129] R.S. Varga, Matriz Iterative Analysis (Upper Saddle River, N.J.: Prentice
Hall, 1962).

[130] L. Verlet, “Computer experiments on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules,” Phys. Rev. 159, 98-103 (1967).

[131] R.G. Watts and A.T. Bahill, Keep Your Eye on the Ball (New York: W.
H. Freeman and Co., 1990).

[132] P. Wesseling, An Introduction to Multigrid Methods (Chichester: Wiley,
1992).

[133] J. Wilkinson, Rownding Errors in Algebraic Processes {Upper Saddle
River, N.J.: Prentice Hall, 1963).

'134] R.G. Wilson, 8.M. McCreary and F.L. Thompson, “Optiecal transforma-
tions in three-space: Simulations with a PC”, Am. J. Phys., 60, 40-56
(1992).

Selected Solutions

Chapter 1

1.4: For the first matrix, inverse is

1.0000 —0.5000 —0.0833
0 0.2500 —0.2083
0 0 (1.1667

and eigenvalues are 1, 4, and 6.
1.8: {a) 6.1875; (b) 0.0909091.

1.18:
Bazier curve
1.5
i -7.\\
|]
= 0.5} W
S
PN
ol -~ .
1
|
05t
47 08 o 05 1 15 2
X
1.26:
10 x =10 Part () +; part (b) o
10 SR ‘ =
-1 . |
5 - | _ i
10 3
8
(¢ e, .
3 10 o g, "
K<l "'(-%(N
B0 ,
s
Z e
210°° %, |
o O,‘
o
1 07 T i LRNISIOONN000C
0% ‘ : ‘ .
o W0 20 30 40 s &0

Number of terms

408 SELECTED SOLUTIONS

Chapter 2
2.2(e):
o f(x} = sin{x} at x=n/2
10 e . ‘
E
107 L
=
%10 ° i
1077
b stk b x x ke w
107"
107 10" 107" 107 10"
h
2.5:
Optimum angle = 30.5 deg.; Range = 126.087 m
130 . .
“‘IM,*wLHHHH_H_
120 i e,
+'+7
110 * -
-
E1ac
% &
g acf - 1
i o
acr -]
|
70 |
B 2w a0 - 50
Angle {degrees)
217
20 -
= Gomputed
15| {—— First Approx. |
‘ Second Approx.!
8
2 a
.
(=}
10 E
o P
e ggnﬂ.ﬂ?"“"'z&gﬁ .
% s oo 150 i

Initial angle (degrees)

SELECTED SOLUTIONS 409

2.21: For Ag = 100g, Tu = 0.2, 7 = 0.004, and g/L =1,
Driven pendulum

—r——

—

210 —————
r

gy o
J
v i i

-
©
o

= - _
—
—

Theta {degrees)
®
o

b ! |
o ! ¥
I S S S
Time
Chapter 3

37 Forvo — [010]m/s, E=[010, V/m,B =00 1] Tesla, 7 = 107" 5,
the expected drift velocity 18 tarire = [1 00] m/s; the measured value from data
below is [1.09415 -0.0164728 0]. ' :

s
15{—‘0 :

—_— T — T

I
) 0z 04 06 08 1 1.2
x x107"°
3.13: For 29 = 10 cm, fy = 0°, and 7 = 0.01, o
Wilberforce penduium 0025 ——— "~ " —m
O e } N RN :]
I P \ ‘
Il 0.02 : R
J L s) T 'Il:"ransi_ano_‘nz;ﬂ
& : . v, |- - Rotationa
.é |w| ‘| R 0015' S e I.——wf——rf
=] IR) i L
£ |“ hF E W [- ‘
@ R i | B 4 : i
L= OM,‘H I ARRHN 1 < ‘ . : o i
= TR oo /
5 ¥ ! ‘r | I\I:“ \ ‘ | I‘II " [i / \\ A%
N R RN A L - :
s INRESERRE | “ k |‘ ‘_ \-‘ 0.005F | s ; \ 1
IR : l‘ || ‘ ! | 2
I N o
10(|)l.. J [P e — ,4|L' oL’ S P — _\..L.;fw - j

20 2
Time (8] Time (s}

410 SELECTED SOLUTIONS

3.14: For rog = [1 0] AU, v = [0 7/2) AU/yr, and a = 0.02, the cxpected
precession is —46.7% per revolution.

90 4 B00— —— — —
120 6D

Distance (au)

-]
15 2 25 3
Time {yr}
325: Foro =10,6=28/3, r = 28, and 7 — 5 x 1073,
Distance between lr.':lJEC‘tOI' es 5 Distance betweean rajectaries
10° - 10 —_— e, T
’_ P r 'l || i \W‘.IM | I|| H‘l‘ M‘
| i
10' 101 \ .IJ | | u'|| ‘\‘\ I‘l' '\I\I “hl\tlllllL‘lI”"ll
il [
B | "| ! ‘”J U‘l
10° - " 10° " I i
Py [/
L | \Il
£10” 10“L I
% i]
g i i b ‘
o Dy
107 ' :
‘ i
. | il
: R .
Y O
o 5 10 15 20 25 0 10 20 30 40 50
Time Time
Chapter 4
4.8(a):

Resistor cube

086 —— —

0.85

0.84a- o

Equivalent resistance
e o o
& = @
= N S

\\
N
N,

o
0
=

o
&
‘ .

o5 1 45 2
Reststance 5-7

=
&
o

SELECTED SOLUTIONS 411

4.13(b):

Coupled spring-mass system

| /o
J:2.5 / 1
5 / _
: | / ‘
[2‘: // ‘
7 |
1.5[-—‘6_—2—-—- 71700 - Tc)T_J
/K,

4.18: The first four energy levels are —13.524 eV, —13.300 eV, —12.9134 eV,
and —12.384 eV.

4.24: Steady state position'is 2 = 6.245 cm and y = 12.65 cm.

Chapter 5 :
5.4: a = (Dry)/(Te?) and o2 = 1/(Za?).
5.12(b): The year 2003.
5.19:

o
cm
.8

Operations (flop) count
f=}

—
(=
)

S
? 10" 10° 10
Nurnber of data points

3

5.23(a): Normal modes frequencies are given by

1 1 "
Wi = Sl) £ 5y (W -)t bl

where w? = k/m and wj = 8/1.

SELECTED SOLUTIONS

412
Chapter 6
6.6(c): For 7 = 1.0 x 10 * and N =61,
15 T /
L o s .
0005 001 0015 002 0025

Time

.08

10,
8-
= &
g4 *
2.
08
' 008
05" 506 .01 0.015 0.02 0.025 D.03 0035 0.04
Time
6.14: For a =2, L.~ 1.74.
Chapter 7
79 For 7 = 0.015, N = 50, w = 10, using: Lax (left); Lax- Wendroff
{right),
08 - 7 - T .- 1 . 7 — - A — ol
F ‘ Initiaﬁ‘ | . — Initial
06 . - Final | [2 o | == Final
0.4"; I"‘ 1 0'5}», . .I ' ' I‘ . . " I
oz _ A
':;O‘. : + Y 0‘.:" T T T R
70.4] 4 ' . ’
s T T T T T o5 o5 T T 0.5
X

SILECTED SOLUTIONS 413

711 For 7 = (.02, N = 80, using Lax-Wendroff,

e el

v £ ==

7.12(b): For pp = Spm, 7= 0.02, N = 80, using Lax-Wendrof,

3.5!

pix,h

Chapter 8

8.3(a): Trom separation of variables,

X2 (o) B v
’ _) . (MATN ., (MTY LVt mPn(z — 7/2)
b(z.y,2) = E E Cr SN (7) sin (7) cosh T

]
n=1m=l

where
16®,

nmm?

sech(V'n? + m2x/2)

for m and n odd, ¢n 4, = 0 otherwise.

Copom =

414 SELECTED SOLUTIONS

8.8(a): For the 8 point Faraday cage,

e,

i
100, - g
: Sl o8

% 'ﬁé'w:

o
X XN

ot

pot

(o2 &
(=] o
N
SN
SN
SR
Peetarytiat \
Snae
SRR

Dix.y)
0
o
£

b

St

e
5
s‘i"’?&
S ‘-:2:*‘.
S
Sy
52T
s

-

.
i
:

.
2

R
o3
204 SIS

¥
it
e
bt - 7
P i

i o2

8.15(b): The method of images solution is

PB(r) = Z Z (—l)i@f(r;riij,ri’ﬁ)

i——00 j=-—o0

id L \. L+d N\ .
r£3=(§+zL>x+(5 +3L)y

and ®¢(r;ry,r_) is the potential for a free dipole.

where

Chapter 9
9.2: The amplitude factor is given by,

e =1+ [(%)4 - (%)] (1~ cos kh)?

9.7: For 7 < &, [|[Alls = 1+ 7/2t, and for 7 > t,, [[A]} = max{1 +
7/2t;, 27/, — 1}.
102‘ ‘ w —

+ Spectral radius|
-+ One norm
e Infinity norm

2

Spectral radius or narm
=
O_

10 Lo PN . -

SELECTED SOLUTIONS

0.17: For N =80, L=20,and 7 =5 x 1073,

25— ' 5 _i
2 7,} (Computed

Exact
15 ;o

: fy l Initial
D 71! *_'J
HE P
a 1 : +

AR
N
! CF 1
0.5- s Lo J !

4
‘ i b
e v—— L PP &—‘H
05— . .
=

-5 0 10
X

9.21: For Uy = 0 (left) and Up = 2 (right); N

-

=200, L =100, and 7 =1,
T 1 . T T T
1 0.95[
08F i '
H 0.9}
3
Rl _085]
£ H T
0.4 H 08y
%
?:,§ 0.75}
0.2]
0.7}
| . . L . . .
% 100 200 300 w0 % 100 200 300 400
time time
Chapter 10
10.11:
0.15‘
01r f\\ m=10
f
I
0.05+ {0
E / \" N
E

30 40 50

416

10.16:

25—

— — e "—I;ITIH*_‘;H_iwu—a--nj
w
\’I_+Y
)‘L(
20 L *
L
i
o5 ! -
= !
& . ‘
2 R
o
& 10 N
= &
= P |
E
J
5 s
\Jr
o+
10’ 107 10°
Temperature

35-/ | '\
i Hs \\
3" ,'/f Jr e 71 -
25 |]
CUP . . e |
15 | po e
[e P
AR
0.5|}; ’.1;/] .]
0.5 1 :;T)
Chapter 11
11.4:
104r ST T o o _
! * a:o_gg‘ ‘
+ a=0.50!
° a=0.01 .
et | <y * 1
“? e .
£
=
s !
i
Z 107k

10 10 10*
Temperature (K)

1L.13: z = ay/—In(1 — R},

SELECTED SOLUTIONS

SELECTERED SOLUTIONS

VL Lh: For N = 10000 random values, and M = 12,

1200

1000~

800

600

Number

400

200

11.21: Fo

S

I.i’i:\-r—ﬁ

2 G
X

4

r N = 300 particles, and Av = 50 m/s,

50

—150p

"
gt

-200

4 6 8
Collisions per particle

et b e H ettt]

10

Index

Acceptance-Rejection, 353
Adaptive filters, 171
Adaptive integration, 333
Adaptive methods, 42, 81
Advection equation, 216, 279
Air resistance, 37
Aliaging, 156, 202
Alternating direction implicit (ADI),
300
Amplification factor, 280
Aperture function, 266
Aphelion, 68
Artificial diffusion, 222
Atomic bomb, 202
Attractors, 88

Backsubstitution, 109
Baseball, 37
Belousov-Zhabotinski reaction, 114
Bessel functions, 26, 152, 313
gecond kind, 317
spherical, 317
zeros, 315
Bezier curve, 26
Binomial distribution, 351
Blackbody radiation, 127
Bohr radius, 26
Boundary conditions
Dirichlet, 193, 282, 297
Neurnann, 193, 201, 259
" periodic, 193, 201, 218, 359
thermal, 369
Boundary value problems, 57, 194
Box-Muller transformation, 350
Brusselator model, 114
Balirsch-Stoer, 90
Burger's equation, 226, 293

Butterfly effeci, 88

C++. 10
% (modulo), 12
&& (logical and), 13
[| (logical or), 13
== (logical cquals), 13
1= (logical not-equals), 13
++, -~ (increment), 12
4=, -=, =, /=, 12
// (comment}, 11
//* (outline comment}, 18
; (semicolon), 11
arithmetic, 11
arrays, 11, 112
agsignment statements, 10
classes, 362
comments, 11
constants, 11
floating-point numbers, 10
functions, 24
graphics, 24
1/O strearns, 13
include files, 22
indices, 11
input, 14
integers, 10
math functions, 12
Matrix class, 112
member functions, 113
output, 13
passing function pointers, 79
power function, 12

C++ keywords
const, 11
delete, 11
double, 10

INDEX

for, 12

if, else, 13

int, 10

new, 11

while, 13
Canonical ensemble, 342
Carbon dioxide, 141, 153
Central limit theorem, 355
CFL condition, 220, 281
Chain reaction, 202
Chaos, 88
Chapman-Enskog theory, 363
Characteristics, method of, 227
Chi-square statistic, 143
Classes

Matrix, 137

SampList, 397

SortList, 396
Coin toss, 29, 351
Collision frequency, 345
Collisions, 357
Collocation method, 259
Comets, 67, 69, 89
Conjugate-gradient method, 268
Continuation, 127
Continuity, equation of, 225, 365
Cornu spiral, 325
Couette flow, 367
Courant-Friedrichs-Lewy condition,

see OFL condition

Cramer’s rule, 111
Crank-Nicolson scheme, 288, 296
Craps, 356
Cubic splines, 171
Cumulative distribution function, 350
Curve fitting, 142

general linear functions, 145

polynomials, 146

straight line, 143
Cylindrical coordinates, 312

Debye theory, 324
Deflation, 123, 285
Delta function, 196, 199
Derivatives, 28, 39
centered, 48

419

right, 39
second, 49
third, 55
three-point, 44
Design matrix, 146
Diffraction, 266
Diffusion, 192, 195, 203, 252, 365
Digital filters, 163
Dilute gas, 341
Dipole, 260
Direct simulation Monte Carlo (DSMC),
356
Dispersion, 299
Dissipation, 299
Dot product, 4, 16
Double factorial, 30
Dow Jones Averages, 152
Drag, 37, 8
DuFort-Frankel scheme, 202

Eccentricity, 68

Eigenvalue problems, 164, 283
Electrostatics, 249, 318

Elliptic equations, 192, 249
Elliptic integrals, 48
Equipartition theorem, 344, 366
Equivalent springs, law of, 121
Error bars, 52, 142, 144

Error function, 320

Fuler method, 40, b1, 74
Euler-Cromer method, 41, 50, 73
Explicit methods, 198

Facterial, 27
Faraday cage, 256
Feynman, 50
Fission, 202
Fluctuations, 364
Fluid mechanics, 225
FORTRAN, 2
Forward elimination, 109
Forward time centered space (FTCS) -
scheme, 198, 217, 288
Fourier equation, 192
Fourier transform
discrete, 154

420

fast (FFT), 158, 262

two-dimengional, 262
Fraunhofer irradiance, 266
Fresnel integrals, 325

Galerkin method, 259
Galilec, 45, 46
Gamma distribution, 355
Gauss-Scidel method, 129, 253
Gaussian, 195, 289, 349
Gaussian elimination, 109
tridiagonal matrices, 296
Gaussian quadrature, 326
Gear methods, 91
Generating function
Bessel functions, 317
Legendre polynomials, 316
Gibbg’ phenomenon, 251
Ginzhurg-Landau equation, 114
Global error, 42
Global warming, 141
Goodness of fit, 147
Gram-Schmidt procedure, 25
Green's function, 196
Grecnhouse gases, 141
Gulliver’s Travels, 11

H-function, 363

Hamilionian operator, 287, 310
Hanning window, 168
Hard-sphere model, 344
Harmonic oscillators, 119, 163
Helmholtz equation, 312, 330
Hermitian operators, 310
Histograms, 354

Hyperbolic equations, 192, 215 ‘

Ideal gas, 342
Tll-conditioned matrices, 119
Tmages, method of, 195
Implicit schemes, 287
Inclination, 69

Infinity, 28

Initial value problems, 192
Integration, 318
Interpolation, 19

INDEX

Tsing model, 374

Jacobi method, 253
Jury meshods, 194

Kepler equation, 127

Kepler problem, 67

Kepler’s third law, 69, 83

Kinetic theory, 341

Kirchhoff’s laws, 115

Knudsen number, 374

Kortewepg-de Vries (KdV) equation,
204

Lagrangian polynomial, 19
Laplace’s equation, 192, 249, 310
Lax method, 220, 231
Lax-Wendroff scheme, 223, 232
Leakage, 165

Leap-frog scheme, 50, 224

Least squares fit, 142

Legendre polynomials, 311, 327
Linear congruential method, 347
Lincar convection equation, 216
Linear regression, 143

Linear systemns, 108

Local error, 42

Lorentz force, 74

Lorenz model, 86, 114, 168
Loschmidt’s number, 342
Lotka-Volterra maodel, 89, 114

Mach number, 369
Manhattan project, 202
Marching methods, 193
MATLAB, 2
% (porcent sign), 3
% (Outline comment), 16
& {logical and}, 6
| (logical or), 6
' (Hermitian conjugate), 4
.7 (transpose), 4
%, ./, .~(arrayoperators), 4
.. (ellipsis), 22
/ (slash operator), 111
A\ (backslash operator), 111

\n (new line), 8 inv, 117

: {colon operator), 6 load, §

; (semicolon), 3 ones, 3

== {logical equal}, 6 quit, 8

~= {logical not-equals}, 6 quiver, 263

~ (power operator), 4 rand, 347

array operations, 4 randn, 350

assignment statements, 3 rcond, 119

colon operator, 6 gave, 8

command line, 8 while, 6

continuation, 22 Zeros, 3

exiting, 8 Matrices

functions, 4, 21 banded, 295

graphics, 8 block diagonal, 295

help, 9 C++ class, 112, 137

Hermitian conjugate, 4 condition, 119

indices, 4 determinant, 111

input, 7 ' exponential, 10

M-files, 8 identity matrix, 116

mathematics, 4 inverse, 116

matrices, 3 norms, 286

output, 7 singular, 118

passing function names, 79 spectral radius, 283

power, 4 : tridiagonal, 295

scalars, 3 Maximum entropy method, 171

structures, 362 Maxwell-Boltzmann distribution, 343

transpose, 4 Mean free path, 345

variables, 3 Mesropolis Monte Carlo, 374
MATLAB commands Midpoint method, 41

break, 6, 13 Modulo, 12

clear, 16 Molecular dynamics, 342

cond, 119 Monte Carlo integration, 333

det, 112 Monte Carlo methods, 341

disp, 7 Multigrid methods, 266

eig, 283 Multiple Fourier transform (MFT)

end, 3, 6 method, 263

eps, 28

exit, 8 N-wave, 238

expm, 10 Navier-Stokes equations, 225

feval, 79 Newton’s method, 122, 124, 315

for, 3 Noise, 168

fprintf, 8 Nonequilibrium states, 365

gradient, 263 - Normal equations, 146

help, 9 Normal modes, 163

if, else, elseif, 6 Not-a-Number (NaN), 28

inpus, 7 Numerical stability (see Stability)

422

Numerov’s method, 57
NumMeth header file, 35
Nyquist frequency, 156

Orbits, 67
Orthogonality, 258
Bessel functions, 313
Legendre polynomials, 311
Cutliers, 171

Padding, 163
Parabolic equations, 192
FParsicle in a can, 330
Pass by value, reference, 24
Pendula, 46
double, 86
inverted, 56
period, 47, 48
Wilberforce, 80
Perihelion, 68
Perturbaticn theory, 328
Pivoting, 110
Poiseuille flow, 373
Poigson distribution, 356
Poigson equation, 192, 255, 258
Power method, 284
Power specrtra, 156, 165
Precision, single and double, 26
Predictor-corrector, 90
Probability distributions
binomial, 29, 351
discrete, 351
exponential, 349
gamma, 355
Gaussian, 349
Maxwell-Boltzmann, 343
moments, 354
Poisson, 356
uniform, 347
Programs
advect, 218, 239, 242
balle, 43, 58, 61
bess, 314, 334, 337
cinv, 306
colider, 362, 377, 387
dftes, 198, 208, 210

INDEX

dstnceq, 358, 375, 383
damene, 368, 379, 389
errintg, 322, 336, 339
fft, 159, 185
12, 263, 276
fitpoi, 263, 270, 274
fnewt, 124, 131, 133
ftdemo, 154, 174, 180
ge, 113, 134
gravrk, 79, 93, 100
ifft, 162, 186
iftt2, 263, 277
interp, 20, 22, 31, 33
intrpf, 32, 34
inv, 117, 135
legndr, 312, 334, 336
linreg, 147, 171, 177
lorenz, 87, 94, 102
lorzrk, 87, 96, 104
Istdemo, 147, 172, 178
mover, J69, 381, 392
neutrn, 205, 209, 212
newtn, 124, 129, 13t
orbit, 69, 91, 96
orthog, 16, 17, 31, 32
pendul, 52, 39, 63
pollsf, 150, 173, 179
rand, 347, 395
randn, 350, 395
relax, 254, 268, 271
rk4, 78, 92, 99
rka, 83, 93, 100
rombf, 322, 335, 338
sampler, 370, 382, 394
schro, 290, 300, 302
sorter, 362, 376, 386
sprift, 165, 175, 182
sprrk, 165, 176, 184
traffic, 232, 240, 244
tri_ge, 206, 301, 305
zero], 315, 335, 338
Projectile motion, 37
Propagation of ervors, 144, 146

Quadrature, 318
Quantum Monte Carlo, 374

Quasi-Newlon melhods, 120

Random number gencrators, 347
acceptance-rejection, 353
discrete distributions, 331
exponential distribution, 349
Gaussian distribution, 349
invertible distributions, 348
sced, 3418
uniform distribution, 347

Range error, 26

Rarefaction wave, 228

Red noise, 168

Relaxation methods, 58, 252

Representative particles, 356

Resistor cube, 115

Revnolds numhber, 38

Richardson extrapolation, 322

Richardson scheme, 202

Robust technigues, 171

Rodrigues formula, 311

Romberg integration, 321

Root finding, 108, 122

Reund-off error, 28, 110

Rube Goldberg, 146

Runge-Kutta, 74
adaptive, 82
fourth order, 77
second order, 74
truncation error, 78, 80

Rutherford scattering, 85

Schridinger equation, 287, 328
Sclf-starting, 51

Scparation of variables, 203, 249, 309

Shock fronts, 233
Shooting methods, 58
Signal processing, 153
Significant digits, 28
Simpson’s rule, 324

Simultaneous overrelaxation (SOR),

253
Singular matrices, 118

Singular value decomposition (SVD),

129, 170
Slip, 373

12

Sparse malrices, 294
Spectral analysis, 153

Spectral radius, 283

Speed of sound, 344

Spherical coordinates, 310

Square well, 127

Stability
Bessel function recursion, 314
CFL condition, 220, 281
FTCS scheme, 200, 218, 252
implicit schemes, 288
Lax scheme, 220
matrix stability analysis, 281
ordinary differential equations,

53, 70

simultaneous overrclaxation, 253
von Neumann analysis, 280

Standard deviation, 53, 145, 196

Static equilibrium, 119

Steady states, 107, 365

Stilf equations, 91

Stirling’s formula, 27

Stokes” law, 38

Stoplight problem, 228

Sturm-Liouville equation, 309

Tamper, 207

Taylor expansion, 39, 76, 124
Thomas algorithm, 296
Traffic flow, 225

Trapezoidal rule, 319
Tridiagenal matrices, 295
Truncation error, 39, 42

Upwind scheme, 224

Vandermonde malrix, 122

Verlet methad, 31, 57
Velocity Verlet, 56

Virial theorem, 73

Viscosity, 367

Yiscous heating, 373

Wave equation, 192, 215
Wheatstone bridge, 115
White noise, 168, 355
Windows, 168

	Contents
	Chapter 1:Preliminaries
	Chapter 2:ODE's I
	Chapter 3:ODE's II Advanced methods
	Chapter 4:Solving Systems of Equations
	Chapter 5:Analysis of Data
	Chapter 6:PDE's I Basic methods
	Chapter 7:PDE's II Advanced methods
	Chapter 8:PDE's III Relaxation & Spectral methods
	Chapter 9:PDE's IV Stability & Implicit methods
	Chapter 10:Special functions & Quadrature
	Chapter 11:Stochastic methods
	Bibliography
	Selected solutions
	Index

